JOURNAL OF NEUROINFLAMMATION

Correction: Transcriptomics and proteomics analyses of the PACAP38 influenced ischemic brain in permanent middle cerebral artery occlusion model mice

Motohide Hori ${ }^{1,2}$, Tomoya Nakamachi ${ }^{2,4}$, Randeep Rakwal ${ }^{2,4^{*}}$, Junko Shibato ${ }^{2}$, Tetsuo Ogawa ${ }^{2}$, Toshihiro Aiuchi ${ }^{2}$, Tatsuaki Tsuruyama ${ }^{1}$, Keiji Tamaki ${ }^{1}$ and Seiji Shioda2 ${ }^{{ }^{*}}$

The Figure Two (Figure 1 here), X -axis description of each sample was inverted in the original publication [1].
With reference to corrected Figure Two (Figure 1 here), we have the following revised text.
On Page 9, left column: lines 19-24 should read as -
"Similarly, Il6, S100a5, Il22, Il1b, Igf1, and Ccl2 were highly expressed at 6 h in the PACAP-treated ischemic brain, whereas their expression level decreased at 24 h compared to the PMCAO effect alone (Figure Two (Figure 1 here)). Fgf21, Pitpnc1, and Epha3 genes showed an increase in expression at 24 h over PMCAO alone (Figure Two (Figure 1 here))."

On Page 11, right column: lines 16-19 should read as -
"In the ischemic hemisphere at 24 h , the PACAP plus PMCAO expression level of $I l 6$ was also reduced compared to the PMCAO plus saline control."

We regret any inconvenience that this inaccuracy in Figure Two (Figure 1 here) and therein the figure legend, which could not be properly corrected at the proof stage, in the originally published manuscript might have caused.

[^0]

Figure 1 The mRNA expression profiles of differentially expressed genes. Both the upregulated (\mathbf{A}) and downregulated (B) genes were selected randomly. Gel images on top show the polymerase chain reaction (PCR) product bands stained with ethidium bromide; the band intensities are also presented graphically below for clarity. Lane numbers 1 to 8 indicate sham control (lanes 1, 2, 5, and 6) and permanent middle cerebral artery occlusion (PMCAO) treatment (lanes 3, 4, 7, and 8), respectively. P indicates pituitary adenylate cyclase-activating polypeptide (PACAP) treatment; C is the control (minus PACAP). GAPDH and beta-actin genes were used a positive control (C). Semi-quantitative RT-PCR was performed as described in Methods, and the specific 3'-UTR primers are detailed in Additional file 2: Table S2.

Author details

${ }^{1}$ Department of Forensic Medicine and Molecular Pathology, School of Medicine, Kyoto University, Kyoto 606-8315, Japan. ${ }^{2}$ Department of Anatomy I, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan. ${ }^{3}$ Department of Center for Biotechnology, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan. ${ }^{4}$ Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan.

Received: 31 January 2013 Accepted: 31 January 2013
Published: 31 January 2013

References

1. Hori M, Nakamachi T, Rakwal R, Shibato J, Ogawa T, Aiuchi T, Tsuruyama T, Tamaki K, Shioda S: Transcriptomics and proteomics analyses of the PACAP38 influenced ischemic brain in permanent middle cerebral artery occlusion model mice. J Neuroinflammation 2012, 9:256.
[^1]
Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubIMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

[^0]: * Correspondence: plantproteomics@gmail.com; shioda@med.showa-u.ac.jp
 ${ }^{2}$ Department of Anatomy I, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan
 ${ }^{4}$ Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
 Full list of author information is available at the end of the article

[^1]: doi:10.1186/1742-2094-10-18
 Cite this article as: Hori et al.: Correction: Transcriptomics and proteomics analyses of the PACAP38 influenced ischemic brain in permanent middle cerebral artery occlusion model mice. Journal of Neuroinflammation 2013 10:18.

