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Abstract

Background: Microglia can adopt different morphologies, ranging from a highly ramified to an amoeboid-like
phenotype. Although morphological properties of microglia have been described in rodents, little is known about
their fine features in humans. The aim of this study was to characterize the morphometric properties of human
microglia in gray and white matter of dorsal anterior cingulate cortex (dACC), a region implicated in behavioral
adaptation to neuroinflammation. These properties were compared to those of murine microglia in order to gain a
better appreciation of the differences displayed by these cells across species.

Methods: Postmortem dACC samples were analyzed from 11 individuals having died suddenly without any history of
neuroinflammatory, neurodegenerative, nor psychiatric illness. Tissues were sectioned and immunostained for the
macrophage marker lonized calcium binding adaptor molecule 1 (IBA1). Randomly selected IBAT-immunoreactive
(IBA1-IR) cells displaying features corresponding to commonly accepted microglial phenotypes (ramified, primed,
reactive, amoeboid) were reconstructed in 3D and all aspects of their morphologies quantified using the Neurolucida
software. The relative abundance of each morphological phenotype was also assessed. Furthermore, adult mouse
brains were similarly immunostained, and IBA1-IR cells in cingulate cortex were compared to those scrutinized in
human dACC.

Results: In human cortical gray and white matter, all microglial phenotypes were observed in significant proportions.
Compared to ramified, primed microglia presented an average 2.5 fold increase in cell body size, with almost no
differences in branching patterns. When compared to the primed microglia, which projected an average of six primary
processes, the reactive and amoeboid phenotypes displayed fewer processes and branching points, or no processes at
all. In contrast, the majority of microglial cells in adult mouse cortex were highly ramified. This was also the case
following a postmortem interval of 43 hours. Interestingly, the morphology of ramified microglia was strikingly similar
between species.

Conclusions: This study provides fundamental information on the morphological features of microglia in the normal
adult human cerebral cortex. These morphometric data will be useful for future studies of microglial morphology in
various illnesses. Furthermore, this first direct comparison of human and mouse microglia reveals that these brain cells
are morphologically similar across species, suggesting highly conserved functions.
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Introduction

Microglia have traditionally been recognized as the
innate immune cells mediating inflammatory responses
in the central nervous system (CNS). In recent years,
however, it has become increasingly clear that ramified
“resting” microglia also participate actively in fundamen-
tal aspects of neuronal activity, including structural and
functional plasticity [1-3]. Ramified microglia can re-
spond to subtle microenvironmental changes arising
from a wide variety of factors such as pathogens [4-6],
stress [7,8], and injury, [9-11] with what is commonly re-
ferred to as microglial activation. As mainly described in
rodent studies of CNS injuries, this involves a rapid al-
teration of cell metabolism and function [12-14], which
can be accompanied by a graded spectrum of morpho-
logical changes that transform highly ramified microglia
into amoeboid-phagocytic microglia [12,14-16]. Follow-
ing cell activation, highly branched microglia can re-
absorb stochastically (and reversibly) into the cell body
before transitioning to a dynamic motility stage with cy-
cles of extension and retraction of new processes. Fully
activated microglia then initiate a locomotor stage, by
which they migrate throughout the tissue [14,17]. Rami-
fied microglia can also reach intermediate phenotypes
before returning to a ramified morphology, without ever
becoming amoeboid-like. Along the complete activation
sequence described above, four major phenotypes are
usually distinguished in rodents based on distinct mor-
phological [14,15] and molecular criteria [18-21]: rami-
fied, primed, reactive, and amoeboid.

Analyzing microglial morphology and function in hu-
man brains is obviously more challenging. Postmortem
studies have confirmed the existence of various morpho-
logical phenotypes [13,22,23] that had been previously
described in rodents. Furthermore, some of the morpho-
logical and molecular mechanisms underlying human
microglial reactivity have been described during develop-
ment, [24-26], as well as in pathological conditions such as
Creutzfeldt-Jakob [27,28], Parkinson’s disease [29-31]
Alzheimer’s disease [22,32,33] and multiple sclerosis
[34-36]. Despite these advances, there is a current lack
of detailed knowledge on the fine properties of micro-
glia in the human brain, and how these properties may
generally compare to those of rodents, which are com-
monly used as models in biomedical research. Here, we
report the first comprehensive morphometric analysis
of the different microglial phenotypes found in postmor-
tem samples of dorsal anterior cingulate cortex (dACC),
an area that has been associated with the behavioral re-
sponse to neuroinflammation [37], from adult individuals
having died with no history of inflammatory, neurological
or psychiatric illness. Tissue sections were immunostained
for ionized calcium binding adapter molecule 1 (IBA1),
a calcium-binding protein specifically expressed in
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macrophages and microglial cells [38], and the morpho-
logical features (cell-body shape and size, length and
branching of processes) of randomly selected IBA1-
immunoreactive cells corresponding to each major
morphological phenotype were measured following their
3-dimensional reconstruction. In addition, similar analyses
were carried out in mouse cortex for comparative
purposes. This study not only provides fundamental in-
formation on the fine characteristics of human microglia,
but also highlights the morphological similarities between
human and mouse cortical microglia. Altogether, we
propose measurable criteria for the differentiation of hu-
man microglial phenotypes that could be applied in future
postmortem studies of pathological conditions.

