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Abstract
Background: Kinins are important mediators of inflammation and act through stimulation of two
receptor subtypes, B1 and B2. Leukocyte infiltration contributes to the pathogenesis of autoimmune
inflammation in the central nervous system (CNS), occurring not only in multiple sclerosis (MS) but also
in experimental autoimmune encephalomyelitis (EAE). We have previously shown that the chemokines
CCL2 and CCL5 play an important role in the adhesion of leukocytes to the brain microcirculation in EAE.
The aim of the present study was to evaluate the relevance of B2 receptors to leukocyte-endothelium
interactions in the cerebral microcirculation, and its participation in CNS inflammation in the experimental
model of myelin-oligodendrocyte-glycoprotein (MOG)35–55-induced EAE in mice.

Methods: In order to evaluate the role of B2 receptor in the cerebral microvasculature we used wild-
type (WT) and kinin B2 receptor knockout (B2

-/-) mice subjected to MOG35–55-induced EAE. Intravital
microscopy was used to investigate leukocyte recruitment on pial matter vessels in B2

-/- and WT EAE mice.
Histological documentation of inflammatory infiltrates in brain and spinal cords was correlated with
intravital findings. The expression of CCL5 and CCL2 in cerebral tissue was assessed by ELISA.

Results: Clinical parameters of disease were reduced in B2
-/- mice in comparison to wild type EAE mice.

At day 14 after EAE induction, there was a significant decrease in the number of adherent leukocytes, a
reduction of cerebral CCL5 and CCL2 expressions, and smaller inflammatory and degenerative changes
in B2

-/- mice when compared to WT.

Conclusion: Our results suggest that B2 receptors have two major effects in the control of EAE severity:
(i) B2 regulates the expression of chemokines, including CCL2 and CCL5, and (ii) B2 modulates leukocyte
recruitment and inflammatory lesions in the CNS.
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Background
Bradykinin (BK) and its biologically active metabolites are
the functional components of the kallikrein-kinin system.
Kinins elicit a wide range of physiological effects includ-
ing relaxation of vascular smooth muscle in arteries and
arterioles, expression of adhesion molecules, leukocyte
infiltration, formation of interendothelial gaps and pro-
tein extravasation from post-capillary venules, and pain
transmission mechanisms [1,2]. The actions of kinins are
mediated through stimulation of two subtypes of seven-
transmembrane-domain G-protein-coupled receptors,
namely B1 and B2. The B2 receptor is constitutively
expressed in various cell types, including endothelial cells,
nerve fibers, leukocytes and mast cells [3,4]. The B1 recep-
tor is generally expressed at low levels under normal con-
ditions but is up-regulated by cytokines in stressful
situations, such as shock and inflammation [5-7]. Most of
the physiological actions of kinins are believed to be
mediated by stimulation of B2 receptors [8].

Experimental autoimmune encephalomyelitis (EAE) is an
inflammatory disease of the CNS mediated by CD4+ Th1
cells that serves as experimental model of human multiple
sclerosis (MS). A pathological hallmark of MS is infiltra-
tion of immune cells across the blood-brain barrier into
the CNS causing myelin destruction and axonal injury [9].
It is thought that inappropriate leukocyte recruitment and
activation in the brain results in disease symptoms and
progression [10]. Thus, reduction of the migration of
immune cells into the CNS is a relevant novel therapeutic
strategy for the treatment of MS.

Although the potential role of the kinin system on leuko-
cyte entry into the CNS in MS remains unclear, it has been
shown that BK can interfere with the mechanism of leuko-
cyte recruitment in various tissues [11]. BK may enhance
the expression of adhesion molecules on endothelium
cells [12]. BK antagonists reduce leukocyte-endothelium
interactions after diverse inflammatory conditions,
including global cerebral ischemia [4], leukocyte infiltra-
tion in murine mesenteric post-capillary venules [13] and
lung inflammation in guinea pigs [14]. BK could poten-
tially modify leukocyte recruitment by production of che-
moattractant molecules, such as chemokines. For
example, treatment with bradykinin receptor antagonists
has been shown to reduce production of chemokines,
including KC and MCP-1, after intestinal ischemia and
reperfusion [15]. Several studies, have clearly demon-
strated the relevance of chemokines for the recruitment of
leukocytes into the brain of EAE mice [16-18].

