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Abstract

Background: Neuromyelitis optica spectrum disorders (NMOSD) are severe central nervous system inflammatory
demyelinating disorders (CNS IDD) characterized by monophasic or relapsing, longitudinally extensive transverse
myelitis (LETM) and/or optic neuritis (ON). A significant proportion of NMOSD patients are seropositive for
aquaporin-4 (AQP4) autoantibodies. We compared the AQP4 autoantibody detection rates of tissue-based indirect
immunofluorescence assay (IIFA) and cell-based IIFA.

Methods: Serum of Chinese CNS IDD patients were assayed for AQP4 autoantibodies by tissue-based IIFA using
monkey cerebellum and cell-based IIFA using transfected HEK293 cells which express human AQP4 on their cell
membranes.

Results: In total, 128 CNS IDD patients were studied. We found that 78% of NMO patients were seropositive for
AQP4 autoantibodies by cell-based IIFA versus 61% by tissue-based IFA (p = 0.250), 75% of patients having
relapsing myelitis (RM) with LETM were seropositive by cell-based IIFA versus 50% by tissue-based IIFA (p = 0.250),
and 33% of relapsing ON patients were seropositive by cell-based IIFA versus 22% by tissue-based IIFA (p = 1.000);
however the differences were not statistically significant. All patients seropositive by tissue-based IIFA were also
seropositive for AQP4 autoantibodies by cell-based IIFA. Among 29 NMOSD patients seropositive for AQP4
autoantibodies by cell-based IIFA, 20 (69%) were seropositive by tissue-based IIFA. The 9 patients seropositive by
cell-based IIFA while seronegative by tissue-based IIFA had NMO (3), RM with LETM (3), a single attack of LETM (1),
relapsing ON (1) and a single ON attack (1). Among 23 NMO or RM patients seropositive for AQP4 autoantibodies
by cell-based IIFA, comparison between those seropositive (n = 17) and seronegative (n = 6) by tissue-based IIFA
revealed no differences in clinical and neuroradiological characteristics between the two groups.

Conclusion: Cell-based IIFA is slightly more sensitive than tissue-based IIFA in detection of AQP4 autoantibodies,
which are highly specific for NMOSD.

Background
Neuromyelitis optica (NMO) is a severe central nervous
system inflammatory demyelinating disorder (CNS IDD)
characterized by monophasic or relapsing optic neuritis
(ON) and acute transverse myelitis (ATM) [1-6]. Relap-
sing NMO is the predominant type, which can mimic

relapsing remitting multiple sclerosis (RRMS), the pre-
dominant form of classical multiple sclerosis (CMS), on
initial presentation [2-8]. Typical relapsing NMO
patients develop recurrent attacks of longitudinally
extensive transverse myelitis (LETM) with MRI signal
abnormalities extending over 3 or more spinal cord seg-
ments and severe ON resulting in frequent and early
attack-related permanent disabilities and even mortality
[2-6,8,9]. About 50% of patients require assistance with
walking and 62% become functionally blind (visual
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acuity of 20/200 or worse) within 5 years of onset [2];
and ~15-30% die, predominantly from respiratory failure
complicating high cervical myelitis, brainstem involve-
ment and fatal dysautonomia [2-6,8,9].
Lennon and colleagues discovered a biomarker for

NMO; NMO-IgG is an autoantibody initially detected in
the serum of 73% of NMO but less than 5% of CMS
patients [10], which binds to aquaporin-4 (AQP4) [11],
the most abundant water channel in the CNS [12-14].
Differences in serological (NMO-IgG seropositivity
rates), clinical, neuroradiological and histological charac-
teristics between NMO and CMS have been described,
which support the idea that NMO is distinct from CMS
[2-6,8-10,15-24]. Detection of NMO-IgG or AQP4 auto-
antibodies is clinically useful for early diagnosis of NMO
and its related spectrum disorders (NMOSD), including
single attack or recurrent LETM without ON, and
recurrent ON without ATM; and especially early dis-
tinction between NMOSD and CMS [3]. This is critical
for proper long-term treatment of patients, as prompt
initiation of immunosuppressive medications such as
azathioprine with corticosteroid is indicated in NMOSD
to prevent relapse whereas immunomodulatory therapies
such as beta-interferon and natalizumab may be indi-
cated in CMS [3,7,25-28].
NMO-IgG was first identified by indirect immuno-