Materials and methods

Human and mouse brain tissues

This study was approved by the Douglas Hospital
Research Ethics Board, and written informed consent
from next-of-kin was obtained for each subject. Fresh-
frozen postmortem brain samples from the right hemi-
sphere of individuals having died accidentally without
any psychiatric, neurological, or inflammatory illnesses
(n=11) were provided by the Douglas-Bell Canada Brain
Bank. The average age at death of these subjects (10 male
and 1 female) was 48 + 5.2 years old. The average post-
mortem interval (PMI) was 57.5 + 5.4 hours, the interval
between death and storage of the body at 4°C (refriger-
ation delay) was 5.3 £ 2.0 hours, and the average brain pH
was 6.6+ 0.08. All subjects had died suddenly, without
agony, from cardiovascular conditions (n=6), road acci-
dents (n=2), or intoxication (n=3). Brain samples were
dissected from the dACC, adjacent to the dorsal part of
the genu of the corpus callosum (BA24) [39,40], as de-
scribed previously [41]. After fixation by immersion in
10% formalin, tissue blocks were cut into serial 50-pm-
thick coronal sections using a freezing microtome. Every
12th section collected was processed for free-floating
IBA1 immunohistochemistry as detailed below.

Adult male C57BIl6 mice (1.5 to 3.0 months old; n = 4)
were used in this study. All procedures were approved
by the Douglas and McGill Animal Care Committees.
Three mice were deeply anesthetized with a solution
containing ketamine and xylazine (0.1 mg/g, intraperio-
neal) and perfused intra-cardially with 4% paraformalde-
hyde (PFA) in 0.1 M PBS, pH 7.4, 50 ml per mouse.
Brains were removed, post-fixed overnight by immersion
in the PFA solution at 4°C, and washed in PBS. One
mouse was used to evaluate the effects of PMI on IBA1-
IR cell distribution and morphology. This animal was
sacrificed by cervical dislocation and kept 11 hours at
room temperature before being placed for 32 h at 4°C,
to mimic human PMI conditions. The brain was then
dissected and fixed by immersion in a 4% PFA solution
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for 48 hours at 4°C. All mouse brains were cut with a
vibrating microtome into 50-um coronal sections (brain
slices corresponding to plates from +2.34 mm to
-0.46 mm) containing cingulate cortex [42], and kept in
PBS until further use. Samples were washed with PBS
and processed for free-floating IBA1 immunohistochem-
istry as detailed below.

IBA1 immunohistochemistry

All incubations occurred at room temperature. Prior to
immunohistochemical labeling, human tissues underwent
antigen retrieval by incubating sections for 10 minutes in a
solution of Tris-buffered saline (TBS) containing 20 pg/ml
proteinase K, followed by a 10-minute incubation in
distilled water containing 3% H,O,. Sections were then
pre-incubated for 24 h in TBS + 0.05% tween containing
2% normal goat serum, before being transferred for 48
hours into the same solution containing polyclonal
rabbit anti-IBA1 (1:1000; WAKO Chemicals USA, Inc.,
Richmond, VA, USA). This was followed by 1 hour
incubation in biotinylated goat anti-rabbit antibody
(1:1,000; Vector Laboratories Inc., Burlington, ON,
Canada), and the avidin-biotin complex procedure
(ABC Kit, Vectastain Elite, Vector Laboratories Inc.,
Burlington, ON, Canada) for 30 minutes. Labeling was
revealed with a diaminobenzidine kit (Vector Labora-
tories Inc., Burlington, ON, Canada) and samples were
counterstained with cresyl violet to better differentiate
gray and white matter (Figure 1). Sections were mounted
on glass slides, dehydrated, and coverslipped with
Permount (Fisher Scientific Inc., Pittsburgh, PA, USA).
Mouse brain sections underwent the same procedures,
with the exception of the antigen retrieval step.