Cross talk between cytokines and kinin receptors has been
extensively investigated over the last several years [19-21].
Studies have demonstrated that pro-inflammatory
cytokines regulate B1 and B2 receptor expression

[11,22,23] and, conversely, blockade of kinins receptors
modifies expression of cytokines and chemokines
[24,25]. In the present work, we used B2-deficient mice to
assess the potential contribution of kinin receptors for the
clinical course of disease, leukocyte recruitment, and
modulation of chemokines expression in the CNS after
EAE induction by MOG35–55.

Methods
Animals
Mice B2 knockout (B2

-/-) mice were generated as previ-
ously described [24]. Knockout female C57BL/6 X sv129
mice (9–11 wks) and their wild-type (WT) littermate con-
trols were housed under standard conditions and had free
access to commercial chow and water. All procedures
described in this study had prior approval from the local
Ethics Committee that governs animal care and use in
research.

EAE induction
B2

-/- and WT mice were immunized subcutaneously at the
base of the tail with an emulsion containing 100 μg
MOG35–55 peptide (MEVGWYRSPFSRVVHLYRNGK;
(Dept Biophysics, Escola Paulista de Medicina, SP, Brazil)
in Freund's complete adjuvant (CFA, Sigma) supple-
mented with 4 mg/mL Mycobacterium tuberculosis H37RA
(Difco Laboratories). Pertussis toxin (Sigma), was injected
(300 ng/animal, i.p.), on the day of immunization and 48
h later. Animals were monitored daily and neurological
impairment was quantified on an arbitrary clinical scale
and presented as mean clinical disease severity. Scores
were: 0 = no clinical signs, 1 = tail paralysis (or loss of tail
tone), 2 = tail paralysis and hind-limb weakness, 3 = hind-
limb paralysis, 4 = complete hind-limb paralysis and front
limb weakness [26]. The mice were weighed pre- and 14
days post-immunization, the peak of the disease [18].
"Sham animals" refers to WT animals without EAE induc-
tion.

Intravital microscopy in mouse brain
Intravital microscopy of cerebral microvasculature was
performed as previously described [18,27]. Briefly, the
mice were anaesthetized by intraperitoneal injection of a
mixture containing ketamine (150 mg/kg) and xylazine
(10 mg/kg). The tail vein was cannulated for administra-
tion of fluorescent dyes. A craniotomy was performed
using a high-speed drill (Dremel, USA) and the dura mat-
ter was removed to expose the underlying pial vasculature.
Throughout the experiment, the mouse was maintained at
37°C with a heating pad (Fine Science Tools Inc., Canada)
and the exposed brain was continuously superfused with
artificial cerebrospinal fluid buffer at pH 7.4, containing
in mmol/L: NaCl 132, KCl 2.95, CaCl2 1.71, MgCl2 0.64,
NaHCO3 24.6, dextrose 3.71 and urea 6.7, at 37°C.
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To assess leukocyte-endothelium interactions, leukocytes
were fluorescently labeled by administration of rhodam-
ine 6G (i.v., 0.5 mg/kg body weight) and observed using
a microscope (Olympus B201, X20 objective lens, corre-
sponding a 100 μm of area) outfitted with a fluorescent
light source (epi-illumination at 510–560 nm, using a
590 nm emission filter). A silicon-intensified camera
(Optronics Engineering DEI-470) mounted on the micro-
scope projected the image onto a monitor (Olympus).
Rolling leukocytes were defined as the number of white
cells moving at a velocity lesser than that of erythrocytes
cells. Leukocytes were considered adherent to the venular
endothelium if they remained stationary for 30 seconds or
longer.

Histopathology
Brains, cerebellum and the spinal cords were removed just
after intravital microscopy. Transverse slices of brain, spi-
nal cord and cerebellum were fixed by immersion in 10%
formalin and processed for paraffin embedding. The sec-
tions (6.0 μm) were stained with H&E and examined in an
Olympus BX51 microscope. Documentation was per-
formed by a coupled digital camera and imaging capture
software (Megacybernetics Pro-Express version 4.1 and
cool-snap kit).

