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Abstract
Exposure to hypoxic-ischemic insults during the neonatal or perinatal developmental periods
produces various forms of pathology. Injuries that occur in response to these events often manifest
as severe cognitive and/or motor disturbances over time. Due to difficulties regarding the early
diagnosis and treatment of hypoxic-ischemic injury, there is a growing need for effective therapies
that can be delivered at delayed time points. Much of the research into mechanisms of neural injury
has focused on molecular targets associated with excitotoxicity and free oxygen radicals. Despite
repeated success in animal models, these compounds have failed to show efficacy in clinical trials.
Increasing evidence indicates that hypoxic-ischemic injury in the neonate is progressive, and the
resulting neuropathies are linked to the activation of neuroinflammatory processes that occur in
response to the initial wave of cell death. Understanding this latter response, therefore, will be
critical in the development of novel therapies to block the progression of the injury. In this review,
we summarize emerging concepts from rodent models concerning the regulation of various
cytokines, chemokines, and matrix metalloproteinases in response to ischemia, and the various
ways in which the delayed neuroinflammatory response may contribute to the progressive nature
of neonatal hypoxic-ischemic injury in rat. Finally, we discuss data that supports the potential to
target these neuroinflammatory signals at clinically relevant time points.

Review
Clinical pathology
Due to improvements in medical care over past decades,
increasing numbers of premature and low birth weight
infants survive the neonatal period. Not surprisingly,
there has been a rise in the incidence of diseases associ-
ated with prematurity, including neuropathies. Advances
in diagnostic methods for these neuropathies and general
knowledge of the cellular and molecular consequences
have provided insight into potential causes of these disor-
ders. Hypoxia-ischemia (H-I) is thought to be a major
cause of perinatal brain injury, producing lesions of vari-

able severity including focal necrotic cell death, diffuse
white-matter injury, and cystic or cavitary infarction. It is
estimated that nearly 40% of premature infants may suffer
from either intraventricular-periventricular hemorrhage
or periventricular lesions. In both cases, age of prematu-
rity and birth weight are associated with increased risk,
with younger, lighter infants at highest risk [1].

The escalating incidence of these deficiencies and lack of
effective therapies underscores the importance of research
in this area. Rodent H-I models have provided strong and
convincing evidence supporting the detrimental roles of
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oxidative stress and free radicals, blood-brain barrier
(BBB) disruption, cytokine and chemokine signaling, and
matrix metalloproteinase (MMP) activity after H-I. In fact,
there is growing evidence demonstrating a discreet tempo-
ral injury profile whereby neural injury is exacerbated due
to neuroinflammatory signaling from activated microglia
and peripheral macrophages. This review highlights the
roles of inflammatory cytokines, chemokines, and MMPs
after ischemia, and the precise manner in which these pro-
teins may mediate perinatal H-I injury in rat brain.

Energy failure and free radicals: the early response
In the developing brain, H-I results in a biphasic injury
profile. Many of the initial events leading to progressive
damage have been identified. The ischemic brain relies
heavily on anaerobic glycolysis, which is energetically
unfavorable [2]. Energy failure initiates a series of delete-
rious biochemical cascades. Free oxygen radicals pro-
duced from xanthine byproducts and prostaglandin
synthesis attack polyunsaturated fatty acids of the plasma
membrane, increasing membrane permeability. The mito-
chondrial respiratory chain is also a major source of reac-
tive oxygen species (ROS), and mitochondrial
dysfunction contributes to cellular necrosis as well.
Endothelial cell death compromises the BBB, resulting in
vasogenic edema and hemorrhage [3]. The failure of
energy-dependent ion pumps causes cellular depolariza-
tion and glutamate release into the extracellular space.
NMDA receptor activation increases intracellular calcium,
contributing to the production of ROS and nitric oxide
(NO). Lipid peroxidation occurs when NO combines with
superoxide to form peroxynitrite [4].

Thus, the early response to H-I is characterized, in large
part, by neuronal necrosis resulting from excitotoxic dam-
age. While much of this injury is irreversible, the progres-
sive nature of this pathology offers potential for
intervention at delayed time points when neuroinflam-
matory mediators modulate the neural response to insult.

Neuroinflammation: the delayed response
The contributions of excitotoxicity and free radical pro-
duction to the early ischemic response are clear, yet the
selective targeting of these mechanisms has not led to sig-
nificant functional improvements in clinical trials. Impor-
tantly, a second wave of cell death occurs in response to
ischemic insult and is mediated by the neuroinflamma-
tory response to injury. Accumulating evidence suggests
that targeting delayed neuroinflammatory mechanisms
may be a promising avenue for therapeutic intervention.