Morphometric analyses of microglial phenotypes in
human dACC

A general assessment of IBAl-immunoreactive (-IR)
cells was first conducted to evaluate the relative distribu-
tion and abundance of microglial phenotypes in dACC
gray and white matter. In all subjects, microglia in the
gray matter were generally randomly distributed across
and within layers, whereas they appeared to be aligned
with myelinated fibers in the adjacent white matter
(Figure 1). Four distinct morphological phenotypes
were easily recognizable in both gray and white matter.
These morphologies corresponded to the previously de-
scribed microglial phenotypes classically associated with
differing states of activation: ramified, primed, reactive,
and amoeboid [12,14,15,22,43]. In human dACC, IBA1-IR
cells were categorized using the following distinctive fea-
tures: ramified microglia displayed a small but defined cell
body that appeared spherical in the gray matter (Figure 2a)
and ellipsoid in the white matter (Figure 3a). In both cor-
tical compartments, ramified microglia displayed several
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Figure 1 Distribution of ionized calcium binding adaptor molecule
1 (IBA1)-immunoreactive (IR) cells in the gray and white matter
human dorsal anterior cingulate cortex (dACC) counterstained
with cresyl violet. Human microglial cells in the dACC appear evenly
distributed across the cortical layer in the gray matter (a) and

aligned to myelinated tracts in the white matter (b). Scale bars: 50 um.

highly branched processes. Primed microglia in gray mat-
ter remained highly ramified, albeit with fewer higher-
order branches, but presented a distinctive ellipsoid-like
soma (Figure 2b). In the white matter, primed microglia
were also highly ramified, but displayed a noticeably wider
cell body (Figure 3b). Reactive and amoeboid microglia
both presented amoeboid-shaped cell bodies. The pro-
cesses extended by reactive microglia were less exten-
sive and generally longer than the cell body diameter
(Figures 2c and 3c), whereas amoeboid microglia were
either devoid of processes or had few unbranched pro-
cesses seen to be within the length of the cell-body
diameter (Figures 2d and 3d).

Having performed a preliminary assessment that re-
vealed very little intra-phenotypic morphological vari-
ability between subjects, we proceeded by analyzing the
first 10 IBA-IR cells that corresponded unambiguously
to the above-described features corresponding to each
phenotype. We analyzed a total 40 gray matter and 40
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Figure 2 Four main phenotypes represent the population of resident IBA1-IR cells in human dACC gray matter. Ramified microglia

(a) display a small circular cell body with highly ramified processes. Primed microglia (b) present a bigger and less round cell body with similar
ramification patterns when compared to the ramified phenotype. Reactive microglia (c) display an amoeboid cell body but still present a few
ramified processes compared to amoeboid microglia (d), which can present, at most, two unramified processes or be completely devoid of them.
These cells are occasionally observed to be associated with blood vessels (asterisks). Scale bars: 10 um.

white matter microglia, with 10 cells/phenotype being
randomly selected and reconstructed across subjects. On
average, 7.4 £ 1.0 cells per subject were traced, recon-
structed, and analyzed. Cells were sampled throughout
the cortical thickness, but since no noticeable difference
was seen between layers, laminar distributions were not
recorded. Cells were traced, reconstructed, and their
morphometric features characterized as previously de-
scribed [44]. In brief, under a 100x (Numerical aperture
1.4) oil immersion objective (Olympus BX51 light micro-
scope, Olympus America Inc, Richmond Hill, On,
Canada) processes were analyzed in three dimensions
within single sections using a computer-based tracing
system (Neurolucida v. 8.10.2, MBF Bioscience, Willis-
ton, VT, USA), whereas cell bodies were analyzed in two
dimensions (area at its largest cross-sectional diameter).
Cell body area, maximum and minimum feret diameter,
roundness as well as number, length, branching points
(nodes and ends) and volume of processes were mea-
sured for each IBA1-IR cell. A spherical cell body is cal-
culated by the ratio between feret diameters. Feret is
defined as the distance between two parallel lines drawn

tangentially to the cell body; the minimum feret is the
shortest chord drawn in the cell body and the maximum
Feret is the longest, as shown in the blue and purple
lines respectively in Figure 4a. In a spherical cell body,
the difference between the maximum and minimum
ferets (max-min feret) tends to zero.