fluorescence assay (IIFA) using mouse cerebellum as sub-
strate [10]. Subsequently, other semiquantitative and
quantitative techniques have been reported for detection
of AQP4 autoantibodies in serum and cerebrospinal fluid
(CSF) of NMOSD patients including radioimmunopreci-
pitation [29], fluorescent-based immunoprecipitation
assay (FIPA) [30,31], enzyme-linked immunosorbant
assay (ELISA) [32], western blot [33] and cell-based IIFA
[30,34]. AQP4 autoantibodies seropositivity rates are
reported to be higher by IIFA using transfected mamma-
lian cells which express human AQP4 on their cell mem-
branes (cell-based IIFA) than by IIFA using mammalian
CNS tissue (tissue-based IIFA). The optimal assay to
detect AQP4 autoantibodies for efficient large-scale clini-
cal service has not been ascertained. In this communica-
tion, we compared AQP4 autoantibodies seropositivity
rates detected by tissue-based IIFA and cell-based IIFA.

Patients and Methods
Patients
Inclusion and exclusion criteria, treatments, follow-up and
assessment of patients were as described previously [8]
except that in this study, we recruited Hong Kong Chinese
patients with CNS IDD of duration 2 years or longer after
clinical onset (instead of 4 years of longer as in the previous
study) who consented to study. NMO was diagnosed
according to revised Wingerchuk criteria [35]. Classical MS
was diagnosed according to revised McDonald criteria [36].

A total of 128 patients with CNS IDD consisted of patients
with CMS (40), a single attack of acute myelitis (25, two
had LETM), NMO (18), relapsing myelitis (15, twelve had
LETM), a single attack of ON (14), relapsing ON (9) and a
single attack of acute disseminated encephalomyelitis
(ADEM) (7). In addition, 35 patients with other neurologi-
cal diseases consisting of autoimmune myasthenia gravis
(18), Guillain-Barre syndrome (5), chronic inflammatory
demyelinating polyradiculoneuropathy (5), paraneoplastic
neurological disorders (4), Lambert-Eaton myasthenic syn-
drome (1), polymyositis (1) and systemic lupus erythemato-
sus (1); and ten healthy subjects were studied. Ninety-five
of the 128 patients with CNS IDD (30 CMS, 20 single
attack of acute myelitis, 10 relapsing myelitis, 10 NMO, 11
single attack of ON, 9 recurrent ON, 5 single attack of
ADEM) were studied previously [8]. Treatment of patients
were as described previously [8]; in addition, NMOSD
patients who did not tolerate azathioprine were treated
with mycophenolate mofetil and two NMO patients have
been treated with rituximab for fulminant disease (375 mg/
m2 weekly for 4 weeks every 6 months) [26,27]. Poor visual
outcome was defined as a Snellen visual acuity ≤ 3/60 or a
visual field < 20 degrees upon latest assessment by an
ophthalmologist. Poor neurological outcome was defined as
an EDSS score of ≥ 6.0 (not affected by recent relapse)
upon latest assessment by a neurologist.

Tissue-based indirect immunofluorescence assay for
NMO-IgG
Tissued-based IIFA was performed using slides contain-
ing monkey cerebellum (The Binding Site, Birmingham,
UK) as described previously [8].

