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Acyclovir inhibition of IDO to decrease Tregs as a
glioblastoma treatment adjunct
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Abstract

Regulatory T cells, Tregs, are a subset of lymphocytes that have immunosuppressive attributes. They are elevated in
blood of glioblastoma patients and within this tumor’s tissue itself. Indoleamine 2,3-dioxygenase, IDO, converts
tryptophan to kynurenine. IDO activity enhances Treg formation by pathways that are unknown. Experimentally,
inhibition of IDO decreases Treg function and number in rodents. The common anti-viral agent acyclovir inhibits
IDO. Acyclovir may thereby decrease Treg function in glioblastoma. If it can be confirmed that Treg counts are ele-
vated in glioblastoma patients’ tumor tissue, and if we can document acyclovir’s lowering of tissue Treg counts by
a small trial of acyclovir in pre-operative glioblastoma patients, a trial of acyclovir effect on survival should be done
given the current poor prognosis of glioblastoma and the well-established safety and low side effect burden of
acyclovir.

Background
Glioblastoma constitutes about half of all primary brain
tumors and has a median survival time of 10 to 18
months with current standard treatment of maximal pri-
mary resection, irradiation, and temozolomide [1,2]. In
the effort to find better treatments we reviewed past
research on immunosuppressive lymphocytes in glioblas-
toma and looked for data that might indicate a clinically
realizable path using currently available drugs to inhibit
immunosuppressive lymphocytes.
An established antiviral drug, acyclovir, is known to

inhibit indoleamine 2,3-dioxygenase (IDO) [3-5], an
enzyme that is important in development of immuno-
suppressive lymphocytes. This paper outlines the experi-
mental data generating this story and suggests that
acyclovir might be a potential treatment adjunct for
glioblastoma if past research can be confirmed.

Tregs and the kynurenine pathway
Multiple lines of evidence point to a mild but clear state
of systemic immunosuppression in patient with glioblas-
toma [6-9]. Why or how this comes about is not clear
[6]. One probable contributor to this immunosuppressed

state is IDO-mediated biasing of immune responses as
outlined below.
Professional antigen presenting cells, such as dendritic

cells (DCs), in addition to activating effects on cytotoxic
T cells, may also recruit Foxp3-expressing CD4+CD25+
regulatory T cells (Tregs) to suppress cytotoxic
responses. Trials of DC-based immunotherapy for glio-
blastoma [9,10] are currently being pursued, but these
are hampered by the fact that DCs may have either an
immunostimulatory or immunosuppressive phenotype
[9,10]. As in the case for Tregs, the immunosuppressive
DC phenotype is associated with IDO, as discussed
below.
In vitro-generated Tregs express interleukin-2 (IL-2)

receptors (CD25) but, unlike cytotoxic T cells, they do
not proliferate or produce IL-2 upon ligation of T cell
receptors (TCRs). In contrast, they inhibit IL-2 produc-
tion by and TCR-induced proliferation of co-cultured T
cells [11-13]. However, in vivo, Tregs themselves may
well proliferate vigorously in response to TCR ligation
while retaining their proliferation-inducing activity on
effector lymphocytes [11-13]. This suggests that, in vivo,
Tregs are active and specific participants in the suppres-
sion of antigen-driven immune responses.
Outside the thymus, de novo recruitment of Tregs is

associated with tryptophan metabolism along the kynur-
enine pathway. The first step in the kynurenine pathway
is conversion of tryptophan to formylkynurenine via the
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rate-limiting enzyme IDO or, in liver, via the related
enzyme tryptophan 2, 3 dioxygenase (TDO)[14,15].
Activation of IDO in DCs during Treg recruitment is

a well-replicated finding [16-21]. Diminished availability
of tryptophan down-regulates the mammalian target of
rapamycin, mTOR [22]. Diminished mTOR expression
in DCs increases the recruitment and generation of
FoxP3 expressing Treg [23,24]. Moreover, inhibition of
IDO by 1-MT, an experimental IDO inhibitor, has been
shown to inhibit Treg recruitment by plasmacytoid DCs
while the addition of exogenous kynurenine enhances
Treg recruitment by plasmacytoid DCs [25].
The determinants of generation of DC function to