Quantitative assessment of microglial phenotype
distribution in human dACC

To assess the proportions of the different microglial
phenotypes present in gray and white matter, we con-
ducted a quantitative analysis in dACC sections from
five individuals, using a semi-unbiased stereological
approach with an optical fractionator probe allowing for
3-dimensional quantification with the light microscope
connected to a stereology workstation (Stereo Investiga-
tor; MBF Bioscience). This method estimates the total
number of cells in a unit of tissue volume with an op-
tical probe providing counts through the z-axis. The
sampling process was performed by adding a grid of di-
mensions 3,137 um by 2,651 over the section in the
white matter. We examined a counting frame measuring
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Figure 3 Four main phenotypes represent the population of resident IBA1-IR cells in human dACC white matter. Ramified microglial cell
body and highly ramified processes appear aligned to white matter tracts (a). Primed microglia display a wider cell body in the primed phenotype

(b) compared to the ramified phenotype, but their processes and cell body retain a similar alignment. Reactive microglia present an amoeboid-shaped
rounder cell body with a few ramified processes (c), whereas amoeboid microglia display a characteristic amoeboid-shaped cell body extending one
or two unramified processes (top panel) or are completely devoid of processes (bottom panel) (d). Scale bars: 10 um.

150 pm to approximately 250 um with a 60x objective
(NA 1.35). Consistent with the stereological methods of
the dissector probe, we counted only cells with a cell
body that fell within the counting frame and that did
not contact the exclusion lines when they came into
focus within a 15-pm-thick optical dissector. To avoid
counting cells in non-representative areas of the tissue,
we set top and bottom guard zones at 1 um of the sec-
tion thickness. To control for the variation tissue pro-
cessing, the volume of each individual counting frame
was calculated with the area of the frame multiplied by
the thickness of each counting site. A total of 3,604 cells
were counted (average of 720 + 67 cells per subject). The
relative proportion of each of the four morphological
phenotypes was calculated, and the total number of cells
of each phenotype was divided by the total volume of
the counting sites.

Morphometric analyses of microglial phenotypes in
mouse cingulate cortex

In contrast to what was observed in human tissues,
IBA1-IR cells present in cingulate cortex of young adult
mice were overwhelmingly of the ramified phenotype. In
order to gain a general quantitative appreciation of the
morphometric differences and similarities between hu-
man and murine microglia, and given that virtually no vari-
ability was observed between animals, we reconstructed and
analyzed cells in a single mouse. Thus, a total of 20 ramified
cells (ten per cortical compartment) were randomly selected

in the cingulate cortex of a 1.5 month-old mouse and
analyzed as mentioned above.

Statistical analyses

Statistical analyses were performed using PASW Sta-
tistics 18 (Statistical Product and Service Solutions,
Chicago, IL, USA) and Prism 5 (GraphPad Software, Inc.,
La Jolla, CA, USA). All measurements were expressed as
mean + standard error of the mean (SEM), and P <0.05
was considered significant in all statistical tests. Normality
was assessed using the Shapiro-Wilk test, and two-
tailed t-tests were used for normally distributed data,
with the Welch correction in case of significant differ-
ence of variances. U-tests were used for non-normally
distributed data. A Bonferroni correction was per-
formed for each dependent variable to counteract for
type one error in multiple comparisons.

Results

Qualitative and quantitative features of microglial cells in
human dACC

Gray matter

The ramified, primed, reactive and amoeboid microglial
phenotypes were consistently observed in the gray mat-
ter of all dACC samples. IBA1-IR cells with highly
branched processes represented the majority of cells ob-
served in this region. Our stereological estimates indi-
cate that nearly 16% of IBA1-IR cells were of the
ramified phenotype, while about 34% were of the primed
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Figure 4 Microglial phenotypes in human dACC gray matter are characterized by significant changes in the cell body and processes.
Primed microglia display a cell body of greater area (a) and of decreased roundness (b), as reflected by a significantly increased difference
between the maximum and minimum feret (max-min feret) (c) compared to the ramified phenotype. The cell body morphology of reactive
microglia appears statistically similar in area (a), roundness (b) and max-min feret (c) as primed microglia, but presents a decrease in roundness
(b) when compared with amoeboid microglia. A reconstruction of a primed microglia shows the shortest (blue arrow; min) and longest chord
(violet arrow, max) representing the maximum and minimum feret, respectively, and the ramification patterns represented by the ends and nodes
of the processes (d). Ramified and primed microglia project similar numbers of primary (e) and higher-order processes (f-g). Reactive microglia display
fewer first-order (and overall) branches (e-g), as well as shorter total process length (h) and volume (i). Amoeboid microglia have a significant decrease
of primary and higher order branches (f-g), as well as a significant decrease in total process length (h) and volume (i) compared to reactive microglia,
*P <001, **P <0.001, ***P <0.0001.

phenotype. In general, all phenotypes were seen to be
evenly distributed throughout cortical layers, with no
overlapping domains (Figure 1a). However, the distribu-
tion and relative space between IBA-IR cells varied
within and between subjects. Compared to the other
phenotypes, ramified microglia displayed a characteristic
small and spherical cell body extending a large number
of primary and higher-order processes (Figure 2a). All
other phenotypes were clearly distinct from ramified
microglia in that they had an amoeboid-like cell body

