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Microglia in mouse retina contralateral to
experimental glaucoma exhibit multiple signs of
activation in all retinal layers
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Abstract

Background: Glaucomatous optic neuropathy, a leading cause of blindness, can progress despite control of
intraocular pressure - currently the main risk factor and target for treatment. Glaucoma progression shares mechanisms
with neurodegenerative disease, including microglia activation. In the present model of ocular hypertension (OHT), we
have recently described morphological signs of retinal microglia activation and MHC-II upregulation in both the
untreated contralateral eyes and OHT eyes. By using immunostaining, we sought to analyze and quantify additional
signs of microglia activation and differences depending on the retinal layer.

Methods: Two groups of adult Swiss mice were used: age-matched control (naïve, n = 12), and lasered (n = 12). In the
lasered animals, both OHT eyes and contralateral eyes were analyzed. Retinal whole-mounts were immunostained with
antibodies against Iba-1, MHC-II, CD68, CD86, and Ym1. The Iba-1+ cell number in the plexiform layers (PL) and the
photoreceptor outer segment (OS), Iba-1+ arbor area in the PL, and area of the retina occupied by Iba-1+ cells in the
nerve fiber layer-ganglion cell layer (NFL-GCL) were quantified.

Results: The main findings in contralateral eyes and OHT eyes were: i) ameboid microglia in the NFL-GCL and OS; ii)
the retraction of processes in all retinal layers; iii) a higher level of branching in PL and in the OS; iv) soma displacement
to the nearest cell layers in the PL and OS; v) the reorientation of processes in the OS; vi) MHC-II upregulation in all
retinal layers; vii) increased CD68 immunostaining; and viii) CD86 immunolabeling in ameboid cells. In comparison with
the control group, a significant increase in the microglial number in the PL, OS, and in the area occupied by Iba-1+ cells
in the NFL-GCL, and significant reduction of the arbor area in the PL. In addition, rounded Iba-1+ CD86+ cells in the
NFL-GCL, OS and Ym1+ cells, and rod-like microglia in the NFL-GCL were restricted to OHT eyes.

Conclusions: Several quantitative and qualitative signs of microglia activation are detected both in the contralateral
and OHT eyes. Such activation extended beyond the GCL, involving all retinal layers. Differences between the two eyes
could help to elucidate glaucoma pathophysiology.
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Background
Glaucoma is a disease in which intraocular pressure (IOP)
has been traditionally considered the major risk factor
[1,2]. Although it is known that IOP increase is not the
only risk factor for glaucoma, it remains the main target
in the treatment of glaucomatous neurodegeneration [3].
However, in some patients, optic-nerve degeneration re-
portedly progresses despite IOP control [4]. Recent studies
indicate that glaucomatous disease can also be induced by
an auto-immune response [5,6]. These observations sug-
gest that we should consider glaucoma not as a disease
involving raised pressure, but as a disease in which neuro-
logical sensitivity to pressure itself is independent of the
magnitude [7]. Glaucoma is currently considered a neuro-
degenerative disease [8]. Taking into account that the ret-
ina and the optic nerve are projections of the central
nervous system, it is not surprising that glaucoma could
share mechanisms, such as neurodegeneration progres-
sion, with neurodegenerative diseases of diverse etiologies
[9]. It has been reported that in glaucoma, disease progres-
sion occurs through mechanisms integrated in neuronal
degenerative processes of compartmentalization [10], in
which the microglia are a common cellular element that
is activated.
Microglia are central nervous system resident innate im-

mune cells, endowed with sensor and effector functions as
well as with phagocytic capacity during physiological and
pathological conditions [11,12]. These cells respond to
neuronal stress or injury by adopting a so-called activated
state, in which they progress from a resting mode to an ac-
tivated phenotype [13,14]. The activated phenotype in-
cludes alterations in cellular morphology, changes in the
structure of the cellular processes, tissue distribution, mi-
gratory characteristics, proliferation, expression of various
growth factors and cytokines, or phagocytic activity.
Reactive microglia have been detected in the retina and

optic nerve from axotomized eyes [15-23], after ischemia
and reperfusion injury [24-27], in genetic or inducible ocu-
lar hypertension models [28-36], and in human glaucoma
[37-39]. Microglial activation is thought to be a major con-
tributor to neuronal death. The addition of minocycline
(which inactivates microglia) has been shown to have neu-
roprotective effects, delaying retinal ganglion cell (RGC)
death and axon loss in different models of glaucoma
[40-42]. However, the mechanisms controlling microglial
recruitment and activation in human glaucoma or animal
models have not been established, and it is unclear when
during the course of the disease the microglia undergo
these changes [12].
In the mouse model of unilateral laser-induced ocular

hypertension, morphological signs of activation and up-
regulation of major histocompatibility complex class II
(MHC-II) have been reported in both treated and the
normotensive untreated contralateral eyes [36]. However,
more specific data concerning microglia activation in this
model, and differences depending on the retinal layer re-
main unknown.
The aim of the present study is to analyze, in addition to

variable morphology in the different layers of the retina,
different signs of microglial activation both in contralateral
eyes and in laser-induced OHT eyes, specifically: migra-
tion, microglia cell number, cell arbor area in the plexiform
layers, area occupied by Iba-1+ cells in the NFL-GCL, and
upregulation of activation markers (MHC-II, CD68, CD86,
and Ym1).
Materials and Methods
Ethics statement
Mice were treated in accordance with Spanish law and the
Guidelines for Humane Endpoints for Animals Used in
Biomedical Research. This study was approved by the Eth-
ics Committee for Animal Research of Murcia University
and the Animal Health Service of the Murcia Regional
Ministry of Agriculture and Water (approval ID number:
A1310110807). In addition, animal procedures followed in-
stitutional guidelines, European Union regulations for the
use of animals in research, and the Association for Re-
search in Vision and Ophthalmology (ARVO) statement
for the use of animals in ophthalmic and vision research.
Animals and anesthetics
The experiments were performed on adult male albino
Swiss mice (between 40 and 45 g) obtained from the
breeding colony of the University of Murcia (Murcia,
Spain). The animals were housed in temperature- and
light-controlled rooms with a 12 hours light/dark cycle
and ad libitum access to food and water. Light intensity
within the cages ranged from 9 to 24 lux. All surgical pro-
cedures were performed under general anesthesia induced
with an intraperitoneal (ip) injection of a mixture of keta-
mine (75 mg/kg, Ketolar®, Parke-Davies, Barcelona, Spain)
and xylazine (10 mg/kg, Rompún®, Bayer, Barcelona,
Spain). During recovery from anesthesia, the mice were
placed in their cages and an ointment containing tobra-
mycin (Tobrex®; Alcon, Barcelona, Spain) was applied to
the cornea to prevent corneal desiccation and infection.
Additional measures were taken to minimize discomfort
and pain after surgery. The animals were killed with an ip
overdose of pentobarbital (Dolethal Vetoquinol®, Especiali-
dades Veterinarias, Alcobendas, Madrid, Spain).
Experimental groups
Two groups of mice were considered for study: an age-
matched control (naïve, n = 12) and a lasered group (n =
12) that was killed two weeks after lasering.



