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Abstract
Background: In neuropathological processes associated with neutrophilic infiltrates, such as experimental allergic encephalitis
and traumatic injury of the brain, the CXC chemokine, macrophage inflammatory protein-2 (MIP-2) is thought to play a pivotal
role in the induction and perpetuation of inflammation in the central nervous system (CNS). The origin of MIP-2 in inflammatory
disorders of the brain has not been fully defined but astrocytes appear to be a dominant source of this chemokine.

Curcumin is a spice principle in, and constitutes approximately 4 percent of, turmeric. Curcumin's immunomodulating and
antioxidant activities suggest that it might be a useful adjunct in the treatment of neurodegenerative illnesses characterized by
inflammation. Relatively unexplored, but relevant to its potential therapeutic efficacy in neuroinflammatory syndromes is the
effect of curcumin on chemokine production. To examine the possibility that curcumin may influence CNS inflammation by
mechanisms distinct from its known anti-oxidant activities, we studied the effect of this spice principle on the synthesis of MIP-
2 by astrocytes.

Methods: Primary astrocytes were prepared from neonatal brains of CBA/CaJ mice. The cells were stimulated with
lipopolysaccharide in the presence or absence of various amount of curcumin or epigallocatechin gallate. MIP-2 mRNA was
analyzed using semi-quantitative PCR and MIP-2 protein production in the culture supernatants was quantified by ELISA.
Astrocytes were transfected with a MIP-2 promoter construct, pGL3-MIP-2, and stimulated with lipopolysaccharide in the
presence or absence of curcumin.

Results: The induction of MIP-2 gene expression and the production of MIP-2 protein were inhibited by curcumin. Curcumin
also inhibited lipopolysaccharide-induced transcription of the MIP-2 promoter reporter gene construct in primary astrocytes.
However MIP-2 gene induction by lipopolysaccharide was not inhibited by another anti-oxidant, epigallocatechin gallate.

Conclusion: Our results indicate that curcumin potently inhibits MIP-2 production at the level of gene transcription and offer
further support for its potential use in the treatment of inflammatory conditions of the CNS.
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Background
Curcumin (1,7-Bis 94-hydroxy-3-methoxyphenyl)-1,6
heptadiene-3, 5-di-one) is a spice principle in and consti-
tutes approximately 4% of turmeric and is responsible for
curry's characteristic yellow color. As is true of other natu-
rally occurring polyphenolic compounds, such as caffeic
acid phenyl ester, rosmaric acid and resveratrol, curcumin
possesses antioxidant properties which may reduce the
production of free radicals and improve cell viability
under conditions of enhanced oxidative stress[1,2]. Cur-
cumin also has anti-inflammatory properties which
include the capacity to inhibit 5- and 8-lipoxygenases and
cyclooxygenases[3,4], is chemopreventive as evidenced by
its capacity to abrogate 12-O-tetradecanoylphorbol-13-
acetate (TPA)-induced DNA synthesis and tumor promo-
tion in mouse skin[5], antiproliferative as shown by its
suppressive effect on the growth of C6 glioma cells[6],
and anti-metastatic as suggested by its ability to inhibit
angiogenesis in vivo[7].

Curcumin's immunomodulating and antioxidant activi-
ties suggest that it might be a useful adjunct in the treat-
ment of neurodegenerative illnesses characterized by
inflammation such as Alzheimer's disease[8]. Relatively
unexplored, but relevant to its potential therapeutic effi-
cacy in neuroinflammatory syndromes is the effect of cur-
cumin on chemokine production. An active role for
chemokines has been demonstrated in the pathogenesis
of a variety of central nervous system (CNS) disorders
accompanied by inflammation. In neuropathological
processes associated with neutrophilic infiltrates, such as
experimental allergic encephalitis (EAE) and traumatic
injury of the brain, the CXC chemokine, macrophage
inflammatory protein-2 (MIP-2) appears to play a pivotal
role in the induction and perpetuation of inflammation
in the brain[9,10]. In EAE, for example, elevated levels of
MIP-2 mRNA and protein preceded infiltration of the
CNS by polymorphonuclear leukocytes (PMNs). Simi-
larly, in traumatic brain injury, the kinetics of MIP-2
expression paralleled the recruitment of neutrophils to
the inflammatory site[10] and, in experimental bacterial
meningitis, neutralization of MIP-2 with a monoclonal
antibody attenuated infiltration of the CNS with
PMNs[11]. The origin of MIP-2 in inflammatory CNS dis-
orders has not been fully defined, but in EAE astrocytes,
appear to be the dominant source of this chemokine[9]
and are likely to contribute significantly to MIP-2 produc-
tion in other neuropathological states as well.