(Figure 2). Primed microglia projected similar numbers
of primary and higher-order processes than ramified
microglia (Figure 4e), but clearly displayed a cell body of
greater area (U (15) 0.0, P <0.0001, Figure 4b) and of de-
creased roundness (fyweich (9) 4-612, P = 0.0013; Figure 4c).
This was reflected by a significant increase in mini-
mum feret (fwelen (11) 646, P <0.0001) and max-min
feret (U (18 0.0 P =0.0002; Figure 4d) compared to the
ramified phenotype. The reactive and amoeboid phe-
notypes in the gray matter represented 32% and 18% of
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the total number of IBAI1-IR cells in dACC, respect-
ively. Although the cell body morphology of reactive
microglia, in comparison to primed microglia, was sta-
tistically similar in al measured parameters (area,
roundness and max-min feret), the processes of reactive
microglia displayed significantly fewer first-order (and
overall) branches (U (15) <9.50, P <0.0025, Figure 4e), as
well as significantly shorter total process length (fweich (10)
5.50 P=0.0003, Figure 4h) and volume (U (15 5.00,
P=0.0002, Figure 4i). Amoeboid microglia had an
increase in cell body roundness (¢ (15 2.49, P =0.022,
Figure 4c), compared to reactive microglia, with no sig-
nificant differences in area, minimum feret, maximum
feret and max-min feret. What characterized this
phenotype, however, was a significant decrease of pri-
mary (U g 9.50, P=0.0015, Figure 4e) and higher-
order branches (U (15 0.0, P =0.0002, Figure 4f & 4 g),
as well as a significant decrease in total process length
(U (18 0.0, P=0.0001, Figure 4h) and volume (U (3
11.00, P=0.0021, Figure 4i) compared to reactive
microglia. On occasion, a few IBA1-IR amoeboid-like
cells were observed in close proximity of larger blood
vessels (Figure 2). All results for gray matter cells are
summarized in Table 1.

White matter
Similar to gray matter, all microglial phenotypes were
observed in the white matter. Again, the majority of
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IBA1-IR cells displayed extensively branched processes.
However, contrary to their grey matter counterparts,
these cells had an oblong cell body from which emerged
a bipolar arborization. Furthermore, ramified microglia
in the white matter appeared aligned to myelinated fiber
tracts (Figure 1b). From the total number of cells quanti-
fied in the white matter (n=1,534), ramified microglia
accounted for 43% of the total number of IBA1-IR cells,
compared to 27% for the primed phenotype. The primed
phenotype could be distinguished by the presence of a
wider cell body and a significantly larger cell body area
than ramified microglia (fweien 11y 689, P <0.0001,
Figure 5a); a feature that was reflected by a signifi-
cantly larger maximum (U 35y 10.50, P =0.0032) and
minimum feret (¢ (;5) 6.65, P <0.0001, Figure 5b). Yet,
the roundness (Figure 5d) and the max-min feret of
the cell body did not statistically differ between primed
and resting microglia (Figure 5c). Ramified and primed
microglia both presented a similarly high number of pri-
mary processes (Figure 5e). However, primed microglia
presented fewer higher-order branches, as reflected by
numbers of ends and nodes (U (15 <13.00, P <0.0057,
Figure 5f and 5 g), as well as significantly shorter processes
compared to ramified microglia (U (15 13.00, P =0.0039,
Figure 5h).

As measured in the grey matter, reactive and
amoeboid phenotypes in the white matter each repre-
sented slightly more than 11% and 19%, respectively, of

Table 1 Quantitative features of IBA1-IR phenotypes in human dACC gray matter

Cell body
Area (um2) Roundness Min feret (um) Max feret (um) Max-min feret (um)
Ramified 308+£09 08+0.0 59+0.1 69+0.1 1.0+£0.0
Range 26.7 to 36.0 0.7 10 0.8 531064 651076 08to 1.2
Primed 791196 05+00 81+03 145+19 63£1.7
Range 524 10156.9 0.2 to 0.7 70 to 10.0 9.3 to 286 2.3 10185
Reactive 68.2+6.1 04+00 72+05 146+1.1 73+13
Range 31.8t095.9 02t0 06 5010 108 8.1to 21.7 3.1t0 109
Amoeboid 101.0£ 185 05+00 9.1+£06 146 £1.5 54+£10
Range 410 to 2250 04 to 0.7 6.01to 133 99 to 27.7 3.1 to 14.
Processes
Primary processes Ends Nodes Total length (um) Volume (um?)
Ramified 58+05 63.6+9.8 4677 5906+775 2741 +312
Range 301090 25 to 104.0 16.0 to 780 294.5 to 9794 1059 to 4074
Primed 55+£06 40277 286£6.5 496.0 +60.1 356.8+674
Range 301to 80 14 t0 91.0 9.0 to 66.0 2873 t0 793.0 86.5 to 7724
Reactive 30£02 98+18 6.1+15 1224+186 1026+208
Range 20to 50 5.0 to 200 20to 150 50.0 to 2159 36.6 10 224.3
Amoeboid 12+£03 13+£03 0.1+£0.1 85+34 236£15.1
Range 0.0 to 20 001to 30 00to 1.0 0.0 to 31.2 0.0 to 1459