Transfection of human embryonic kidney (HEK) 293 cells
with a construct containing the human aquaporin-4 gene
We transfected human embryonic kidney (HEK) 293
cells to express a fusion protein composed of full length
human AQP4 fused at its N-terminus with green fluor-
escent protein (GFP) as described by Lennon and collea-
gues [11]. HEK293 cells express a dystroglycan complex
which allows stable insertion of AQP4 into the plasma
membrane. Full-length human AQP4 was amplified
from an adult human brain cDNA library (BD Bios-
ciences) by PCR using the following primers: forward 5′-
GACGGTACCCCATGAGTGACAGACCCAC-3′, and
reverse 5′-TCCCCCGGGGGATCATACTGAAGA-
CAATA-3′ and cloned into a pEGFP-C2 vector (Clon-
tech Laboratories, Inc). HEK293 cells were obtained
from ATTC, and cultured in Dulbecco’s Modified Eagle
Medium (DMEM) in 5% CO2 at 37°C. HEK293 cells
were transfected with a vector carrying human AQP4
gene or a control vector without human AQP4 by Lipo-
fectamine 2000 (Invitrogen, Carlsbad, CA, USA) accord-
ing to instructions from the manufacturer. Cells were
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examined under a microscope for green fluorescence
over cell membranes from expression of the GFP-AQP4
fusion protein, and stably transfected cells were selected
by G418 (Invitrogen) at 1200 μg/ml. Transfection was
confirmed by sequencing, and the presence of GFP-
AQP4 fusion protein expression was confirmed by indir-
ect immunofluorescence (Figure 1) and by western blot
analysis of cell lysate (Figure 2) using rabbit anti-human
AQP4 antibody (Santa Cruz, CA). Control cells were
HEK293 cells stably transfected with empty vector with-
out human AQP4 gene. Green fluorescence was
observed in the cytoplasm of these cells but not on cell
membranes (Figure 1) and western blot analysis revealed
no band corresponding to the molecular weight of the
GFP-AQP4 fusion protein (Figure 2).

Cell-based indirect immunofluorescence assay for AQP4
autoantibodies
Stably transfected HEK293 cells expressing GFP-AQP4
fusion protein or HEK293 cells stably transfected with

empty vector were seeded into 8-well chamber slides (Lab
Tek, USA), 10,000 cells per well, and incubated in 5% CO2

at 37°C for 36-40 hr. Culture medium was removed by
gentle suction and the cells were washed one time with
phosphate buffered saline (PBS) under gentle shaking for
3 min, and then fixed with 4% paraformaldehyde at room
temperature (RT) for 10 min. Cells were washed two
times with PBS under gentle shaking for 3 min and then
blocked with PBS containing 1% bovine serum albumin
(BSA) at RT for 1 hr. Serum of patients and of healthy
subjects (negative controls) were diluted at 1:20 with PBS
containing 1% BSA, and that of positive controls (rabbit
anti-human AQP4 antibody [Santa Cruz, CA]) was diluted
at 1:500 with PBS containing 1% BSA. Diluted serum was
incubated with rat liver powder at RT for 1 hr to remove
non-specific antibodies, then centrifuged at 14,000 rpm
for 15 min. 100 μL diluted serum was added to each well
and incubated at 4°C overnight. Cells were then washed
3 times with PBS as above, and then incubated with sec-
ondary antibody (goat anti-human IgG conjugated with

Figure 1 Indirect immunofluorescence of HEK293 cells transfected for expression of human aquaporin-4 (AQP4). A) HEK293 cells were
transfected with the human aquaporin-4 (AQP4) gene and show green fluorescence at the cell membrane due to expression of green
fluorescent protein (GFP)-AQP4 fusion protein at cell membranes. B) indirect immunoflurescence of these cells, using rabbit anti-human AQP4
antibody (Santa Cruz, CA) as the primary antibody and goat anti-rabbit antibody conjugated with rhobdamine, shows red fluorescence at the
cell membrane due to expression of human AQP4 at cell membrane. C) overlap of A and B shows yellow fluorescence due to co-localization of
GFP and AQP4 in cell membrane; and D) overlap of image C with staining for cell nuclei by DAPI clearly reveals AQP4 expression at cell
membranes. E) HEK293 cells were transfected with empty vector and show green fluorescence over cell cytoplasm due to expression of GFP
which, in the absence of AQP4, is not anchored in the cell membrane; and F) indirect immunofluorescence of these cells with rabbit anti-human
AQP4 antibody reveals no red fluorescence, consistent with a lack of expression of AQP4.
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rhobdamine [Invitrogen, Carlsbad, CA, USA], diluted
1:3000 with PBS containing 1% BSA for human serum;
goat anti-rabbit IgG conjugated with rhobdamine [Invitro-
gen], diluted 1:1000 with PBS containing 1% BSA for posi-
tive control) for 1 hr at RT in the dark. Cells were then
washed 3 times with PBS, mounted with slow-fade gold
antifade reagent with DAPI (Invitrogen) and coverslips
applied. Slides were examined independently by two inves-
tigators (KHC and JSCK) who were blinded to the clinical
and laboratory information of studied patients, except for
the positive and negative controls, under a fluorescence
microscope (Zeiss, Gottingen, Germany) for green and
then red fluorescence on cell membranes, and their colo-
calization on the cell membrane (yellow fluorescence)
using Axio Vision software. The presence of green fluores-
cence on cell membranes in the absence of red fluores-
cence, or the presence of red fluorescence that did not
colocalize with green fluorescence, was scored as negative
for AQP4 autoantibodies (-). The presence of red fluores-
cence on cell membranes that colocalized with green
fluorescence was scored as positive for AQP4 autoantibo-
dies and graded on a 3-point scale: weakly positive (+),
positive (++) and strongly positive (+++) (Figure 3). Each
serum was assayed 3 times and a final score calculated as
the median of the 6 scores from the two investigators.
Negative serum was restudied at a dilution of 1:5. Negative
controls in each experiment included sera from two
healthy subjects and positive controls included rabbit anti-
human AQP4 antibody (Santa Cruz, CA) as mentioned
above and two NMO patients seropositive for NMO-IgG
as confirmed by the Clinical Neuroimmunology Labora-
tory of Mayo Clinic, Rochester, Minnesota. These two
NMO-IgG positive sera were positive for AQP4 autoanti-
bodies on this cell-based IIFA (1 positive, 1 strongly posi-
tive) but negative on assay using HEK293 cells transfected