To explore the possibility that curcumin may influence
CNS inflammation by mechanisms distinct from its anti-
oxidant and known anti-inflammatory activities, we
examined the effect of this spice principle on the synthesis
of MIP-2 by astrocytes. Our results indicate that curcumin
potently inhibits MIP-2 production at the level of gene

transcription and offer further support for its potential use
in the treatment of inflammatory conditions of the CNS.

Methods
Mice
Six to eight-week-old CBA/CaJ mice were purchased from
Jackson Laboratories (Bar Harbor, ME) and bred in our
animal facility.

Materials
Curcumin, epigallocatechin (EGCG) and E. coli lipopoly-
saccharide (LPS; O55B1) were purchased from Sigma, (St
Louis, MO). Rabbit anti-cow glial fibrillary acidic protein
polyclonal antibody was obtained from Dako Corp.
(Carpinteria, CA).

Preparation and culture of astrocytes: Astrocytes were pre-
pared from the brains of neonatal (3 to 7-day-old) CBA/
CaJ mice by a modification of the method of Pousset et
al[12]. Briefly, four brains were combined, homogenized
in 0.25% trypsin through a sterile screen (pore size; 100
µM), incubated for 5 min at 37°C and centrifuged at 400
× g. The pellet was suspended in Hank's Buffered Salt
Solution (HBSS) and debris was removed by gravity sedi-
mentation on ice for 3 min. The supernatant was col-
lected, centrifuged and the pellet was washed twice with
culture medium consisting of DMEM containing 10%
heat-inactivated fetal bovine serum (Hyclone, Logan, UT),
1 mM L-glutamate and penicillin/streptomycin (Gibco
BRL, Grand Island, NY). The cells were plated on 35 mm
dishes and cultured at 37°C in a humidified atmosphere
contain 5% C02. After 16 hours, plates were washed to
remove non-adherent cells and debris. For experiments in
which mRNA or MIP-2 protein were quantified, adherent
cells were cultured until they reached confluence. For
transfection experiments, adherent cells were cultured
until they were nearly confluent. Medium was refreshed in
all astrocyte cultures every 2–3 days. The preparations
were >98% glial fibrillary acidic protein positive, as meas-
ured by flow cytometric analyses using a EPICS XL flow
cytometer[13].

Cell viability determination: The effect of curcumin on the
viability of astrocytes was assessed by measuring cytosolic
lactate dehydrogenase (LDH) leakage into the media as
detailed earlier[14]. Briefly, astrocytes were incubated
with curcumin (10-4 M to 10-6 M) for up to 48 hours, the
supernatants were then harvested and LDH was measured
by colorimetric assay using a kit from Sigma diagnostics.

mRNA and protein analyses: Confluent cultures of astro-
cytes were incubated with LPS (10 ηg to 5 µg/ml) for var-
ying periods of time in the presence or absence of
curcumin (10-4 M to10-7 M). After 4 hours of culture, cells
were harvested and mRNA was isolated as previously
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reported[14]. MIP-2 mRNA levels were determined using
semi-quantitative polymerase chain amplification (PCR)
as described earlier[14] using the primers: 5'-TGCCG-
GCTCCTCAGTGCT-3' (forward) and 5'-GCCTTGCCTTT-
GTTCAGTATCTTTTG-3' (backward). In other
experiments, the effect of EGCG on induced MIP-2 mRNA
production was determined by culturing astrocytes with
LPS in the presence or absence of varying doses of the cat-
echin (10-3M to 10-4M). To assess the effect of curcumin
on MIP-2 protein production, astrocytes were cultured
with LPS in the presence or absence of curcumin (10-5M)
for 16 hours. Supernatants were then harvested and MIP-
2 levels were determined by enzyme linked immunosorb-
ant assay (ELISA; R&D systems, Minneapolis, MN).