Rojas et al. Journal of Neuroinflammation 2014, 11:133 Page 3 of 24
http://www.jneuroinflammation.com/content/11/1/133
Induction of ocular hypertension and IOP measurements
To induce OHT, the left eyes of anesthetized mice were
treated in a single session with a series of diode laser
(Viridis Ophthalmic Photocoagulator-532 nm, Quantel
Medical, Clermont-Ferrand, France) burns, following
previously described methods [43,44]. Briefly, the laser
beam was directly delivered without any lenses, aimed
at the limbal and episcleral veins. The spot size, duration,
and power were between 50 and 100 μm, 0.5 seconds, and
0.3 W, respectively. Each eye received between 55
and 76 burns.
With the mice under deep anesthesia, the IOP was

measured in both eyes with a rebound tonometer
(Tono-Lab, Tiolat, Helsinki, Finland) [43,45-47] prior to
and 24 hours, 48 hours, and 1 week after laser treatment
for the lasered group, and before being killed for the
naïve group. At each time point, six consecutive readings
were taken for each eye and averaged. To avoid fluctua-
tions of the IOP due to the circadian rhythm in albino
Swiss mice [48], or due to the rise of the IOP itself [49],
we tested the IOP consistently around the same time,
preferentially in the morning and directly after deep
anesthesia in all animals (lasered group and naïve).

Immunohistochemistry
The mice were deeply anesthetized, perfused transcar-
dially through the ascending aorta first with saline and
then with 4% paraformaldehyde in 0.1 M phosphate buf-
fer (PB) (pH 7.2 to 7.4). The orientation of each eye was
carefully maintained with a suture placed on the super-
ior pole immediately after deep anesthesia and before
perfusion fixation [43]. Moreover, upon dissection of the
eye, the insertion of the rectus muscle and the nasal car-
uncle were used as additional landmarks [50]. The eyes
were post-fixed for two hours in the same fixative and
kept in sterile 0.1 M PB. Retinas were then dissected and
processed as retinal whole-mounts [51].
For the analysis of the microglia population in the

mice retina and the expression of MHC class II mole-
cules, retinal whole-mounts from naïve (n = 3) and OHT
eyes (n = 3), and their contralateral eyes (n = 3), were
double immunostained, as described elsewhere [36]. The
following primary antibodies were used for immunostain-
ing: rabbit anti-Iba-1 (Wako, Osaka, Japan) in a 1:500
dilution and rat anti-mouse MHC class II (I-A/I-E)
(eBioscience; San Diego, California, United States) in a
1:100 dilution. Binding sites of the primary antibodies were
visualized with the corresponding secondary antibodies:
donkey anti-rabbit Alexa Fluor 594 (Invitrogen, Paisley,
United Kingdom) in a 1:800 dilution and goat anti-rat
Alexa Fluor 488 (Invitrogen, Paisley, United Kingdom) in
a 1:150 dilution. For ease of reference, working dilutions
for anti-Iba-1 and anti-MHC-II and their corresponding
secondary antibody are omitted for simplicity.
For the study of the expression of CD68 (which recog-
nizes a single-chain heavily glycosylated protein of 90 to
110 kD that is expressed on the lysosomal membrane of
active phagocytic cells) in retinal microglia, retinas of
naïve (n = 3) and OHT eyes (n = 3), and their contralat-
eral eyes (n = 3) were double immunostained with anti-
Iba1 and anti-CD68. The working dilution was 1:40 for
CD68 rat anti-mouse (AbD Serotec, Oxford, United
Kingdom). Binding sites of anti-CD68 were visualized
after two days of incubation with the secondary antibody
goat anti-rat Alexa Fluor 488 (Invitrogen, Paisley, United
Kingdom) in a 1:150 dilution.
For the study of the expression of CD86 (which recog-

nizes a co-stimulatory molecule) on retinal microglia,
retinas of naïve (n = 3) and OHT eyes (n = 3), and their
contralateral eyes (n = 3) were double immunostained
with anti-Iba1 and anti-CD86. The working dilution was
1:25 for rat anti-mouse CD86 (BD Pharmigen Europe,
Madrid, Spain). Binding sites of anti-CD86 were visual-
ized after two days of incubation with the secondary
antibody donkey anti-rat Alexa Fluor 488 (Invitrogen,
Paisley, United Kingdom) in a 1:300 dilution.
For the study of the expression of Ym1 (which recog-

nizes a protein from the lectin family synthesized and se-
creted by alternatively activated macrophages during
inflammation) on retinal microglia, retinas of naïve (n = 3)
and OHT eyes, (n = 3), and their contralateral eyes (n = 3)
were double immunostained with anti-MHC class II
(eBioscience; San Diego, California, United States) and
anti-Ym1. The working dilution was 1:75 for rabbit anti-
Ym1 (StemCell Technologies, Grenoble, France). Binding
sites of anti-Ym1 were visualized after two days of incuba-
tion with the secondary antibody donkey anti-rabbit Alexa
Fluor 594 (Invitrogen, Paisley, United Kingdom) in a 1:800
dilution.
In all instances, a negative control was performed to

demonstrate that the secondary antibody reacted only
with its respective primary antibody. This control was
made by eliminating the primary antibody and replacing
it with an antibody buffer. In addition to identifying the
contribution of the endogenous fluorescence to the ob-
served label, a tissue sample was incubated in all the
buffers and detergents used in the experiment but with-
out antibodies [51].
Retinas were analyzed and photographed with the Apo-

Tome device (Carl Zeiss, Munich, Germany) and with a
digital high-resolution camera (Cool- SNAP Photometrics,
Tucson, Arizona, United States) coupled to a fluorescence
microscope (Axioplan 2 Imaging Microscope Carl Zeiss,
Munich, Germany). The microscope was equipped with
appropriate filters for fluorescence-emission spectra of
Alexa fluor 488 (Filter set 10, Zeiss), Alexa fluor 594 (Filter
set 64, Zeiss) and DyLight 405 (Filter set 49, Zeiss). The
ApoTome uses the ‘structured illumination’ method
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that enables conventional microscopy to create optical
sections through the specimen and thereby improve the
contrast and resolution along the optical axis. Z-stacks
acquired under the ×63 objective were analyzed in
Axiovision version 4.2 (Carl Zeiss, Munich, Germany)
with Inside4D module in order to perform cut-view
analysis. A cut-view is a software-generated reconstruc-
tion of the xz and yz planes of the z-stack, allowing
visualization through the depth of the acquired z-stack.
Adobe Photoshop CS3 Extended 10.0 (Adobe Systems,

Inc., San Jose, California, United States) was used for figure
preparation.