with empty vector, confirming that they contained auto-
antibodies targeting human AQP4 (Figure 3).

Statistical analysis
Seropositivity rates for AQP4 autoantibodies by cell-
based IIFA were compared to seropositivity rates for
NMO-IgG by tissue-based IIFA for each group of
NMOSD patients by the McNemar test to assess statisti-
cal significance of differences in sensitivity between the
two assays. Clinical, serological and radiological charac-
teristics of NMOSD patients seropositive for AQP4
autoantibodies by cell-based IIFA were compared
between those seropositive and seronegative for NMO-
IgG by tissue-based IIFA using Chi-square test, student’s
t-test and Fisher exact test. A p value < 0.05 was consid-
ered statistically significant.

Results
A total of 128 patients with CNS IDD consisted of
patients with CMS (40), a single attack of acute myelitis
(25, two had LETM), NMO (18), relapsing myelitis (15,
twelve had LETM), a single attack of ON (14), relapsing
ON (9) and a single attack of acute disseminated ence-
phalomyelitis (ADEM) (7) were studied. In addition,
35 patients with other neurological diseases consisting
of autoimmune myasthenia gravis (18), Guillain-Barre
syndrome (5), chronic inflammatory demyelinating poly-
radiculoneuropathy (5), paraneoplastic neurological dis-
orders (4), Lambert-Eaton myasthenic syndrome (1),
polymyositis (1) and systemic lupus erythematosus (1);
and ten healthy subjects were studied. Table 1 sum-
marizes the demographic and clinical characteristics of
the patients with NMO and relapsing myelitis. Table 2
summarizes the seropositivity rates of the various groups
for NMO-IgG by tissue-based IIFA and AQP4 autoanti-
bodies by cell-based IIFA. None of the sera negative for
AQP4 autoantibodies by cell-based IIFA at 1:20 dilution
were positive on repeated assay at 1:5 dilution. Remark-
ably, 78% of NMO patients were seropositive by cell-
based IIFA versus 61% by tissue-based IIFA (p = 0.250),
60% of patients having relapsing myelitis were seroposi-
tive by cell-based IIFA versus 40% by tissue-based IIFA
(p = 0.250), 75% of patients having relapsing myelitis
with LETM were seropositive by cell-based IIFA versus
50% by tissue-based IIFA (p = 0.250). In addition, 33%
of patients with relapsing ON were seropositive by cell-
based IIFA versus 22% by tissue-based IIFA (p = 1.000),
and 14% of patients with a single attack of ON were ser-
opositive by cell-based IIFA versus 7% by tissue-based
IIFA (p = 1.000). All patients seropositive for NMO-IgG
by tissue-based IIFA were also seropositive for AQP4
autoantibodies by cell-based IIFA. However, the differ-
ences in sensitivity between the two assays were not