Measurement of chemokines
Brain tissue extracts were obtained from control and EAE
mice (WT and B2

-/-). Brains were removed after intravital
microscopy, and the left and right hemispheres were
stored on ice. Thereafter, using Ultra-Turrax, each hemi-
sphere was homogenized in extraction solution (100 mg
of tissue per 1 mL) containing 0.4 M NaCl, 0.05% Tween
20, 0.5% BSA, 0.1 mM phenylmetilsulfonil fluoride, 0.1
mM benzetonio chloride, 10 mM EDTA and 20 KIU apro-
tinin. The brain homogenate was spun at 10000 × g for 10
min at 4°C and the supernatants were stored at -70°C.
The concentrations of CCL2, CCL3, CCL5, TNFα and IFNγ
were determined in the supernatants of the brain extracts,
at a 1:3 dilution in PBS containing 1% BSA, using an
ELISA set-up commercially available according to the pro-
cedure supplied by the manufacturer (R&D Systems, Min-
neapolis, MN and Pharmingen, San Diego, CA).

Statistical analysis
Data are shown as mean ± SEM. Significance was assessed
using an ANOVA parametric test with Bonferroni correc-
tion for multiple comparisons. Statistical significance was
set at P < 0.05.

Results
Clinical assessment and histopathology
All WT and B2

-/- mice developed EAE after MOG35–55
administration. Clinical symptoms appeared on day 11
post MOG-injection and peaked around day 14 after

which were stable through day 18, the last day for animal
evaluation. There were no deaths during the course of EAE
development. However, B2

-/- mice showed a modest but
statistically significant reduction (n = 7, mean clinical
severity score = 2.4 ± 0.6) in neurological impairment at
the peak of disease (day 14) and during the final plateau
phase of disease when compared with their WT group
counterparts (n = 7, mean clinical severity score = 3.6 ±
0.24) (Figure 1A). In addition, there was significant
weight loss in EAE WT animals compared to the EAE B2

-/-

group (Figure 1B).

Histopathological evaluation of the brain, cerebellum and
spinal cord was performed in WT and B2

-/- mice at day 14
after EAE induction. Brains of EAE WT mice showed a
marked perivascular infiltration of mononuclear cells
around pial and cerebral cortex venules (Figure 2A). The
inflammatory process extended from the meninges into
cerebral cortex parenchyma and was characterized by

Clinical assessment of EAEFigure 1
Clinical assessment of EAE. Clinical signs (n = 7 mice/
group) were daily monitored, comparing B2

-/- (▼) and WT 
(■) mice during 18 days after EAE induction (A) and body 
weight gain or loss (B). Data is expressed as mean ± SEM. *P 
< 0.05 for B2

-/- versus WT on the peak of disease (day 14 
post-induction).
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focal intense mononuclear infiltration. The meninges and
white matter of spinal cord of the EAE WT group pre-
sented an intense focal inflammatory response associated
with white matter vacuolization (Figure 2C). However,
the EAE B2

-/- group showed only discrete focal inflamma-
tory infiltrates of mononuclear cells, predominantly in
association with discrete white matter vacuolization (Fig-
ure 2B and 2D).

Rolling and adhesion of leukocytes in cerebral 
microvasculature on day 14
EAE pathogenesis requires migration of activated T cells
from peripheral lymphoid tissue to the CNS, which pre-
sumably occurs in a multi-step manner. To migrate into
sites of inflammation, leukocytes must first tether and roll
along the vessel before they firmly adhere and emigrate

out of the vasculature. Firm adhesion is triggered by the
action of chemoattractant molecules, such as chemokines
[26]. EAE induced an increase in leukocyte rolling which
presented the same profile in all groups. The deletion of
B2 genes did not alter the rolling of leukocytes on pial ves-
sel walls when compared to WT group (Figure 3A). EAE
also induced an increase of leukocyte adhesion in WT
mice (Figure 3B). On the other hand, leukocyte adhesion
was diminished in B2

-/- in comparison with WT mice (Fig-
ure 3B). In summary, both leukocyte recruitment and his-
topathological alterations decreased in B2

-/- when
compared to the EAE WT.