Retinal analysis
To determine the effect of OHT on Iba-1+ cells, we quanti-
fied these cells in the retinal whole-mounts of naïve (n = 6),
contralateral (n = 9), and OHT eyes (n = 9). Twenty-four
equivalent areas of the retina were consistently selected for
each retinal whole-mount in both the vertical and horizon-
tal meridians which cross the optic nerve (Figure 1A). Each
complete meridian selected in the retinal whole-mount was
analyzed using the motorized stage of the microscope to
scan their whole extension along the X-Y axis, respectively.
Thus, all subsequent fields analyzed were contiguous and
were examined systematically to ensure that no portion of
the retinal whole-mount would be omitted or duplicated.
Additionally, due to labeled Iba-1+ cells lying outside the
immediate focal plane, we analyzed the whole preparation
along the Z axis. These procedures were made at 20×, giv-
ing an area of 0.1502 mm2 per field analyzed.
The quantification method used depended on the cell

number and cell-distribution characteristics of each
retinal layer. The Interactive Measurement, a manual
counting tool included in the AxioVision Release 4.8.2
computer program (Zeiss, Germany) in association
with the ApoTome device coupled to the fluorescence
Figure 1 Retinal whole-mount. A: areas of retina selected for quantitative
used for arbor-area quantification of Iba-1+ cells. A polygon was drawn ma
microscope, was used for cell counting in the OS. Quanti-
tative analysis of Iba-1+ somas was limited to those fully
contained in the imaging space taken. For the plexiform
layers and NFL-GCL, we created a reliable and quick algo-
rithm of segmentation and control of distances developed
in MATLAB (high-level technical computing language that
can be used for image processing) [52]. In the IPL and
OPL, Iba-1+ cells were distributed throughout the retina
in a mosaic-like fashion without overlap between neigh-
boring cells. This feature allows the algorithms to automat-
ically determine the number of Iba-1+ cells. By contrast, in
the NFL-GCL cell separation and distribution did not ful-
fill the criteria for automatic individual cell-counting, and
therefore we quantified the area of the retina occupied by
Iba-1+ cells (Iba1-RA) in this retinal layer [36,53]. For this
purpose, images of the NFL-GCL were thus processed
with a threshold tool in MATLAB. Thresholding defines a
range of gray-scale values found on the pixels of objects of
interest, differentiating them from other parts of the image
based on the image’s gray scale. By using the pixel value in-
formation, we quantified the Iba1-RA in each photograph
selected.
In a second step to further evaluate the effect of OHT in

the Iba-1+ cell population, we analyzed in each eye the
total arbor area of Iba-1+ cells (μm2) in four equivalent
retinal areas of the selected ones used for cell-
quantification analysis. The same analysis was performed
in IPL and outer plexiform layer (OPL) due to the regular
mosaic-like distribution of Iba-1+ cell in the plexiform
layers in order to facilitate the measuring process. For this,
we proceeded with a computer-assisted morphometric
analysis. A polygon was drawn manually by connecting
the distal-most tips of the Iba-1+ cell processes (Figure 1B)
using the Interactive Measurement, tool of AxioVision
(Zeiss, Germany), in association with the ApoTome device
coupled to the fluorescence microscope.
analysis of Iba-1+ cells. B: photomicrograph illustrating the method
nually by connecting the distal-most tips of the Iba-1+ cell processes.
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Figure 2 Distribution of Iba-1+ cells in the retinal whole-mounts after 15 days of unilateral laser-induced OHT. Iba-1 immunostaining.
Retinal whole-mount. The pressure produced by the cover slip on the whole-mount caused a retinal-like section effect on one edge of the tissue
that revealed that: in naïve eyes (A) Iba-1+ cells were distributed in the NFL-GCL, IPL and OPL. Somas and processes of ramified Iba-1+ cells ran
parallel to the retinal surface. In contralateral eyes (B) somas (blank arrowhead) and processes (arrow) displaced to and extended to the INL and
ONL, respectively. In the OPL the long processes of Iba-1+ cells reached the OS (arrowhead). In OHT eyes (C) the features observed in contralateral eyes
(B) were more intense. (INL: inner nuclear layer; IPL inner plexiform layer; NFL-GCL: nerve fiber layer-ganglion cell layer; OHT: ocular hypertension; ONL:
outer nuclear layer; OPL: outer plexiform layer; OS: photoreceptor outer segment).
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Statistical analysis
Data for the statistical analysis were introduced and proc-
essed in a SPSS 19.0 (comprehensive statistical software;
SPSS Inc©, Armonk, New York, United States). Data are
shown as mean ± SD. Statistical analyses were performed
with t-test to identify differences among of the OHT,
contralateral and naïve eyes as follows: i) IOP values; ii)
Iba-1+ cell number in the photoreceptor outer segment
(OS), OPL and IPL; iii) Iba1-RA in the NFL-GCL; and iv)
arbor area of the Iba-1+ cells in the OPL and IPL. Differ-
ences were considered significant when P <0.05.

Results
Laser-induced ocular hypertension
The IOP values of OHT eyes (29.55 ± 4.44 mmHg) signifi-
cantly differed from naïve values (16.16 ± 3.11 mmHg;
P <0.001, one way analysis of variance (ANOVA) with
Bonferroni method) and contralateral values (15.47 ± 1.57
mmHg; P <0.001, ANOVA with Bonferroni method). No
significant differences were found between contralateral
and naïve eyes.

Iba-1+ retinal cells: morphology and distribution
In the study groups, Iba-1+ cells were evenly distributed
throughout the retina from the central zone to the per-
iphery. They were distributed in different retinal layers:
NFL-GCL, IPL, OPL, and OS (Figure 2).
Most Iba-1+ cells within the naïve retina had a ramified

morphology. Overall, they had a small ovoid or triangular
soma from which three to four primary processes
sprouted and then divided dichotomously into secondary
ones. Ramified Iba-1+ cells were examined in the NFL-
GCL, IPL, and OPL and their somas and processes ran
parallel to the retinal surface. In the plexiform layers,
ramified Iba-1+ cells were distributed throughout the ret-
ina in a mosaic-like fashion without overlapping between
neighboring cells. Specific features of the ramified Iba-1+
cells as well as the presence of other morphological types
varied depending on the retinal layer analyzed and on the
study groups (naïve, contralateral, and OHT eyes) as
shown in Figure 3.

Iba-1+ cells in the NFL-GCL
In naïve eyes, two morphological types of Iba-1+ cells were
observed in the NFL-GCL: ramified (Figures 3A, 4A,B) and
perivascular (Figures 3A, 4B). In both instances, they
are related to the blood vessels. Most Iba-1+ cells had a
ramified morphology, varicose processes, and somas
located on the retinal vessels and in the intervascular
space. From both primary and secondary processes
sprouted thin processes that on occasions ended as
bulbous-tips (Figures 3A, 4A). Ramified Iba-1+ cells ran
parallel to the retinal surface and in some instances,
processes penetrating the layer perpendicularly were
observed. Perivascular Iba-1+ cells showed elongated
morphology and thick somas and processes. These cells
were found in the vessel walls (Figures 3A, 4B), specific-
ally on the surface of the retinal large vessels, in the
vicinity of the optic nerve, and in the collecting tube
venule of the peripheral retina.
In contralateral eyes and OHT eyes the two morpho-

logical types of Iba-1+ cells described above showed a re-
traction of the cellular processes in comparison with naïve
eyes (Figures 3B,C, 4C-H). In addition, scarce Iba-1+ cells
with an ameboid morphology were observed in this layer
in contralateral eyes (Figures 3B, 4D inset) and were more
frequently found in OHT eyes (Figures 3C, 4G). Notably,
two additional morphological types of Iba-1+ cells were ob-
served only in OHT eyes: i) rounded cells (Figures 3C, 4G)
and ii) rod-like cells (Figures 3C, 4H). Rounded cells were
found adjacent to the major retinal vessels (Figure 5F) or in
the neural parenchyma and were observed mainly in the
vicinity of the optic disk (Figure 5E) and in the
periphery of the retina. In some instances, the processes
of ramified Iba-1+ cells surrounded the rounded Iba-1+
cells (Figure 5C). These cells showed a less intense Iba-1+
immunolabeling than did ameboid cells (Figure 4G).
Rod-like cells had elongated cell bodies and two processes
prominently projected from each pole which were aligned
end-to-end, coupling to form trains associated with axons
and not related to retinal vessels (Figure 4H).