Results are presented as mean + standard error of the mean and range.
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Figure 5 Microglial phenotypes display significant differences in cell body and ramification patterns. Compared to ramified, the primed
phenotype displays a larger cell body area (a) as reflected by a significantly larger maximum (not shown) and minimum feret (b). Despite this
significant increase in area, the max-min feret (c) and the roundness (d) of the cell body did not statistically differ between these or any of the
other phenotypes. The cell body morphology of reactive, primed and amoeboid microglia appears comparable at all points (a-d). Ramified and
primed microglia both extend similar numbers of primary processes (e), however, primed microglia hold fewer ends (f) and nodes, (g) as well as
significantly shorter processes (h) with no significant changes in volume (i) compared to ramified microglia. Reactive microglia extend a significant
decrease of primary (e) and higher-order branches (f-g), as well as shorter processes than primed microglia (h) and amoeboid microglia present
almost an absence of overall processes (e-g) that were thus, of significantly reduced length (h) and volume (i) compared to reactive microglia;
*P <001, **P <0.001, ***P <0.0001.

the total number of IBA1-IR cells in dACC white mat-
ter. The cell body morphology of reactive and primed
microglia was comparable in all points (area, maximum
feret, minimum feret, max-min feret and roundness,
Figure 5). However, reactive microglia presented a read-
ily observable decrease of primary (U (15, 13.0, P = 0.0030,
Figure 5e) and higher order branches (U (15 <9.50,
P <0.0054, Figure 5f and 5 g), as well as shorter processes
(twelch 11y 3.66, P=0.0037, Figure 5h) than primed

microglia. The cell body morphology of amoeboid
microglia was measured to be statistically comparable
to that of reactive microglia (Figure 5). However, the former
showed a near absence of overall processes (primary and
higher order) (U (15 <6.50, P <0.0005, Figure 5) that
were thus of significantly reduced length and volume
compared to reactive microglia (U (15 <6.0, P <0.0003,
Figure 5h and 5i). As in gray matter, a few IBA1-IR cells
were observed to be closely associated with large blood
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vessels in the white matter. All results for white matter
cells are summarized in Table 2.

Microglial phenotypes in mouse cingulate cortex

As mentioned above, IBA1-IR cells present in the mouse
cingulate cortex were generally highly branched, and
their cell bodies were evenly distributed in the tissue.
The densely packed arborizations extended by IBA1-IR
cells in 3-month-old mice were organized into distinct
and non-overlapping domains. Although the morph-
ology of IBA-IR cells was similar in the younger adult
mouse (1.5 months old), highly branched arborizations
of neighboring cells were often found to overlap at their
extremities, suggesting a regional organization that is
not yet fully mature at that age (Figure 6). Reactive and
amoeboid-like morphologies were rarely observed in
adult mice. As opposed to what was observed in human
tissues, highly ramified IBA1-IR cells in mice presented
heterogeneous cell bodies, with varying shapes and sizes
(Figure 6). A proportion of these cells could also have
been of the primed phenotype, but could not be distin-
guished from the ramified phenotype because of the in-
consistent cell body morphology of highly branched
cells in rodents. In consequence, if using the same cri-
teria as those used for human samples, it remains pos-
sible that a subset of these ramified microglia observed
in young adult mice were in fact of the primed pheno-
type. In the white matter, the cell body of ramified
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microglia were more uniform in terms of shape and size,
and their processes displayed a bipolar organization that
was aligned in a non-overlapping fashion to white mat-
ter tracts.

Comparisons of reconstructed mouse and human rami-
fied IBAI-IR cells showed that despite a significant
increase in cell body area (¢ (15) 4.02, P = 0.0008) and high-
order branches (ends and nodes U (15, 5.0, P <0.0008) in
the mouse white matter, the surface area and volume of
processes in the gray and white matter were statistically
similar. In the gray matter, the heterogeneity in cell body
shape was reflected by a significant decreased roundness
(twelch (11) 492, P=0.0005) and max-min feret (fyweich (9)
4.93, P=0.0008) in the mouse microglial ramified pheno-
type. All other parameters were statistically comparable
between groups (Figure 7).