Preparation of the reporter gene, pGL3-MIP-2: A 537 base
pair MIP-2 fragment was prepared by amplifying rat
genomic (kidney) DNA using the primers:
5'GCCCACCGAGTCTCTGTTTC3' (forward) and
5'GTTGGTGGCCAGCAGGAGGA3' (backward), then
digesting with Rsa I/Nco I. The fragment, which corre-
sponded to base pairs -539 to -2, relative to adenine
(assigned +1) in the translation initiation codon of the
MIP-2 gene (accession number AJ49888), was ligated to a
Sma I/Nco I digested, promoterless luciferase reporter vec-
tor, pGL3-Basic (Promega, Madison, WI). The direction of

the insert was confirmed by restriction endonuclease
digestion and its fidelity determined by sequence analyses
as previously described[15]. The MIP-2 promoter-reporter
gene construct, pGL3-MIP-2 is shown in Figure 1.

Transfection experiments: Astrocytes were transfected cells
using a modification of the method of Franzoso et al[16].
Briefly, 1.5 µg of DNA containing either pGL3-MIP2 or
pGL3-basic were incubated in HBS solution (137 mM
NaCl, 5 mM KCl, 0.88 mM Na2HPO4, 20 mM Hepes)
containing 250 mM CaCl2 for 10 minutes at room tem-
perature. The mixtures were added in 2 mL of media to
astrocytes that were nearly confluent. After a 16-hour
incubation in a humidified atmosphere at 37 C° contain-
ing 5% CO2, cells were washed to remove debris and cul-
tured for an additional 24 hours. LPS plus or minus
curcumin (10-4M to 10-7M) was then added and trans-
fected cells were further cultured for 24 hours. At the con-
clusion of culture, cells were harvested, cell lysates were
prepared, and lysates were analyzed using a luciferase
assay system (Promega, Madison, WI) in accordance with
the manufacturer's instructions.

Results and discussion
To determine whether mechanisms apart from its well-
documented anti-oxidant activity might provide possible

PGL3-MIP-2Figure 1
PGL3-MIP-2. A 537 bp fragment, which corresponds to base-pairs -539 to -2 (relative to adenine [assigned +1] in the transla-
tion initiation codon of the MIP-2 gene) was generated and inserted into a promotorless luciferase reporter vector, pGL3-
Basic.
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neuroprotection against inflammation-mediated injury,
we investigated the effect of curcumin on astrocyte pro-
duction of the chemokine MIP-2 in response to LPS. In
initial experiments, we found that optimal MIP-2 produc-
tion occurred when confluent astrocyte cultures were
stimulated with 5 µg/ml of LPS during a 16-hour culture
(data not shown). Culturing such astrocytes with a dose of
curcumin (10-5M) that had no effect on viability as meas-
ured by LDH release (data not shown), abrogated LPS-
stimulated MIP-2 production (Figure 2).

The effect of curcumin on LPS-induced production of
MIP-2 mRNA was examined next. Preliminary experi-

ments showed that optimal message for MIP-2 in
response to LPS occurred after 4 hours of culture in astro-
cytes (data not shown). As was true for MIP-2 protein, cul-
ture of astrocytes with curcumin (10-5M) markedly
inhibited chemokine gene expression in response to LPS
(Figure 3).