Iba-1+ cells in the IPL
In the IPL of naïve eyes, two morphological types of Iba-
1+ cells were distinguished: ramified and dendritic-like
cells (Figures 3D, 6B).
Most Iba-1+ cells in the IPL were ramified and their

somas were located next to the GCL or inner nuclear
layer (INL). In comparison with ramified cells in the
NFL-GCL, they had fewer thin processes emerging from
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Figure 3 Morphological changes in Iba-1+ cells. The idealized schematic drawing illustrates the morphological types of Iba-1+ cells in the
different retinal layers in naïve (A, D, G, J), contralateral (B, E, H, K) and OHT eyes (C, F, I, L). Proportions between cell sizes were established
taking into account the scale value of the microphotographs. In NFL-GCL (A-C), both in contralateral (B) and in OHT eyes (C), perivascular cells
(a) and ramified cells (b) showed a retraction of their cellular processes in comparison with naïve eyes (A). Ameboid cells (c), absent from naïve
eyes (A), were observed in contralateral (B) and in OHT eyes (C). Only in OHT eyes (C) were two additional morphological types of Iba-1+ cells
observed: rounded cells (d) and rod-like cells (e). In the IPL (D-F) ramified cells (a) and dendritic-like cells (b) exhibited signs of activation (process
retraction in (a) and increased secondary and higher-order processes (a, b)) in contralateral (E) and in OHT eyes (F). In the OPL (G-I) ramified cell
processes were retracted and were increased in contralateral (H) and in OHT eyes (I) in comparison with naïve eyes (G). In the OS (J-L), cell
orientation of type 1 OS Iba-1+ cells (a) changed from perpendicular in naïve eyes (J) to parallel to the retinal surface in contralateral (K) and
in OHT eyes (L). Processes of type 2 OS Iba-1+ cells (b) had a retraction of their processes and a hairy appearance in contralateral (K) and in OHT
eyes (L). Ameboid cells (c) were observed in contralateral (K) and OHT eyes (L) but not in naïve eyes (J). Only in OHT eyes (L) appeared rounded
Iba-1+ cells (d) and cells with a dendritic-like appearance (e) in the OS. (NFL-GCL: nerve fiber layer-ganglion cell layer; IPL: inner plexiform layer; OHT:
ocular hypertension; OPL: outer plexiform layer; OS: photoreceptor outer segment).
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primary and secondary processes, which gave them a less
ramified appearance (Figures 3D, 6B). Processes were vari-
cose and most of them ended as bulbous-tips (Figures 3D,
6B). Some processes reached both the GCL and INL. In
addition to the cells described above, a few Iba-1+ cells
had thick somas and two to four thick primary pro-
cesses and short, thick secondary ones, giving the cell a
dendritic-like appearance (Figures 3D, 6C). Dendritic-
like cells ran parallel to the retinal surface and were lo-
cated in the juxtapapillary area and in the vicinity of the
collecting tube venule in the peripheral retina.
In comparison with naïve eyes, ramified Iba-1+ cells in

the IPL of contralateral eyes and OHT eyes formed a
denser cellular mosaic (Figure 6A,D,G) and exhibited: i)
a retraction of the cellular processes (Figures 3E,F, 6E,
H); ii) a disappearance of the bulbous-tip (Figures 3E,F,
6E,H); iii) numerous thin and short secondary and su-
perior order processes which gave the cells a fuzzy ap-
pearance; iv) displacement of some somas into the INL
and GCL (Figure 2B,C); and v) numerous perpendicular
processes that penetrated adjoining layers (Figure 2B,C).
Dendritic-like Iba-1+ cells in contralateral and OHT
eyes had numerous thin and short secondary and super-
ior order processes (Figures 3E,F, 6F,I). In both cellular
types, the aforementioned signs of cell activation were
more pronounced in OHT eyes (Figures 3F, 6G,H,I) than
in contralateral eyes (Figures 3E, 6D,E,F).
Iba-1+ retinal cells in the OPL
In the OPL of naïve, contralateral, and OHT eyes, only
ramified Iba-1+ cells were detected. These formed a
mosaic-like pattern denser than in the IPL (Figure 7).
In naïve eyes (Figures 3G, 7A-C), a specific feature of

these cells was the presence of numerous thin processes
sprouting from the soma and the primary and secondary
processes. Some processes extended to the INL and
ONL. On occasions, a long process extending from the
soma ran across the ONL into the OS (Figure 7C) where
it ended in a goblet-like shape (Figure 3G).
In contralateral and OHT eyes as compared with
naïve eyes, ramified Iba-1+ cells in the OPL showed: i)
retraction of processes (Figures 3H,I,7D,E,G,H); ii)
numerous thin and short secondary and superior order
processes (Figures 3H,I, 7E,F,H,I); iii) a displacement of
the some somas to the INL and ONL (Figure 2B,C);
iv) greater number of processes reaching the OS
(Figure 7F,I) and; v) a denser cellular mosaic (Figure 7D,E,
G,H). All these characteristics were more pronounced in
the OHT eyes (Figures 3I, 7G-I) than in the contralateral
eyes (Figures 3H, 7D-F).

Iba-1+ retinal cells in the OS
In three groups of eyes studied, Iba-1+ cells in the OS
were unevenly distributed.
In the naïve eyes, two main morphological types of Iba-

1+ cells were observed depending on their morphology
and location: i) cells with ovoid somas located near or in-
side the ONL and numerous processes emerging from the
same point of the soma, like the roots of a tree (Type 1-
OS) (Figures 3J, 8A). These processes extended across the
thickness of the OS, perpendicularly to the retinal surface
(Figure 8A). This morphological type was the predomin-
ant one in the OS; and ii) cells with ovoid somas located
near the retinal pigment epithelium (RPE) and one thick
primary process running parallel to the retinal surface.
Sparse, thin, and short processes sprouted from the soma
and the primary process (Type 2- OS) (Figures 3J, 8B).
These cells were more frequently detected in the vicinity
of the ora serrate.
In comparison with naïve eyes, the morphology and

arrangement of the two cell types described above varied
in contralateral and OHT eyes. Type 1 OS Iba-1+ cells
were displaced to the vicinity of RPE and formed groups
that were randomly distributed throughout the layer. All
the cells in a group had their processes oriented in the
same direction (Figure 8C,E). In contralateral eyes, the
orientation of the processes began to change from per-
pendicular to parallel to the retinal surface (Figures 3K,
8C). In OHT eyes, both the somas and the processes