The immune response in brain is complex and highly reg-
ulated by a host of different cell types and signaling path-
ways. Resident microglia are among the first to become
activated [5]. These cells migrate to necrotic regions where
they remove cellular debris from the interstitial space.

Also during this time, activated astrocytes upregulate glial
fibrillary acidic protein and migrate to the injured site, a
phenomenon known as reactive astrogliosis. Cells in and
around the lesion core upregulate the expression of lecti-
cans, and these proteoglycans are deposited into the extra-
cellular space [6]. Thus, a dense composition of
proteoglycans, reactive astrocytes and microglia invade
the injured site and form a tissue barrier referred to as a
"glial scar" [7]. The formation and progression of glial
scarring is thought to be an innate protective mechanism
in brain to isolate the injured area from viable surround-
ing tissue. As time progresses, however, the glial scar pre-
vents neuroplasticity and repair at the lesion site while
activated astrocytes and microglia promote further injury
by secreting proinflammatory cytokines and chemokines,
thus attracting peripheral macrophages [8]. In concert,
these immune cells and proinflammatory molecules per-
petuate a feed-forward inflammatory response by further
enhancing microglia and macrophage recruitment to the
injured site [9]. The end result is a heightened state of
inflammation in the brain that promotes cell death.

Cytokines seated on cell surfaces are activated and subse-
quently released into the extracellular milieu, where they
serve as important mediators of apoptotic cell death. Fol-
lowing ischemic insult, activated microglia upregulate
the expression of various cytokines and chemokines [10-
12]. In particular, tumor necrosis factor alpha (TNF-α)
and interleukin-1 beta (IL-1β) have been shown to
potentiate the neuroinflammatory response after H-I
[13-15]. Interleukin-1 type 1 receptor (IL-1R1) knockout
mice showed significant reductions in the expression of
macrophage inflammatory protein-1 alpha (MIP-1α),
MIP-1β, monocyte chemoattractant protein (MCP) and
RANTES (regulated upon activation, normal T cell
expressed and secreted) both 18 hrs and 72 hrs after H-I
compared to non-transgenic controls. These effects were
also associated with reduced leukocyte infiltration [16],
suggesting that IL-1β mediates chemotaxis of peripheral
immune cells to the injured site. Recent data combining
in vitro and in vivo methodologies also suggests that
MCP-1 is a key mediator of the microglial chemotactic
response to neonatal hypoxia. In these experiments,
hypoxia resulted in a robust increase in activated micro-
glia in the periventricular white matter, a region of selec-
tive vulnerability. Additionally, intracranial injection of
MCP-1 induced a robust migratory response of CD11b-
positive microglia, and hypoxic primary microglial cul-
tures from rat neonates showed increased expression of
MCP-1 [17]. Other data from acute rat hippocampal
slices showed that activation of alpha chemokine recep-
tor 4 (CXCR4) by the natural ligand stromal cell-derived
factor-1 (SDF-1) caused glutamate to be released from
astrocytes. Interestingly, this response was found to be
dependent on the release of TNF-α following CXCR4
activation, and was amplified in the presence of lipopol-
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ysaccharide-stimulated microglia [18]. These results lend
further support to the notion that microglia, working in
concert with proinflammatory cytokines and chemok-
ines, promote injury after insult.

In contrast to these findings, evidence supporting a neuro-
protective role of microglial activation and cytokine sign-
aling has raised issues as to the precise role of this
signaling in various injury models. For example, experi-
ments using primary cultures from rat showed that while
cultured microglia upregulated TNF-α and IL-1β only in
response to mild hypoxia-induced neuronal death, these
same activated microglia were protective when added to
separately cultured neurons. Furthermore, microglia co-
cultured with media from severely compromised neurons
released neurotrophic factors [19]. Similarly, other data
exists demonstrating that TNF-α is mainly produced by
resident microglia and peripheral leukocytes, and TNF-α
knock-out mice displayed reduced infarction following
permanent middle cerebral artery occlusion (MCAO)
[20]. Therefore, because microglial-derived cytokine sign-
aling may serve as either proinflammatory or neuropro-
tective, the overall effects on a given system are dependant
upon a host of factors including the experimental model,
the specific state of the microenvironment, the severity of
the injury, and the temporal inflammatory profile.