immunity or tolerance are unclear, but their environ-
mental flexibility may be substantial [9]. Thus, the liga-
tion of co-stimulatory molecule B7-1 on DCs by soluble
or T cell membrane-bound cytotoxic T lymphocyte anti-
gen-4 (CTLA-4) converts DCs to a tolerogenic pheno-
type [26] accompanied by evidence of increased
IDO-dependent tryptophan catabolism [26]. This tolero-
genic phenotype is obviated by enhanced proteosomal
IDO degradation [26]. Immunogenic DCs lack IDO syn-
thetic ability but acquire a tolerogenic phenotype if
exposed to IDO-competent DCs and their paracrine
functioning kynurenines [27].
CD8-DCs do not produce transforming growth factor-

beta (TGF-b). Exogenous TGF-b will induce IDO in
such cells and turns them from immunogenic into tol-
erogenic cells [28].

Acyclovir
Introduced in the early 1980’s, acyclovir was the fifth
antiviral drug to see common use. It is thought to inhi-
bit a specific thymidine kinase of certain Herpes viruses,
most notably Herpes simplex [29]. Acyclovir is renally
excreted with a circulating T1/2 of 3 hours. It is a well-
tolerated, inexpensive drug with few side effects that is
marketed worldwide [29].
Acyclovir has been shown to inhibit both IDO and

TDO in homogenates of rat intestine [4] and liver [3].
Rat liver TDO is inhibited by acyclovir administered in
vitro as well as in vivo [3]. The superoxide anion
scavenging properties of acyclovir have been suggested
as the mechanism underlying these actions [4,5], since
superoxide anion is needed to activate the IDO/TDO
enzyme.
Acyclovir is commonly used against Herpes labialis

outbreaks, a condition often associated with or provoked
by life stressors, presumably secondary to stress-related
temporary loss of immune control. As discussed above,
activation of the TDO/IDO complex is associated with
recruitment of Tregs and thus suppression of specific
immune responses. Since TDO is stimulated by cortisol
and other adrenal corticosteroids [30] we suggest that

one mechanism underlying stress-related Herpes labialis
outbreaks is increased activity of TDO, which upregu-
lates Treg activity. Stressors readily and dramatically
increase adrenal synthesis of cortisol in all mammals
that have been tested.

Tregs in glioblastoma
T-cell proliferative defects are readily demonstrated in
glioblastoma patients, and Treg overrepresentation is
contributory to that state [31].
A core finding pointing to the potential utility of acy-

clovir use in glioblastoma is that glioblastoma cells are
readily stimulated by interferon-gs and other stimuli, to
upregulate IDO [32-36]. Although Tregs could be
formed independently of IDO activation, the upregula-
tion of IDO found within glioblastoma tissue is likely
responsible, in part, for the enhanced presence of Tregs
[37-41] within this tumor’s tissue.
The concept and phenomenon of Treg-assisted eva-

sion of specific immune responses against tumor anti-
gens has been explored in other cancers. As examples:
a) metastatic malignant melanoma expression of IDO is
associated with increased numbers of Tregs, and higher
numbers of such cells correlate with shorter survival
[42], or b) the presence of Foxp3+ Tregs in breast can-
cer is associated with more advanced and aggressive dis-
ease [43].
The high number of FoxP3+ Treg cells in glioblas-

toma tissue [37-41], as compared to its complete
absence in normal brain tissue, suggests that glioblas-
toma growth may benefit from the immunosuppressive
activity of Tregs, and that glioblastoma patients will
benefit from inhibiting Treg development with acyclovir.
Although the degree of Treg infiltration does not have
prognostic significance [38], experimental systemic Treg
depletion has been shown to prolong survival in a mur-
ine orthotopic glioblastoma model, if depletion is done
early after tumor implantation [39].
In addition to Tregs, myeloid cells with immature