Figure 4 (See legend on next page.)
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(See figure on previous page.)
Figure 4 Iba-1+ cells in the NFL-GCL after 15 days of unilateral laser-induced OHT. Iba-1 immunostaining. Retinal whole-mount. In naive
eyes (A, B) there were ramified Iba-1+ cells (arrowhead) with varicose processes and perivascular Iba-1+ cells (arrow) with elongated morphology
and thick processes. Both in contralateral eyes (C, D) and in OHT eyes (E-H) ramified Iba-1+ cells (arrowhead in C-F, H) and perivascular Iba-1+
cells (arrow in D, F) showed a retraction of the cellular processes. Scarce ameboid Iba-1+ cells were detected in contralateral eyes (D inset) and
more frequently in OHT eyes (blank arrowhead in G). Only in OHT eyes were two additional morphological types of Iba-1+ cells discerned (G, H):
rounded cells (asterisk in G) and rod-like cells with elongated cell bodies and two processes prominently projecting from each pole (blank arrow
in H). (NFL-GCL: nerve fiber layer-ganglion cell layer; OHT: ocular hypertension; v: retinal vessel).
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were clearly arranged parallel to the retinal surface
(Figures 3L, 8E). In contralateral and OHT eyes the pro-
cesses of type 2 OS Iba-1+ cells had a retraction of their
processes and a hairy appearance due to abundant thin
and short processes that sprouted from the soma and
main processes (Figures 3K,L, 8D,F).
As in the NFL-GCL, ameboid Iba-1+ cells were de-

tected in contralateral (Figures 3K, 8D inset) and OHT
eyes (Figures 3L, 8H) but were more frequently found in
the OHT eyes. Also, two more morphological types of
Iba-1+ cells were observed only in OHT eyes: i) cells
with a dendritic-like appearance (Figures 3L, 8G), similar
to IPL and, ii) rounded Iba-1+ cells (Figures 3L, 8H),
which were scarce, located in the retinal periphery and
showing a patchy distribution.

Activation markers in Iba-1+ retinal cells: MHC-II, CD68,
CD86, and Ym1
Age-matched control (naive)
Overall, Iba-1+ cells in naïve retinas had a weak constitutive
MHC-II expression (Figure 9A,D,G,J; Additional file 1)
except for the dendritic-like cells in the IPL, which had an
intense constitutive MHC-II expression (Figure 9D). With
respect to CD68, the immunostaining varied depending on
the retinal layer analyzed. Thus, a punctate CD68 immuno-
staining was scarcely found in the soma of few Iba-1+ cells
in the NFL-GCL and plexiform layers (Additional file 1).
However, in the OS patches of CD68, immunostaining
was found in most type 1 OS cells but only in some type
2 OS cells (Figure 10A,B; Additional file 1). No immu-
nostaining for CD86 or Ym1 was found in naïve eyes
(Additional file 1).

Contralateral and OHT eyes
Both in contralateral (Figure 9B,E,H,K) and OHT eyes
(Figure 9C,F,I,L), Iba-1+ cells showed upregulation in
MHC-II expression in all retinal layers (Additional file 1).
In contralateral eyes CD68 immunostaining was similar to
naïve eyes except for a few ramified Iba-1+ cells in the IPL
which had a patchy CD68+ immunostaining instead of
the punctate immunostaining observed in naïve eyes
(Additional file 1). In addition, ameboid Iba-1+ cells in
the NFL-GCL (Figure 5A,B) and OS (Figure 10C,D) in
contralateral eyes exhibited intense CD68 immunostaining.
CD86 immunostaining was restricted to some ameboid
Iba-1+ cells (Figure 11B,C; Additional file 1). No Ym1+
cells were observed (Additional file 1).
By contrast, in OHT eyes most Iba-1+ cells had CD68

immunostaining in the somas and in some processes that
varied from punctate to patchy (Figure 10G,H; Additional
file 1). The retinal layer having the greatest CD68 immuno-
staining was the NFL-GCL and OS, due to ameboid cells
(Figure 10E,F, 5C,D), and the intense CD68+ cytoplasm
exhibited by rounded Iba-1+ cells (Figures 10E, F, 5C,D,E,F)
and some rod-like microglia (Figure 5G,H, Additional file 1).
CD68 cytoplasmic staining in rounded Iba-1+ cells had a
vacuolated appearance (Figure 5C,D). CD86 immunostain-
ing was detected in ameboid Iba-1+ cells (Figure 11E,F,
H,I) and rounded Iba-1+ cells (Figure 11H,I). Ym1 was
restricted to few ameboid MHC-II cells in the NFL-
GCL (Figure 11K,L).
Quantitative analysis of Iba-1+ retinal microglial cells
Number of Iba-1+ cells in the IPL, OPL, and OS
OHT eyes had significantly more Iba-1+ cells in the
IPL, OPL, and OS than did contralateral and naïve eyes,
both when the comparison was made as the sum of Iba-
1+ cells contained in the three layers (Iba-1+ total num-
ber, Figure 12) or when the layers were compared one
by one between the study groups (Table 1) (P <0.001 in
all instances; t-test). The Iba-1+ total number also sig-
nificantly increased in contralateral eyes in comparison
with naïve eyes (P <0.05; unpaired t-test; Figure 12).
The analysis by layers revealed that the IPL of contralat-
eral eyes had significantly more Iba-1+ cells than did naïve
eyes (P <0.05; unpaired t-test) (Table 1). In addition, the
comparison between OPL and IPL showed that the num-
ber of Iba-1+ cells was significantly greater in the OPL
in naïve (P <0.01), contralateral (P <0.001) and OHT
eyes (P <0.001; paired t-test in all instances; Table 1).
Area of the retina occupied by Iba-1+ cells (Iba1-RA) in
the NFL-GCL
In the NFL-GCL, the area of the retina occupied by Iba-
1 (+) cells (Iba1-RA) in OHT eyes (19090.57 ± 6040.56)
significantly increased in comparison both to contralat-
eral (4689.97 ± 359.47; P <0.001; paired t-test) and to
naïve eyes (4096.94 ± 260.97; P <0.001; unpaired t-test;
Figure 13). Notably, Iba1-RA in contralateral eyes was



Figure 5 CD68 expression in the NFL-GCL after 15 days of unilateral laser-induced OHT. Double immunostaining: Iba-1/CD68. Retinal
whole-mount. In contralateral eyes (A, B) CD68 immunoreaction was detected only in some ameboid Iba-1+ cells which exhibited a patchy
staining pattern (blank arrowhead). In the retinal whole-mount of OHT eyes (C-H), the greater CD68 immunoreaction was observed in this retinal
layer. This was because, in addition to the CD68 immunoreactivity of ameboid Iba-1+ cells (blank arrowhead in C, D), rounded Iba-1+ cells (arrow
in C-F) and some rod-like cells (blank arrow in G, H) had intense CD68+ cytoplasmic staining. Rounded Iba-1+ CD68+ cells were adjacent to the
retinal vessels (C, D, F), being located mainly close to the optic disc (E) and in the periphery of the retina. In some instances, the processes of
ramified Iba-1+ cell surrounded the rounded Iba-1+ cells (arrowhead in C) (NFL-GCL: nerve fiber layer-ganglion cell layer; OD: optic disc; OHT:
ocular hypertension; v: retinal blood vessel).
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Figure 6 Iba-1+ cells in the IPL after 15 days of unilateral laser-induced OHT. Iba-1 immunostaining. Retinal whole-mounts. Most Iba-1+
cells in the IPL were ramified and there were few Iba-1+ cells with a dendritic-like appearance (arrow in C, F, I). In comparison with naïve eyes
(A-C), ramified Iba-1+ cells in the IPL of contralateral eyes and OHT eyes formed a denser cellular mosaic (D, E, G, H). Both ramified and
dendritic-like Iba-1+ cells exhibited morphological signs of cell activation (process retraction and increased secondary and superior order
processes) that were more pronounced in OHT eyes (G-I) than in contralateral eyes (D-F). (IPL: inner plexiform layer; OHT: ocular hypertension).
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significantly higher than in naïve eyes (P <0.01; unpaired
t-test; Figure 13).