Matrix metalloproteinases and blood-brain barrier 
degradation
Although the precise mechanisms have yet to be eluci-
dated, data from numerous studies suggests that MMPs
are instrumental in the production and maintenance of a
proinflammatory microenvironment [21]. Collectively,
MMPs are capable of proteolytically cleaving all extracel-
lular matrix (ECM) proteins [22]. In addition to ECM deg-
radation, however, MMP activity is a well-known
contributor to ischemic neuropathology.

In the developing brain, microglia mediate the neuroin-
flammatory response through a variety of mechanisms
[8]. In the case of ischemia, activated microglia upregulate
the expression of cytokines and chemokines, enhancing
the inflammatory response [10-12]. Increased expression
of MMPs, particularly gelatinases, occurs concomitantly.
The release of proteases from activated microglia results in
proteolytic degradation of basement membrane constitu-
ents [23]. Extravasation resulting from BBB degradation
permits entry of peripheral monocytes and macrophages
into the brain, further enhancing the recruitment of
immune cells to the lesion site [9]. Infiltrating leukocytes
[24] are also sources of MMPs, though there is some evi-
dence that microglia are the primary macrophages that
respond to neonatal ischemic injury [25].

MMP activity is linked to neuroinflammation and injury progressionFigure 1
MMP activity is linked to neuroinflammation and injury progression. Necrotic cell death after H-I leads to BBB deg-
radation, reactive astrogliosis and activation of resident microglia. Lectican deposition contributes to glial scar formation. 
Immune cells of the brain increase expression and secretion of proinflammatory cytokines and chemokines. Gelatinase activity 
initiates a second, delayed opening of the BBB through proteolytic processing of basement membrane constituents. Peripheral 
macrophages infiltrate into the brain and further promote the inflammatory response. Ultimately, these processes create unfa-
vorable conditions for neuroplasticity and repair. While gelatinases activate cytokines and chemokines through sheddase activ-
ity, they also proteolytically process ECM to release growth factors from sequestration. Red arrows indicate 
neurodegenerative effects; blue arrows indicate neuroprotective effects.
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In vivo experiments revealed MMP-9 expression that was
localized to neutrophils and endothelial cells, and
showed elevated MMP-2 expression in astrocytic endfeet
[26]. The latter expression profile places MMP-2 in the
ideal position to proteolytically process basement mem-
brane proteins, as astrocytic endfeet play an important
role in sealing the BBB. An elegant study later supported
this mechanism by showing that laminin is a key substrate
for MMPs after ischemia. Gelatinase activity increased in
cortex after MCAO and active MMP-9 was upregulated
and proteolytically processed laminin when incubated
with tissue homogenates from ischemic brain. These
effects were attenuated after administration of a highly
selective gelatinase inhibitor [27]. There is now substan-
tial data demonstrating the degradation of basement
membrane proteins by several MMPs that are elevated
after ischemia [3,21,28].

Though the relative contributions of the resident and
peripheral immune responses have not been elucidated, a
recent study showed that resident microglia were associ-
ated with neural injury resulting from oxygen glucose dep-
rivation in organotypic hippocampal slices from rat
neonates. In these experiments, CD11b – positive micro-
glia expressed MMP-9 after insult, and increased micro-
glial MMP-9 expression occurred concomitantly with
enhanced neurodegeneration and gelatinolytic activity
[29]. Thus, in the absence of the peripheral immune
response, resident cells of the brain were sufficient to exac-
erbate injury that was associated with microglial activa-
tion and MMP activity. Future studies are needed to
delineate the relative contributions of resident microglia
and peripheral macrophages in vivo.

Sheddase activity and extracellular matrix remodeling
Accumulating evidence suggests that gelatinases may con-
tribute to the inflammatory response through "sheddase"
activity, the process by which MMPs cleave proinflamma-
tory cytokines attached to cell surfaces. This proteolytic
processing activates and releases these molecules into the
extracellular milieu to exert a wide range of effects
depending upon the specific state of the microenviron-
ment. MMPs have previously been shown to process both
TNF-α [30] and IL-1β [31] to their biologically active
forms. In culture, MMP-2 – positive astrocytes produced
MMP-9 when stimulated with either TNF-α or IL-1β [32].
In agreement with these data, mice lacking MMP-9
showed improved outcomes that were directly related to
reduced microglial activation [33], attenuated BBB degra-
dation [24] and limited white matter damage [34]. Other
data showed that gelatinases cleaved SDF-1α and various
MCP chemokines [35], and SDF-1 accelerated proteolytic
processing of syndecans by MMP-9 [36]. Interestingly, a
recent study performed in the rat neonate showed that lec-
tin-positive microglia/macrophages upregulated synde-
can-2 expression in response to hypoxia, and exogenous