Chemokine release in the brain
In order to assess the involvement of kinin receptors in the
cerebral chemokine release after EAE induction, brain tis-

Histopathological analysis of EAE WT(A, C) and EAE B2
-/- mice (B, D)Figure 2

Histopathological analysis of EAE WT(A, C) and EAE B2
-/- mice (B, D). The analysis was performed on H&E-stained 

sections of brain (A, B) and spinal cord (C, D) at day 14. Observe the marked perivascular infiltration of mononuclear cells in 
WT brain meninges (A) and the perivascular and inflammatory infiltration of parenchyma (superior and inferior details in A) 
and spinal cord (C, white arrows). Degenerative changes of white matter are increased in the spinal cord of WT mice in com-
parison to B2

-/- mice (C, black arrows). Original magnification 150×.
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sues from WT and B2
-/- were examined. EAE induction

enhanced cerebral production of the chemokines CCL2
and CCL5 in WT mice (Figure 4A, B). In B2

-/- mice, the lev-
els of CCL2 were significantly lower than those found in
WT mice (Figure 4A). In addition, the production of CCL5
was lower in B2

-/- mice when compared to their WT con-
trols subjected to EAE (Figure 4B). There was no difference
in cerebral CCL3 expression in WT mice before or after
EAE induction (Figure 4C). Moreover, expression of CCL3
was similar in WT and gene-deficient mice subjected to
EAE (Figure 4C).

Considering the important participation of IFNγ and
TNFα in T-cell trafficking to CNS, we evaluated the role of
kinin receptors on the cerebral production of these pro-

inflammatory cytokines. EAE WT and EAE B2
-/- mice

showed increased TNFα and IFNγ in brain tissue, when
compared to the control group (Figure 4D, E). However,
no statistical difference was found in the cerebral
cytokines levels between WT EAE and B2

-/- EAE mice.

Discussion
The kallikrein-kinin system is one of the first inflamma-
tory pathways activated after tissue damage. Particularly
because of its ability to increase vascular permeability, the
kallikrein-kinin system has been investigated for its ability
to promote brain edema and secondary brain damage in
various models of central nervous system injuries, for
example; bacterial meningitis [28], traumatic brain and
spinal cord injury [29-32], and global cerebral ischemia
[4]. Although, kinins are known to be released and have
several effects in the CNS, their cerebral effects in EAE
pathogenesis remain unclear.

It is known that pretreatment with B2 receptor antagonist
markedly inhibits inflammatory responses in lungs and
intestine [15,33] by suppressing leukocyte recruitment
and activation in acute models of inflammation
[14,34,35]. In addition, treatment with a B2 receptor
antagonist decreases CD44, CD54, CD11a and CD11b
expression in various cell types after arthritis induction in
Lewis rats [36].

This study was designed to provide further insights into
the molecular mechanisms of proinflammatory cell traf-
ficking into the CNS in a murine model of EAE. As kinin
receptors appear to mediate leukocyte-endothelium inter-
action induced by certain inflammatory stimuli [4,13],
our aim was to determine the putative role of kallikrein-
kinin system in the cerebral inflammatory response, via
the kinin B2 receptor, after EAE development. For this, we
used wild-type (WT) and kinin B2 receptor knockout (B2

-

/-) mice subjected to a MOG35–55-induced EAE model of
multiple sclerosis.