Quantification of the arbor area of the Iba-1+ cells
The average arbor area of the Iba-1+ cells in the IPL and
the OPL was significantly reduced in OHT eyes (3492.75 ±
766.85 for IPL and 3868.80 ± 477.14 for OPL) compared
to both contralateral (5473.82 ± 1023.67 for IPL and
5545.96 ± 288.80 for OPL) and naïve eyes (7031.81 ±
1238.39 for IPL and 6318.65 ± 319.17 for OPL) and in
contralateral eyes compared to naïve eyes (Figure 14).

Discussion
It is currently known that reactive microgliosis associ-
ated with retinal damage takes place both in human
glaucoma [37-39] as well as in experimental models of
OHT [28-34,54]. In the experimental model of OHT
used in the present work, we have previously reported
that 15 days after laser treatment: i) the microglia of
OHT eyes and contralateral untreated eyes had signs of
activation [36], and ii) such activation is not observed in
eyes receiving laser in the non-draining portion of the
sclera (avoiding the aqueous-collecting system) in which
IOP values did not differ from those of the naïve group
[36]. However, more specific data concerning microglia
activation in this model and differences depending on
the retinal layer remain unknown. Therefore, in the
present study we show a detailed description of multiple
signs of activation displayed by the retinal microglia in
the different layers of the retina, specifically: morpho-
logical changes, cell displacement, increased cell number,
upregulation of activation markers (MHC-II, CD68,
CD86, and Ym1) and quantification of the area occupied
by Iba-1+ cells in the NFL-GCL and the arbor area of
Iba-1+ cells in the plexiform layers. Our results confirm
that 15 days after lasering, the microglia in all retinal
layers underwent multiple changes, both in the lasered
eye as well as in the contralateral untreated eye.
In the model of laser-induced OHT used in the present

work, a substantial increase in the IOP was evident 24
hours after the lasering of the limbal and episcleral veins.
This continued for four days and then gradually returned
to the basal value after the fifth day, so that one week after
lasering, the IOP values in the treated animals were com-
parable for both eyes [43].
Previous reports on the experimental model of OHT

used here showed abnormal electroretinograms [43,44],
indicating that cellular involvement extends beyond RGC,
supporting findings reported in human glaucoma [55] and
in other experimental models of OHT [56-59]. According
to this, we observed microglial reactivity in all retinal
layers of OHTand contralateral eyes.
In the normal adult nervous system, microglia are found

in a quiescent state characterized by a ramified morph-
ology [60]. When microglia detects an insult, the cell
becomes activated (shortening and widening of microglial
processes) and can transform into a macrophage-like
morphology known as ameboid microglia defined by the
absence of the cell processes [14,61-64]. A process of
shortening in Iba-1+ cells was noted in all retinal layers in
contralateral and OHT eyes and could be consistent with
the significant reduction of the Iba-1+ cell-arbor area
found in the plexiform layers. Ameboid microglia has been
reported in acute processes and neurodegenerative dis-
eases such as Alzheimer’s disease and multiple sclerosis
[65]. Ameboid microglia is commonly found in the vicinity
of lesions in neuroinflammatory disorders [66]. According
to this scenario, ameboid CD68+ Iba-1+ cells were found
in OHT eyes as well as in contralateral eyes where RGC
death has not been reported [43].
In addition to the classical signs of microglial reactiva-

tion mentioned above, hyper-ramified microglia, an
intermediate activation stage between the resting and re-
active forms, has been described [67]. Hyper-ramified
microglia have been seen both in the presence of several
non-pathological tissue signals [68-70], as well as in
cerebral degenerative processes related to axonal damage
[71-73]. In the present study, Iba-1+ cells with raised
levels of branching were observed in contralateral and
OHT eyes in all retinal layers except in the NFL-GCL.
In the plexiform layers of OHT eyes, these cell types
could be participating in the remodeling of neuronal cir-
cuitry by tagging some disrupted synapses for elimin-
ation (stripping) in an attempt to prevent the spread of
tissue damage [66,74-78]. Notably, in OHT eyes in-
creased microglial branching was absent in the NFL-
GCL, the only retinal layer having rod-like microglia
[35]. As described recently by our group, some processes
of rod-like microglia penetrate the underlying IPL ac-
companying the dendrites of ganglion cells [35]. With
this observation, it is tempting to postulate that such a
relationship would be consistent with the removal or
stripping of the disrupted synaptic contacts attributed to
rod-like microglia [75,77]. Also, hyper-ramification could



Figure 7 Iba-1+ cells in the OPL after 15 days of unilateral laser-induced OHT. Iba-1 immunostaining. Retinal whole-mount. In the OPL only
ramified Iba-1+ cells were observed. In comparison with naïve eyes (A-C), ramified Iba-1+ cells in the OPL of contralateral and OHT eyes formed a
denser cellular mosaic (D, E, G, H). Iba-1+ cells in this layer exhibited morphological signs of cell activation (process retraction and increased
secondary and superior order processes) that were more pronounced in OHT eyes (G-I) than in contralateral eyes (D-F). The cut-view analysis in
the YZ (sagittal) and XY (coronal) plane demonstrate long processes (arrow) extending from the soma and running across the ONL into the OS
(C, F, I). These long processes were more frequently observed in contralateral (F) and OHT eyes (I) than in naïve eyes (C). (OHT: ocular
hypertension; ONL: Outer nuclear layer; OPL: outer plexiform layer, OS photoreceptor outer segment).
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increase the microglial area of surveillance, playing a key
role in neuronal survival [68-70]. In contralateral eyes,
where neuronal damage has not been reported [43], the
presence of Iba-1+ cells with an increased level of
branching could reflect the presence of tissue stress
signals.