application to hypoxic primary microglial cultures
resulted in increased production of TNF-α, IL-1β and ROS
[37]. Cerebral blood vessels also express high levels of
syndecans, which modulate transendothelial migration of
monocytes across the brain endothelium [38]. Taken
together, these data offer potential mechanisms by which
gelatinase activity enhances neuroinflammation after H-I
by facilitating immune cell chemotaxis.

In addition to their roles in activating cytokines and
processing basement membrane proteins, MMPs are effi-
cient at cleaving lecticans [39]. Lectican proteoglycans are
upregulated in glial scars [6], where their growth-inhibi-
tory properties maintain a barrier between injured and
viable tissue [7,40]. Thus, lectican proteolysis by MMPs
may have profound effects on perinatal brain plasticity
after injury. Both full-length brevican and the G1 proteo-
lytic fragment were reduced 1 and 14 days after insult in
hippocampi of neonatal rats that were exposed to H-I
[41]. While the mechanisms of this loss were unclear, the
temporal association of brevican loss with lesion progres-
sion suggests that brevican expression may be critical for
cell viability in the developing brain. In this context, brev-
ican loss resulting from either proteolytic cleavage or cel-
lular injury may enhance neural cell death. Though MMPs
are upregulated in glial scar after spinal cord transection
[42], very little is known regarding the specific effects of
MMPs on glial scar formation and ECM proteolysis after
perinatal H-I. Potential mechanisms may include the
induction of cellular anoikis or the facilitation of micro-
glia and macrophage migration via reduced steric hin-
drance resulting from increased ECM clearance.

Growth factor substrates for matrix metalloproteinases
Although MMP activation is often associated with proin-
flammatory processes, data from numerous studies dem-
onstrates the ability of MMPs to alter cell growth,
signaling and migration in a neuroprotective fashion [43].
For example, MMPs have been shown to cleave ECM pro-
teoglycans that are associated with growth factors, thus
releasing these growth factors from sequestration. This has
been demonstrated for fibroblast growth factor (FGF) in
human endothelial cells after cleavage of the heparin sul-
fate proteoglycan perlecan [44], as well as for transform-
ing growth factor beta via decorin proteolysis [45].
Similarly, MMP cleavage of non-matrix proteins such as
insulin-like growth factor binding protein 3 (IGFBP-3)
can activate IGF in dermal fibroblast cultures [46]. Con-
sistent with these data, blocking MMP activity with an
endogenous inhibitor increased IGFBP-3 expression and
reduced IGF-1 receptor signaling in a murine hepatic
tumor model [47].

Other evidence suggests that gelatinase MMPs can act on
growth factor receptors to alter receptor turnover. In
experiments that used a cervical carcinoma cell/mixed
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lymphocyte co-culture system to study the effects of
immunosuppression, MMP-9 was shown to cleave inter-
leukin-2 receptor alpha on T-lymphocytes [48]. Addition-
ally, MMP-2, but not MMP-9, cleaved FGFR1 from the cell
surface, releasing a soluble form into the ECM that
retained FGF-binding activity [49]. Other known sub-
strates for gelatinases include vascular endothelial growth
factor and MCP-3, the cleavage of which could affect
chemotaxis and thus alter the inflammatory response
[50,51]. Although there is a paucity of data from in vivo
ischemic models linking MMP activity to growth factors,
the aforementioned studies illustrate the distinct ways in
which MMPs modulate numerous cellular processes and
may, in fact, provide protection depending upon the tem-
poral activation profile and the overall conditions of the
microenvironment.

The therapeutic window: can we neuroprotect at delayed 
time points?
To date, the majority of research into neonatal H-I has
emphasized the contributions of glutamate excitotoxicity
and free radical production to the resulting neuropathol-
ogy [4]. Consistent with evidence supporting the roles of
free radical production and oxidative stress [52-55], ther-
apeutic approaches targeting these mechanisms in
rodents have been of some benefit [56,57]. Nonetheless,
most studies showing improved outcomes have limited
clinical relevance as protective agents were administered
prior to or shortly after insult. Thus, the search continues
for more selective therapeutics that do not interfere with
critical cellular functions [58] and can be administered at
clinically relevant time points.