The MOG peptide can induce typical EAE disease in
C57BL/6 mice and in other strains. MOG, which repre-
sents only ~0.05% of myelin proteins, elicits a major anti-
body response that has been correlated with disease
severity and demyelination in both human and animal
models of MS [37,38]. There is some evidence for activa-
tion of the kallikrein-kinin system during inflammation
in this model [39]. In our hands, mice that lack the kinin
B2 receptor and are subjected to EAE had a statistically sig-
nificant reduction in neurological impairment at the peak
of disease (day 14) and during the final plateau phase of
disease, when compared with the WT EAE group. Our
results also reveal lesser degrees of weight loss in EAE B2

-/

- mice when compared to WT EAE animals. These findings
are consistent with a previous study that showed pro-

Leukocyte-endothelial interactions in pial vasculatureFigure 3
Leukocyte-endothelial interactions in pial vascula-
ture. Intravital microscopy was used to assess leukocytes 
rolling (A) and adhesion (B) on day 14 post-immunization. 
The analysis was performed in 4–5 vessels per animal (n = 6 
per group). Results are expressed as mean ± SEM. ***P < 
0.001 when compared to control; ###P < 0.001 when com-
pared to EAE WT mice.
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Kinetics of cytokine and chemokine production in the CNS of EAE miceFigure 4
Kinetics of cytokine and chemokine production in the CNS of EAE mice. Cerebral levels of CCL2 (A), CCL5 (B), 
CCL3 (C), TNFα (D) and IFNγ (E) were measured by ELISA (n = 6). Statistically significant differences are indicated by: **P < 
0.01 when compared with control; ##P < 0.01 when compared with WT.
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longed survival, improved motor function, and smaller
cerebral infarcts in B2

-/- after experimental stroke [40].
However, leukocyte recruitment was not investigated in
this study. On the other hand, our findings of improve-
ment of neurological clinical score in B2

-/- mice associated
with impaired leukocyte recruitment parameters are in
contrast to the findings of Xia et al. [41], which provide
evidence for a protective role of the kinin B2 receptor
against ischemic stroke. In the latter study, the authors
also found increased neutrophil accumulation in inf-
arcted brain areas in B2

-/- mice. Recently these results have
been consistently contested, leading to the conclusion
that the deficiency of bradykinin receptor B2 is not detri-
mental in experimental stroke [42], and may be beneficial
in other pathological conditions.

EAE pathogenesis requires the infiltration of leukocytes
into brain parenchyma. In a previous study undertaken by
our group, we showed that there are increased leukocyte-
endothelial cell interactions (rolling and adhesion) in
brains of EAE mice, as assessed by cerebral intravital
microscopy [18]. In the present series of experiments, leu-
kocyte adherence, but not rolling, was suppressed in B2

-/-

mice submitted to the EAE protocol.

The latter findings were corroborated by histopathologi-
cal examination of brain sections, which showed inhibi-
tion of mononuclear cell influx and inflammatory lesions
on B2

-/- mice after EAE induction. In addition, histopatho-
logical analysis of spinal cord for EAE WT mice showed a
marked inflammatory response with intense vacuoliza-
tion in white matter, contrasting with very discrete infil-
trates and degenerative changes in B2

-/- mice after EAE
induction. Thus, the present study clearly suggests an
important role for B2 in mediating leukocyte adherence to
vessels in brain, and extensively in spinal cord, as sug-
gested by histology of both sites in the same animal.

These suggestions draw support from described patterns
of kinin receptor distribution in the CNS. High-density
kinin binding sites have been identified in the CNS,
mainly in cerebral blood vessels [2]. Previous studies have
demonstrated the presence of B1 receptor in the brain and
spinal cord in different species [43]. In addition, B2 recep-
tors have been localized in experimental brain tumors
[44]. Chen et al have also shown that the B2 receptor is
widely expressed within rat brain [45]. In contrast to avail-
able knowledge on bradykinin B2 receptors in brain, the
distribution of these receoptors in spinal cord and the
potential functional roles in spinal cord remain unclear.
RT-PCR studies reveal the presence of B1 and B2 receptor
mRNA in neurons of dorsal root ganglia in mice [46].
Murone et al. have demonstrated the distribution of B2
receptors in the brain and spinal cord of guinea pig and
sheep by autoradiography [47,48]. Further studies using

intravital microscopy of spinal cord vessels are necessary
in order to define functional roles of these receptors in
pathological conditions.