To determine whether curcumin inhibits MIP-2 gene tran-
scription, a construct was created in which 537 base pairs
of the MIP-2 promoter, spanning nucleotides -539 to -2 of
the MIP-2 gene (see Methods), were fused to a promoter-
less luciferase reporter gene (pGL3-MIP-2, Figure 1). As
shown in the representative experiment in Figure 4, curcu-

LPS-induced MIP-2 production is inhibited by curcuminFigure 2
LPS-induced MIP-2 production is inhibited by curcumin. Confluent astrocytes were cultured in medium alone or were stimu-
lated with LPS (5 µg/ml) in the presence (LPS + Curcumin) or absence (LPS) of curcumin (10-5 M). The supernatants were col-
lected after 16 hours and MIP-2 protein (in picograms/ml) was measured by ELISA. Data are the mean ± standard deviation of 
4 experiments. Mean MIP-2 production in the medium and LPS + curcumin groups differ significantly from that in the LPS group 
(p < 0.001 by Student's t test). Mean MIP-2 production does not differ significantly between the medium and LPS + curcumin 
groups (p > 0.2 by Student's t test).
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min abrogated LPS-stimulated MIP-2 gene expression in
transiently transfected astrocytes. In three separate experi-
ments, essentially complete inhibition of LPS-induced
MIP-2 gene expression (100%, 92%, 94%) was observed
with curcumin in doses of 2 µM.

As a specificity control, the effect of EGCG, a catechin
present in green tea with potent anti-oxidant activity, was
examined on MIP-2 gene expression in astrocytes. In con-
trast to curcumin, EGCG in doses as high as 10-3 M had no
effect on LPS-stimulated MIP-2 mRNA expression (Figure
5). The results suggest that the inhibitory effect of curcu-
min on MIP-2 production may not be due to its anti-oxi-
dant properties.

The study presented herein shows for the first time that
curcumin is a potent inhibitor of inducible MIP-2
production by astrocytes, which are a major source of this
chemokine in the brain[9]. In transient transfection exper-
iments of astrocytes, virtually complete inhibition of MIP-
2 inducible gene expression was observed with 2 µM cur-
cumin. Since blood levels of curcumin approximating 2
µM were shown by Yang, et al[17] to block amyloid aggre-
gation in a transgenic model of Alzheimer's disease, we
believe that our data may have in vivo relevance.

Transfection experiments in macrophages using a pro-
moter, reporter-gene construct that contains canonical
NFκB and NF-IL-6 cis-acting elements demonstrate that
inhibition of MIP-2 by curcumin occurs at the level of
gene transcription. The importance of either of these ele-
ments in the regulation of inducible MIP-2 gene expres-
sion in astrocytes remains to be determined. In some
systems, inhibition of NFκB per se by curcumin is
sufficient to abrogate gene expression. Thus, curcumin
and its hydrogenated metabolites were shown to com-
pletely suppress transcription of nitric oxide synthase
through down regulation of IκBkinase and NFκB activa-
tion in macrophages[18]. However, considering the fact
that NFκB activation is linked to multiple upstream sign-
aling pathways[19] and that curcumin has been shown to
suppress a number of inflammatory signaling cas-
cades[20], inhibition mediated by this spice principle
may be quite complex and highly variable, depending on
the cell type and the activating stimulus.

Inhibition of chemokine production represents a novel,
potential mechanism by which curcumin may confer neu-

LPS-induced MIP-2 mRNA expression is inhibited by curcuminFigure 3
LPS-induced MIP-2 mRNA expression is inhibited by curcu-
min. Confluent astrocyte cultures were stimulated with LPS 
(5 µg/ml) in the presence or absence of varying doses of cur-
cumin (10-5-10-7M) or vehicle (0.05% ethanol), mRNA was 
then extracted, reverse transcribed and amplified using a 
mouse MIP-2 primer.

Curcumin inhibits the activity of MIP-2 at the level of gene transcriptionFigure 4
Curcumin inhibits the activity of MIP-2 at the level of gene 
transcription. Confluent astrocyte cultures were transfected 
with 1.5 µg of pGL3-MIP-2 or pGL3-Basic and stimulated 
with LPS (5 µg/ml) in the presence or absence of varying 
amounts of curcumin (10-4-10-6M). Transfected cells were 
harvested and luciferase activity in the cell lysates was quanti-
fied. The dose of curcumin is shown in log scale. Results are 
representative of three experiments.
Page 5 of 7
(page number not for citation purposes)