Data from previous experiments lends support to the
notion that selective targeting of MMP-2 and MMP-9
should be considered in developing novel therapeutics.
MMP-9 knockout mice showed improved outcomes after
cerebral ischemia using either the Vannucci model that
mimics neonatal H-I [33,59] or the MCAO model that
mimics adult stroke [24,34,60]. AG3340 (prinomastat), a
small molecule hydroxamate-based inhibitor of MMPs, is
a potent inhibitor with high nanomolar affinity for gela-
tin-degrading MMPs. The effects of gelatinase inhibition
were examined in a model of chronic cerebral hypoper-
fusion, where data revealed that AG3340 provided neuro-
protection in adult rats and mice when administered just
prior to insult. Importantly, reduced activation of astro-
cytes and microglia was associated with retained BBB
integrity [61]. In a mouse model of MCAO, the gelatinase-
selective compound SB-3CT reduced infarct volume when
administered either 2 or 6 hrs, but not 10 hrs, after insult
[27].

Minocycline is another compound that has shown great
promise as a therapeutic to combat neonatal H-I. Neuro-

protective effects have been shown previously [62,63], yet
the question remained as to whether efficacy could be
achieved at clinically relevant time points. The therapeutic
window was subsequently extended when administration
2 hours after H-I resulted in preservation of white matter
that was associated with reduced microglial activation
[64]. Although minocycline exhibits anti-inflammatory
properties, it has also been shown to exert MMP inhibi-
tion both in vitro and in vivo [65]. Indeed, another recent
study confirmed the efficacy of both minocycline and
AG3340 in reducing microglial activation, reactive astro-
gliosis and neurodegeneration in the rat neonate when
administered 24 hours after H-I [66], further demonstrat-
ing not only that MMP activity is linked to neuroinflam-
mation, but also that targeting each of these mechanisms
is efficacious at delayed time points and therefore may
prove efficacious in the clinical setting.

Despite these encouraging data, it will be critical to pro-
ceed with caution when developing novel therapeutics. A
hallmark of the neonatal brain is the unique potential for
plasticity. Although advantageous from a treatment per-
spective, it is also likely that administration of exogenous
compounds could alter critical developmental processes
and/or mechanisms associated with neuroplasticity. It is
now known that neurogenesis is prominent after ischemic
insult in the neonatal rat brain. The Levison laboratory
found that neural progenitors from the subventricular
zone (SVZ), and possibly glial progenitors, migrate to and
populate columnar regions of the neocortex that show
prominent cell death in response to H-I [67]. Another
study in mouse showed that treatment with the broad-
spectrum MMP inhibitor GM6001 once daily for 10 days
inhibited the migration of neural progenitors from the
SVZ to the corpus striatum after transient MCAO [68].
Although it is presently unknown whether the migration
of neural progenitors results in synapse formation that
restores function, prolonged MMP inhibition could pro-
hibit proteolytic cleavage of ECM proteins that is neces-
sary for migration of progenitors, subsequent
neuroplasticity and repair. Similarly, inhibition of MMPs
could reduce chemokine signaling through reduced
processing of MCP chemokines and SDF-1α, thereby
reducing progenitor cell migration. Additional concerns
need to be considered regarding the inhibition of MMPs,
particularly MMP-9, and the potential effects on myelina-
tion during a critical period of oligodendrocyte prolifera-
tion and maturation. Nonetheless, experimental research
has provided strong and convincing evidence that MMP
inhibitors are excellent candidate therapeutics if adminis-
tered selectively at the appropriate time points.

Conclusion
Neonatal hypoxic-ischemic injury is progressive and leads
to debilitating neuropathies later in development. Diffi-
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culties in diagnosis and treatment underscore the need for
novel therapeutics that can be administered at delayed
time points. The initial injury results from energy failure
and cytotoxicity, yet the delayed neuroinflammatory
response is a more viable option for treatment in the clin-
ical setting. As accumulating evidence from rodent mod-
els suggests that gelatin-degrading MMPs mediate the
neuroinflammatory response to H-I in the developing
brain, detailed investigations into the concerted actions of
proinflammatory cytokines, chemokines, and MMPs (Fig-
ure 1) may prove beneficial in developing novel therapies
to treat H-I injury. Care must be taken to ensure that novel
therapeutics do not interfere with critical developmental
processes and/or limit the potential for neural plasticity.
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