Activation of kinin receptors may underlie production of
chemokines in several models of inflammation, including
response to the cytokine IL-1β in mesenteric venules [49],
inflammatory pain [50,51], and allergic rhinitis [21].
Considering previous data, it may be possible that kinin
receptors could be regulating the expression of chemok-
ines and, consequently, leukocyte trafficking after EAE
induction. Our previous studies showed that the chemok-
ines CCL2 and CCL5, but not CCL3, are involved in the
adherence, but not rolling, of leukocytes in the microvas-
culature of EAE mice [18]. In this study we demonstrate
that CCL5 expression is greatly suppressed in EAE B2

-/-

mice, when compared to EAE WT. These findings could
partially explain the inhibition of leukocyte adherence
observed in B2

-/- mice, as a probable consequence of
decreased levels of CCL5.

The chemokine CCL2 and its receptors CCR2 are thought
to play an important role in the pathogenesis of EAE in
several conditions. For example, both CCL2 and CCR2 are
expressed in brains of patients with MS [52,53] and dele-
tion of CCR2 leads to an almost complete inhibition of
MOG35–55-induced EAE in mice [16]. Blocking of the
CCL2-CCR2 axis with neutralizing antibodies limits the
development of subsequent relapses [54]. Our previous
studies have also shown a role for CCL2 in leukocyte
adherence during murine EAE [18]. In the present experi-
ments, CCL2 levels were lower in B2

-/- mice than in WT
mice after EAE induction. Previous studies have shown
that CCL2 may be critical not only for leukocyte recruit-
ment but also for the activation of T cells during inflam-
matory and immune responses [53,55]. Thus, it is
possible that the inhibition of CCL2 production observed
in B2

-/- mice would lead to lesser activation of infiltrated
leucocytes and, hence, stabilization of the severity of clin-
ical signs.

There are many studies supporting the clinical involve-
ment of TNF-α in EAE. Elevated expression of TNF-α can
be found in the CNS during acute episodes of disease, and
blockage of TNF-α with neutralizing antibodies and solu-
ble receptors will ameliorate signs of EAE [56,57]. In order
to evaluate the role of the B2 receptor in cerebral TNF-α
expression after EAE induction, brain tissue extracts were
obtained from control, WT EAE and EAE B2

-/- mice. We
found a significant increase in TNF-α levels at day 14
(peak of disease) in both WT and B2

-/- compared to con-
trol mice. Absence of B2 receptor did not modulate TNF-α
expression after EAE induction. These results are consist-
ent with those of Cunha et al. [58] who demonstrated that
B2 kinin receptor antagonist, at a dose that inhibits carra-
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geenin-induced hypernociception, does not inhibit
release of TNF-α [54]. Direct, bradykinin-independent,
release of cytokines was also suggested in rats after admin-
istration of large doses of LPS [59].

B2 is partially necessary for B1 receptor induction as sup-
ported by the consistent finding of B2 participation in B1
mRNA and protein induction in several models of inflam-
mation [60]. The expressed B1 is relevant to the control of
CCL5 production and to ensuing leukocyte adherence and
tissue inflammation. In addition to these B1-dependent
effects, B2 receptor activation is necessary for the produc-
tion of CCL2 in brains of EAE mice. Previous studies using
rodent models of traumatic brain injury have corrobo-
rated the finding that B2 receptor is present and involved
in cerebral alterations [61,62]. Our study clearly demon-
strates that blockade of B2 receptors is beneficial in EAE
mice in reducing inflammatory events such as leukocyte
adhesion and activation. We should note, however, that
various studies have demonstrated an important role for
adhesion molecules in both EAE and MS pathogenesis
[63-66] and, at this time, we can not yet exclude the pos-
sibility that there is altered expression of adhesion mole-
cules such as ICAM-1 and VCAM-1 on brain endothelial
cells of B2 deficient animals.

Conclusion
Our study proposes an important and previously unap-
preciated involvement of the kallikrein-kinin system in
the pathogenesis of EAE. In summary, our results clearly
show a definite role for B2 receptors in mediating leuko-
cyte adherence, chemokine production and clinical dis-
ease outcome. Altogether, our data indicate that blockade
of kinin receptors, especially B2, may represent an addi-
tional and novel therapeutic strategy for the treatment of
MS.
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