Effects of postmortem interval on microglial phenotypes
in mouse cingulate cortex

As in brains harvested and fixed at time of death, brains
fixed after a PMI of 43 h displayed ramified IBA1-IR
microglia as the predominant phenotype in both gray
and white matter. Furthermore, these cells displayed no
noticeable degradation of their processes (Figure 8).
Some reactive and amoeboid IBAI1-IR cells were also
observed following this PMI (approximately 6% and
4%, respectively). These scarce cells were found in
both cortical gray and white matter, but rarely in

Table 2 Quantitative features of IBA1-IR phenotypes in human dACC white matter

Cell body
Area (um2) Roundness Min feret (um) Max feret (um) Max-min feret (um)
Ramified 1640+1.2 05+00 36+0.19 65+05 28806
Range 9.11 to 244 02t0 08 2.t0 48 481099 17t056
Primed 4274136 05+00 58+0.26 10.1 £0.7 433£06
Range 25.27 10 64.2 04 to 0.7 47t073 6.8 1o 143 211070
Reactive 596+64 06 +00 74+£05 11.0£08 35£07
Range 183 t0 89.9 04to0 0.7 391090 6.0 t016.0 21t07
Amoeboid 702+70 05+00 82+05 123+07 4105
Range 373t 1119 04 to 0.7 58t0 112 8710 16.2 2910 49
Processes
Primary processes Ends Nodes Total length (um) Volume (um?)
Ramified 49+06 23121 16717 4360+424 196.7 £214
Range 2010 9.0 16.0t0 410 11.0 to 30.0 290.3 to 761.7 124.8 to 193.1
Primed 50+£05 139+23 9+202 2682 +443 187.2+313
Range 2.0to 80 70to0 330 30to 250 123.6 to 594.5 62.1 to 398.2
Reactive 28£02 63+0.7 32£06 107.7£170 1252+305
Range 20to 3.0 3010 90 0.0 to 6.0 259 to 187.8 10.8 to 2789
Amoeboid 06+0.2 0.7+£0.2 0.1+£0.1 68+25 59+25
Range 0.0 to 20 001to 20 00to 1.0 0.0 to 19.5 0.0 to 20.2

Results are presented as mean + standard error of the mean and range.
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Figure 6 IBA1-IR cells in the cingulate cortex of a young adult mouse (1.5 months old) display cell bodies of heterogeneous shapes
and sizes, and highly ramified processes with overlapping domains. Scale bars: 50 um.

association with any particular structure, such as
blood vessels.

Discussion

In this study, we describe the morphometric features of
IBA1-IR microglial cells in adult human gray and white
matter dACC from individuals having died without in-
flammatory, neurological, or psychiatric illness. In the
gray matter, microglial cells were abundant and evenly
distributed, with neither overlapping domains nor

obvious differences between cortical layers. This uniform
distribution is hypothesized to allow microglial cells to
efficiently and constantly survey the microenvironment
with their highly motile processes [45]. This dynamic
phenomenon has been implicated in many physiological
activities, such as maintaining the viability of synaptic
contacts [1,46]. In white matter, IBA1-IR microglial cells
were aligned with myelinated tracts, which generally
conferred an oblong shape to their cell bodies. Cells
were more abundant in proximity to the gray matter

Figure 7 Representative reconstructions of gray matter (top row) and white matter (bottom row) ramified microglia in human dACC
(left column) and mouse cingulate cortex (right column). Scale bar: 10 um.
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Figure 8 IBA1-IR cells in the non-perfused cingulate cortex of a
of young adult mouse (3 months old) following a PMI of 43 h
(11 h at room temperature and 32 h at 4°C). The great majority
of IBAT-IR cells observed remained ramified, and did not display
noticeable signs of degradation. Sections were counterstained with
cresyl violet. Scale bar: 25 pm.

compared to deeper white-matter regions, which dis-
played much more discrete staining.