Figure 8 Iba-1+ cells in the OS after 15 days of unilateral laser-induced OHT. Iba-1 immunostaining. Retinal whole-mount. Type 1 (A, C, E)
and type 2 (B, D, F, G) Iba-1+ cells in the OS. The retinal-like section effect produced by the pressure exerted by the cover slip on one edge of
the tissue (A) allowed us to observe that in type 1 OS Iba-1+ cells numerous processes emerged from the same point of the soma, like the roots
of a tree. In naïve eyes these processes extended across the thickness of the OS perpendicularly to the retinal surface. Consequently, soma and
processes of type 1 OS cells were located on a different focal plane and therefore both cell structures could not be focused simultaneously during
whole-mount analysis (A inset). In contralateral (C) and OHT eyes (E) type 1 OS Iba-1+ cells orientation changed from perpendicular to parallel
to the retinal surface. In contralateral (D) and OHT eyes (F) type 2 OS Iba-1+ cells had a retraction of their processes and a hairy appearance.
Ameboid Iba-1+ cells were observed in contralateral (D inset, arrow) and OHT eyes (arrow in H). Only in OHT eyes were two additional
morphological types of Iba-1+ cells observed (G, H): cells with a dendritic-like appearance (blank arrowhead in G) and rounded Iba-1+ cells
(arrowhead in H and inset). (OHT: ocular hypertension; ONL: outer nuclear layer; OS: photoreceptor outer segment).
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Figure 9 MCH-II expression in the retinal layers after 15 days of unilateral laser-induced OHT. MHC-II immunostaining. Retinal whole-mounts.
In naïve eyes (A, D, G, J), Iba-1+ cells had a weak constitutive MHC-II expression (arrow) except for the dendritic-like cells in the IPL which had an
intense constitutive MHC-II expression (arrowhead in D). In contralateral (B, E, H, K) and OHT eyes (C, F, I, L) MHC-II was upregulated in all retinal
layers. (NFL-GCL: nerve fiber layer-ganglion cell layer; IPL: inner plexiform layer; OHT: ocular hypertension; OPL: outer plexiform layer; OS: photoreceptor
outer segment).
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Microglial migration across the retinal parenchyma
Fifteen days after laser treatment, Iba-1+ cells moved to
the nearest nuclear layer in both OHT and contralateral
eyes. In experimental glaucoma [12,63], as well as in
several retinal diseases [13,17,79-87], microglial acti-
vation is associated with cell migration which allows
microglia to interact and eliminate damaged or dead
neurons [61,84,88,89].
Observations in the present study support the idea of
the outer retina being impaired by OHT. In contralat-
eral and OHT eyes: i) type 1 OS cell somas migrated
closer to the RPE than in the control group. RPE dys-
function has been associated with migration of the resi-
dent microglia from the inner retina to the subretinal
space in an attempt to support impaired RPE phagocytic
functions [90,91]; and ii) type 1 OS cells reoriented their



Figure 10 CD68 expression in the OS after 15 days of unilateral laser-induced OHT. Double immunostaining: Iba-1/CD68. Retinal
whole-mount. In naïve eyes (A, B) CD68 immunostaining was observed in type 1 OS Iba-1+ cells (blank arrow). In the OS in contralateral eyes
(C, D) ameboid Iba-1+ cells (blank arrowhead) had a greater CD68 immunostaining than type 1 OS (arrowhead) and type 2 OS (inset) Iba-1+ cells.
In OHT eyes (E-H) CD68 immunostaining in the OS was observed in ameboid Iba-1+ cells (blank arrowhead in E, F), rounded Iba-1+ cells
(arrow in E, F) and in the soma and processes of type 2 OS Iba-1+ cells (G, H). (OHT: ocular hypertension; OS: photoreceptor outer segment).
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Figure 11 CD86 and Ym1 expression in the retina after 15 days of unilateral laser-induced OHT. Double immunostaining: Iba-1/CD86 (A-I)
and MHC-II/Ym1 (J-L). Retinal whole-mount. In contralateral eyes (A-C) CD86 immunostaining was observed in some ameboid Iba-1+ cells in the
OS (blank arrowhead) and NFL-GCL (inset). In OHT eyes (D-I) rounded Iba-1+ cells (arrow) and most ameboid Iba-1+ cells (blank arrowhead) were
CD86+. Ym1 immunoreaction (J-L) was restricted to a few ameboid Iba-1+ cells (blank arrowhead) in the NFL-GCL of OHT eyes. (NFL-GCL: nerve
fiber layer-ganglion cell layer; OHT: ocular hypertension; OS: photoreceptor outer segment).
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processes from a perpendicular arrangement to one paral-
lel to the retinal surface in both cases. It has been sug-
gested that a characteristic and early feature of microglial
activation is their ability to reorient their processes to-
wards the site of injury [66,92]. Notably, this feature was
observed in contralateral eyes and the degree of reorienta-
tion of processes appeared in an intermediate state be-
tween naïve and OHT eyes.
Studies on retinal dystrophies, phototoxicity, and age-

related macular degeneration [61,85,87,89,93-97] have
demonstrated that chronic activation of microglia could
promote a pro-inflammatory environment that would
affect RPE morphology and function [98,99]. Activated
Iba-1+ cells in the OS could produce pro-inflammatory
factors and chemokines capable of inducing blood-cell re-
cruitment [96] that could at least partly explain the pres-
ence of rounded Iba-1+ MHC-II+ CD68+ cells in the
subretinal space of OHT eyes. Another feature supporting
the possibility of the outer retina being affected by OHT is
the fact that there were dendritic-like Iba-1+ cells in the



Figure 12 Iba-1+ cell quantification in OS, OPL, and IPL. Each
bar represents the mean ± SD of the sum of Iba-1+ cell number
contained in the three retinal layers. ***P <0.001 versus naïve and
contralateral retinas. *P <0.05 versus naïve retinas. (IPL: inner plexiform
layer; OHT: ocular hypertension; OPL: outer plexiform layer; OS:
photoreceptor outer segment).

Figure 13 Area of the retina occupied by Iba-1+ cells in the
NFL-GCL. Each bar represents the mean ± SD of area of the retina
occupied by Iba-1+ cells. ***P <0.001 versus naïve and contralateral
retinas. **P <0.01 versus naïve retinas. (NFL-GCL: nerve fiber
layer-ganglion cell layer; OHT: ocular hypertension; RA: retinal area)
(y axis: Iba1-RA (μm2)).
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OS of OHT eyes in addition to rounded Iba-1+ cells. In
the mouse retina, dendritic cells are located in areas of the
retina where the retinal barriers could be vulnerable and
increased numbers of these cells have been associated with
structural abnormalities of the RPE in some mice strains
[90]. In our Swiss mice, dendritic-like Iba-1+ cells were
restricted to the IPL in naïve and contralateral eyes. By
contrast, this cell type was found in the OS in addition to
IPL in OHT eyes. Evidence supports the idea of cell com-
munication among retinal microglia, even between micro-
glia in the subretinal space and in the inner retina [87,98].
According to this proposal, the presence of rounded- and
dendritic-like Iba-1+ cells in the OS of OHT eyes, two cell
types with high antigen-presenting capacity, could relate
to outer retinal barrier dysfunction.
It has been reported that chronic tissue stress in glau-

comatous eyes may lead to increased contact of the retina
and optic nerve head tissues with systemic immune cells
due to alterations in perivascular barrier [100]. In the
present work, numerous rounded Iba-1+ CD68+ cells were
detected in the NFL-GCL of OHT eyes, located mainly ad-
jacent to the major retinal vessels. Iba-1+ rounded cells
close to the vessel have been reported in chimeric mice
following retinal damage [101]. In addition, it has been
postulated that rounded cells could be monocytes
entering the retina due to the breakdown into the
Table 1 Iba-1+ cell quantification by retinal layers

OS OPL

NAIVE 1.44 ± 0.38 20.00 ±

CONTRALATERAL 3.35 ± 1.09 22.36 ±

OHT 8.80 ± 1.43 34.81 ±

Data are presented as the mean number of Iba-1+ cells ± SD. Measurements were m
plexiform layer; OHT: ocular hypertension; OPL: outer plexiform layer; OS: photorece
blood-ocular barrier described in glaucoma [88,100]. In
DBA/2J animals transendothelial migration of Iba-1+/
CD68+ round cells mediate early damage and their reduc-
tion improves neuronal survival [102]. It should be noted
that in the contralateral eyes where RGC death has not
been reported [43], rounded Iba-1+ CD68+ cells in the
NFL-GCL were not found.