Journal of Neuroinflammation 2005, 2:8 http://www.jneuroinflammation.com/content/2/1/8
roprotection in CNS disorders characterized or accompa-
nied by leukocytic infiltration. As stated above, MIP-2 is a
dominant, driving force in the pathogenesis of many CNS
disorders that are associated with infiltration of neu-
trophils in the brain[9,10]. Experimentally, recruitment of
neutrophils to the CNS is followed by a breeching of the
blood-brain barrier that is especially severe after adminis-
tration of MIP-2[21] and may further contribute to
inflammation by causing indiscriminate entry of leuko-
cytes into the brain. The possible contribution of
inflammatory infiltrates to neuronal injury is best illus-
trated by experimental studies in which MIP-2 activity was
neutralized. For example, administration of anti-MIP-2
antibody to rats infected with Hemophilus influenza type
b abrogated the influx of neutrophils to the meninges,
ventricular system, and the periventricular areas of the
brain and substantially decreased neuronal damage[11].

In addition to astrocytes, microglial cells and endothelial
cells may be potential sources of MIP-2 production in
pathological states of the brain. Stimulation of brain
microvascular endothelial cells with tumor necrosis factor
alpha (TNFα), induces the release of MIP-2 within 4 to 8

hours of in vitro culture[22]. Since TNFα levels in the brain
are significantly elevated in traumatic brain injury (TBI),
it remains possible that cytokine-mediated release of MIP-
2 by endothelial cells, particularly those which comprise
the blood brain barrier, may predispose to intracerebral
neutrophil accumulation and neuronal injury in TBI. Sim-
ilarly, in a model of hypoxia/reoxygenation, large
increases in MIP-2 mRNA and protein were demonstrated
in microglial cells suggesting a possible mechanism to
account for PMN accumulation and inflammation in cer-
ebral ischemia.

Apart from its ability to inhibit MIP-2 production, curcu-
min's pleotropic antiinflammatory and anti-oxidative
properties suggest its possible use in diseases of the brain
accompanied by inflammation. Thus, LPS stimulation
transcriptionally upregulates inducible nitric oxide syn-
thase and cyclooxygenase-2 genes in microglia. This leads
to the synthesis of nitric oxide (NO) and prostaglandins
(PGs), respectively, and the possible formation of neuron-
damaging free radicals, such as peroxynitrite. Curcumin
abrogates the production of both NO and PGs in LPS acti-
vated microglial cells[20]. In a recently completed Phase I
clinical trial, oral curcumin at a daily dose of 3.6 grams
was, in general, well-tolerated and decreased inducible
PGE2 production in blood samples taken 1 hour after dose
on days 1 and 29 of treatment by approximately 60%[23].
Consistent with its possible use in neurodegenerative dis-
eases associated with oxidative stress injury, curcumin has
been reported to decrease oxidative damage and amyloid
deposition in a transgenic mouse model of Alzheimer's
disease[24], and to reverse Aβ-induced cognitive deficits
and neuropathology in rats[25].

In summary, the capacity of curcumin to inhibit astrocyte
production of MIP-2, together with its broad immunosup-
pressive activities, strongly support the potential use of
this spice principle in the treatment of inflammatory dis-
eases of the CNS.
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EAE, experimental allergic encephalitis; EGCG, epigallo-
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pGL3-MIP-2, a reporter gene construct containing the
MIP-2 promoter; PMN, polymorphonuclear leukocyte;
TBI, traumatic brain injury; TNFα, tumor necrosis factor
alpha.
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Curcumin but not EGCG inhibits MIP-2 mRNA expressionFigure 5
Curcumin but not EGCG inhibits MIP-2 mRNA expression. 
Confluent cultures of astrocyte were stimulated with LPS (5 
µg/ml) in the presence or absence of varying doses of curcu-
min (10-5-10-7M), EGCG (10–3), or appropriate vehicle 
(0.05% ethanol for curcumin, DMSO for EGCG). mRNA was 
then extracted, reverse transcribed and amplified using 
mouse MIP-2 primers.
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