Based on clear morphological differences described
previously in humans and rodents [14,22,43], we confirm
the existence of four major microglial phenotypes in
adult human cortical gray and white matter. In the
gray matter, ramified microglia were characterized by very
extensive branching patterns and small spherical cell bod-
ies. Primed microglia presented similar arborization
patterns compared to resting microglia, but displayed an
overall increase in cell body area as well as a decrease in
roundness. Reactive microglia featured an amoeboid-like
cell body with few ramified processes, whereas amoeboid
microglia extended either a single unramified process or
no processes at all. It has to be acknowledged here that
this nomenclature, which is derived from previous
morpho-functional studies, may not always accurately re-
flect the functional states of microglial cells, or whether a
cell is transitioning towards increased activation or revert-
ing back to a ramified morphology. Furthermore, it is im-
possible to determine in postmortem brain tissues, the
proportion of IBAI-IR cells that are resident microglia
versus infiltrated monocytes that have differentiated [47].

Significant numbers of IBA1-IR cells displaying each
of the four morphological phenotypes were observed in
both cortical compartments of all subjects. Estimates
showed that the majority of IBA1-IR microglia in the
gray matter were of the primed phenotype (34%), followed
by the reactive (32%), amoeboid (18%) and ramified (16%)
phenotypes. The proportions were different in the white
matter, with ramified cells representing the majority
(43%), followed by the primed (27%), amoeboid (18%) and
reactive (12%) phenotypes. Interestingly, amoeboid cells
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consistently accounted for nearly a fifth of the total num-
ber of IBA1-IR cells in the dACC. These results contrast
dramatically with those observed in the cingulate cortex
of young adult mice, in which IBA1-IR cells were over-
whelmingly highly branched, and most likely of the rami-
fied phenotype. Other microglial phenotypes were very
rarely observed in mice. In order to determine whether
the presence of different microglial phenotypes in human
tissues may have resulted at least partly from postmortem
factors, we recreated similar PMI conditions in the mouse.
Although we observed a slight increase in reactive IBA1-
IR cells following a PMI of 43 hours compared to immedi-
ate harvesting of the brain following sacrifice, the great
majority (>90%) of microglial cells remained of the rami-
fied phenotype.

These observations strongly suggest that the propor-
tions and distributions of the different microglial pheno-
types in human dACC were mostly present at time of
death in individuals who did not suffer from inflamma-
tory, neurological or psychiatric illness. This is further
supported by previous reports demonstrating that micro-
glial morphological changes require ATP [48], oxygen and
glucose supply [49], all of which cease shortly after death,
leaving little opportunity for microglial cells to undergo
phenotypic changes, let alone retract their processes and
adopt an amoeboid phenotype [48].

Another noticeable difference between human and
mouse microglia relates to the shape of cell bodies.
Whereas human microglia displayed characteristic round
(ramified phenotype) or amoeboid-shaped (primed, re-
active, amoeboid phenotypes) cell bodies, mouse micro-
glia displayed highly heterogeneous cell-body shapes
that prevented the distinction of ramified versus primed
phenotypes. Despite this difference, the size and general
morphology of microglia were found to be highly similar
between species. Microglia are thus different from astro-
cytes, another glial cell type, which are several-fold lar-
ger as well as much more diverse and complex in the
human than in the mouse cerebral cortex [50]. This
morphological similarity between species may be related
to the different developmental origin of microglia, and
to highly conserved roles in mammalian evolution.

The observed variability of microglial distributions be-
tween human subjects appears to be due to variations in
inter-cell spacing and cell densities within each sample.
In rodents, it has been shown that age could influence
the spacing between neighboring microglia [42]. Similarly,
stress is another factor that can influence microglial
morphology and distribution [51]. These (and probably
other) factors may have contributed to the inter-individual
variations in microglial distribution in human brain
samples.

In conclusion, this study is the first to provide mor-
phometric characterization of microglial morphology in
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humans. Interestingly, we found that the general mor-
phological features of human microglia in the dACC
were highly similar to those displayed by microglia
in the mouse cingulate cortex. Thus, the study of
microglial anatomy in rodent models seems more
appropriate than that of other glial subtypes such
as astrocytes, which display highly distinctive character-
istics in humans. Our results indicate that four major
microglial phenotypes co-exist in adult human cortical
tissues. Given that the average age of the subjects
analyzed in this study was 48 years, it is possible that
this phenotypic distribution is a normal consequence of
the aging process. This hypothesis could be tested in fu-
ture studies of postmortem cortical samples from ado-
lescents or young adults. Finally, the quantified data
generated in this study will be instrumental in future
studies examining the implication of microglia in various
conditions and illnesses thought to arise, at least in part,
from abnormal immune activity in the brain. As suggested
previously, comparing microglial phenotypic ratios in
well-characterized brain samples may be particularly in-
structive to understand the state of inflammatory pro-
cesses in a given brain circuitry [52]. Likewise, this
approach would allow the precision required to identify
subtle imbalances in microglial phenotypic distributions
that may characterize illnesses associated with a mild in-
flammatory component.
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