Microglial increased number
Microglial proliferation has been reported in glaucoma
[28,30-32,39,42,54,63,103,104]. In patients with glaucoma,
microglial proliferation occurs by the expression of growth
factors, such as M-CSF and GM-CSF [105], secreted in
part by reactive astrocytes [106]. In the same experimental
model used here, we have reported astrocyte activation in
contralateral and OHT eyes [36]. Such activation could
contribute to the significantly increased number of Iba-1+
cells found in contralateral and OHT retinas in the present
work. A higher microglial number in glaucoma could be
explained by the mitosis of the resident microglia [101,107]
or by the entry into the retina of monocytes/macrophages
from the bloodstream that later differentiate into microglial
cells [14,61,84,90,96,101,107-114]. The mechanism in-
volved in the increased number of microglia observed here
is beyond the aim of the present study and deserves further
investigation.
IPL OS + OPL + IPL

1.16 15.87 ± 0.87 37.31 ± 1.84

1.28 18.43 ± 1.26 44.14 ± 2.67

1.41 30.80 ± 1.59 74.42 ± 3.27

ade at 20×, giving up an area of 0.1502 mm2 per field analyzed. (IPL: inner
ptor outer segment).



Figure 14 Arbor area of Iba 1+ cells in the plexiform layers. Each
bar represents the mean ± SD of arbor area of the Iba-1+ cells. Dotted
lines represent comparison among OPL values: ***P <0.001 versus OHT
retinas; **P <0.01 versus contralateral retinas. Solid lines represent
comparison among IPL values: ***P <0.001 versus contralateral and
OHT retinas. (OHT: ocular hypertension; IPL: inner plexiform layer;
OPL: outer plexiform layer; OS photoreceptor outer segment).
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Expression of MHC-II, CD68, Ym1, and CD86
Typically, activated microglial cells are considered to re-
lease significant levels of pro-inflammatory molecules, in-
cluding cytokines and free radicals. Microglia engaged in
these responses were also routinely found to exhibit a
greater expression of molecules such as CD68, which is a
low-density lipoprotein associated with microglial phago-
cytosis, and MHC-II, in relation to antigen presentation
[115]. The expression of MHC-II in glial cells is upregu-
lated in the glaucomatous human retina and optic nerve
head [33,36,100,116-118]. Similarly, we found MHC-II up-
regulation in Iba-1+ cells in contralateral and OHT eyes.
In this respect, it was remarkable that no differences be-
tween them were detected and that in both instances this
activation marker was found throughout all retinal layers.
By contrast, the CD68 expression pattern differed between
contralateral and OHT eyes in that it was higher, involved
more cells, and was distributed in all retinal layers in
OHT. Chiu et al. [119] reported a correlation between
microglia morphology and retinal-ganglion-cell loss in
experimental glaucoma. These authors found that fully
activated microglia exacerbated RGC loss and that a
moderately activated morphology appeared when a neu-
roprotective agent was given. In the present study, the
strongest expression of CD68 in OHT eyes was found
in cells displaying features of a fully activated state.
CD68 is a member of the scavenger-receptor family.
Scavenger receptors typically function to clear cell deb-
ris, promote phagocytosis, and mediate the recruitment
and activation of macrophages. Thus, the increased ex-
pression of CD68 in these OHT eyes seems to be in ac-
cordance with the ganglion-cell death reported in this
experimental model [43] and the rounded Iba-1+ cells
presumably infiltrating the retinal parenchyma (CD68
molecule (Homo sapiens (human); Gene ID: 968; pro-
vided by RefSeq, Jul 2008).
Positive immunolabeling for Ym1 was restricted to a

few ameboid Iba-1+ cells in the NFL-GCL of OHT eyes.
To determine microglia polarization was not within the
scope of the present study and cannot be based on the
results of a single surface marker, however, the fact that
only a few cells expressed a surface marker of the M2
phenotype could point towards most Iba-1+ cells in this
OHT model exerting functions not related to the M2 ac-
tivation pattern. Moreover, it should be taken into ac-
count that data presented here corresponds to 15 days
after lasering and that a transient expression of Ym1, as
has been reported during brain ischemic injury in mice
[120,121], cannot be ruled out.
As mentioned above, widespread upregulation of

MHC-II in Iba-1+ cells took place in all retinal layers in
contralateral and OHT eyes, however, in both instances
CD86 immunolabeling was restricted to ameboid and
rounded Iba-1+ cells in the NFL-GCL and in the OS.
CD86- Iba-1+ cells could prevent the functional activa-
tion of T cells by their omission of co-stimulation, which
may result in T-cell apoptosis or anergy, thus downregu-
lating the immune response [121,122].

Contralateral eyes: an overview
After tissue injury, reactive microglia are capable of under-
going migratory and proliferative processes through the
brain or retina to interact with damaged cells [123]. A
noteworthy point of this study was the observation that, in
untreated contralateral eyes as well as in OHT eyes, be-
sides the increase in microglia cell number and displace-
ment of these cells across retinal layers, there were
additional signs of Iba-1+ cell activation. As in OHT eyes,
microglia reactivity affected all retinal layers. It should be
mentioned that IOP levels in contralateral eyes did not dif-
fer significantly from naïve eyes and that in the same ex-
perimental model of OHT used here and at the same time
point of the death of mouse, neither RGC death or degen-
eration nor ERG alteration has been reported [43]. Never-
theless, Iba-1+ cells in contralateral eyes share their
greater numbers with OHT eyes, higher level of branch-
ing, process shortening and thickening, migration to the
nearest nuclear layer, reorientation of processes, smaller
arbor area in the plexiform layers, increased retinal area
occupied by Iba-1+ cells in the NFL-GCL, and upregu-
lation of MHC-II and CD68 in comparison with naïve
eyes. Some of these phenomena are related to a pro-
inflammatory environment, synapse disruption, or neur-
onal damage, among other factors. It has been reported
that the degree of microglial activation varies with the
severity of neuronal injury and that the mildest injuries
may only cause hyper-ramification of microglia [71].
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However, as mentioned above, in addition to a widespread
higher level of branching, Iba-1+ cells in contralateral eyes
exhibited several signs of activation reported in neuroin-
flammatory diseases, thus reflecting the presence of poten-
tially damaging signals in the tissue that could enhance
retinal neural death [46,86,124,125].

Conclusions
In conclusion, in this study, we show descriptively and
quantitatively the differential behavior of activated micro-
glial cells in the different layers of the retina 15 days after
unilateral laser-induced OHT. Our data support the no-
tion that, in glaucomatous degeneration, damage extends
beyond the GCL and that this is also observed in contra-
lateral untreated eyes. OHT eyes, as well as contralateral
eyes, showed several signs of microglial activation, al-
though these were stronger in the former. For this, further
dissection of the functional significance of microglial acti-
vation in glaucoma onset and progression is mandatory.
In addition, contralateral eyes appear to be have potential
for discovering points of intervention to which future
therapeutics can be directed.
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