antigen-presenting phenotype are found within glioblas-
toma tissue [7,9]. Such cells can recruit circulating
Tregs. In support of such a notion, monocytes co-
cultured in vitro with glioblastoma cells acquire a
phenotype characterized by high surface expression of
TGF-b [7]. Increased production of TGF-b, elevated
surface expression of TGF-b receptors, and activation of
its signaling pathways has been shown to be important
elements of glioblastoma growth promotion [8].
Freshly resected glioblastoma tissue synthesizes and

secretes CCL2, a chemokine also associated with the
recruitment of Treg. CCL2 is the only chemokine
detected in glioblastoma tissue by enzyme-linked immu-
nosorbent assay, indicating that CCL2 may be the prin-
cipal chemokine for Treg migration to glioblastoma
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tissue [44]. CCL2 is a 13 kDa chemokine, also known as
monocyte chemoattractant protein-1 [45].
A wealth of data implicates CCL5 as a paracrine/auto-

crine growth factor in glioblastoma [46]. The receptor
for CCL5, CCR5, heterodimerizes with CCR2, the cog-
nate receptor for CCL2. When the half of that dimer
corresponding to CCR5 is blocked, CCL2 cannot signal
even though binding to CCR2 is unimpaired. The
recently approved and marketed anti-HIV drug mara-
viroc blocks CCL5 signaling at CCR5 [46]. Maraviroc
has been proposed as treatment adjunct for glioblastoma
based on documentation of CCR5 presence in glioblas-
tomas and CCR5 function in glioblastoma growth sti-
mulation [46]. Maraviroc therefore would have potential
for inhibiting Treg migration to glioblastoma tissue as
well as inhibition of CCR5 growth stimulation itself.
Miraviroc may lower glioblastoma tissue Tregs in addi-
tion to acyclovir.
A second compelling reason to investigate acyclovir

comes from the collective data of Cobbs et al. [47],
Scheurer et al. [48], Mitchell et al. [49], and Prins et al.
[50]. These researchers report detection of cytomegalo-
virus (CMV) in peripheral blood leukocytes and tumor
tissue of glioblastoma patients but not in other condi-
tions affecting the brain [47-50], indicating a potential
role of CMV in glioblastoma pathogenesis.
Thus, acyclovir may prolong survival of glioblastoma

patients also via its inhibition of thymidine kinase,
which is expressed by CMV-infected cells. Another anti-
viral agent, gancyclovir, is marginally more efficient than
acyclovir against CMV and may therefore also be inter-
esting to test as adjunct to current glioblastoma proto-
col, although its inhibitory activity against IDO remains
unknown.
Since reactivation of CMV either due to glioblastoma-

associated immunosupression or secondary to temozolo-
mide treatment is occasionally seen [51], acycloivir may
be of service here too.
In accordance with our hypothesis of induction of

IDO and recruitment of Tregs, a case study of a glio-
blastoma patient has described the development of a
strong CMV-specific T cell response elicited by treat-
ment with autologous tumor lysate-pulsed DCs [50].

Conclusion
Given the short survival with current treatments follow-
ing a diagnosis of glioblastoma and the low risks of acy-
clovir, a human trial of acyclovir as adjunctive treatment
is warranted if preliminary trials in normal individuals
show evidence of acyclovir suppression of circulating
Tregs.
The hypothesis presented in this paper could be easily

tested by quantitative immunocytophoresis of circulating
Tregs in peripheral blood of normal volunteers before

and after several days of acyclovir 200 mg p.o. four
times daily. The safety of this dose is clear in that such
treatment is commonly given without laboratory moni-
toring to patients to shorten an outbreak of Herpes sim-
plex. Alternatively a naturalistic study of circulating
Tregs by immunocytophoresis in people entering such
Herpes outbreak treatment could give a good indication
whether to proceed to a trial in glioblastoma or not.
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