Figure 2 Western blot analysis of lysate of HEK293 cells,
transfected for expression of human aquaporin-4 (AQP4),
using rabbit anti-human AQP4 antibody. Lane 1 contains lysate
of HEK293 cells transfected with empty vector and shows no band.
Lane 2 contains lysate of HEK293 cells transfected with human
AQP4 gene and shows a band of ~64 kDa, consistent with the
molecular weight of the green fluorescent protein-AQP4 fusion
protein.
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statistically significant for any groups of CNS IDD
patients by the McNemar test.
Hence, a total of 29 NMOSD patients seropositive for

AQP4 autoantibodies were identified by cell-based IIFA,
and 20 of these 29 patients (69%) were seropositive for
NMO-IgG by tissue-based IIFA. The 9 patients who were
seropositive for AQP4 autoantibodies by cell-based IIFA
while seronegative for NMO-IgG by tissue-based IIFA
included patients with NMO (3), relapsing myelitis with
LETM (3), a single attack of LETM (1), relapsing ON (1)
and a single attack of ON (1); five of the 9 scored weakly
positive (+) and the remaining 4 scored positive (++) on
cell-based IIFA. Table 3 summarizes the demographic
and clinical characteristics of the 23 NMO and RM

patients seropositive for AQP4 autoantibodies by cell-
based IIFA and compares those seropositive (n = 17) and
seronegative (n = 6) for NMO-IgG by tissue-based IIFA.
There was no difference in clinical and neuroradiological
characteristics between patients seropositive and serone-
gative for NMO-IgG by tissue-based IIFA.

Discussion
Our results are consistent with other reports confirming
that both NMO-IgG detected by tissue-based IIFA and
AQP4 autoantibodies detected by cell-based IIFA are
specific for NMOSD, and that their detection facilitates
early distinction of NMOSD from CMS [5,8,10,15]. The
original IIFA using mouse cerebellum described by

Figure 3 Cell-based IIFA to detect AQP4 autoantibodies using transfected HEK293 cells that express human AQP4. A-C, HEK293 cells
transfected with human AQP4 gene reveal green fluorescence on cell membranes due to expression of GFP-AQP4 fusion protein as a
membrane protein (A). IIFA of serum from a healthy subject (negative control), using secondary goat anti-human IgG conjugated with
rhobdamine, shows no red fluorescence (B) signifying seronegativity for AQP4 autoantibodies. With B overlapped with A, no yellow fluorescence
is observed (C). D-F, IIFA of transfected cells expressing GFP-AQP4 fusion protein (D) with rabbit anti-human AQP4 antibody as primary antibody
(positive control) reveals red fluorescence at the cell membrane (E). When E is overlapped with D, yellow fluorescence is observed (F) signifying
colocalization of AQP4 with GFP at cell membranes. G-I, IIFA using transfected HEK293 cells expressing GFP-AQP4 fusion protein (G) of serum
from a NMO patient seropositive for NMO-IgG shows red fluorescence at the cell membranes (H). When H is overlapped with G, yellow
fluorescence due to colocalization of GFP with AQP4 is observed at cell membranes (I) signifying seropositivity for AQP4 autoantibodies. J-L, IIFA
of serum of the same NMO patient in G-I using HEK293 cells transfected with empty vector without human AQP4 gene. The transfected HEK293
cells show green fluorescence in their cytoplasm due to expression of GFP, but in the absence of GFP-AQP4 fusion protein, GFP is not expressed
as a membrane protein (J); and IIFA of the patient’s serum, seropositive for NMO-IgG, reveals no red fluorescence at cell membranes (K) and no
yellow fluorescence when overlapped with J (L). This proves that the human IgG bound to transfected HEK293 cell membrane in H and I
represents autoantibodies targeting human AQP4.
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Lennon and colleagues is 73% sensitive in detection of
NMO-IgG and 91% specific for NMO, and is 46% sensi-
tive for high-risk syndrome (one or more attacks of
LETM without cerebral lesions that satisfy criteria for
MS, or recurrent ON) [10]. The reported sensitivity
rates of tissue-based IIFA to detect autoantibodies bind-
ing to mouse, rat or monkey astrocytic AQP4 range
from 19% to 73% [5,8,10,15-21].

Transfected HEK 293 cells express human AQP4
homotetramers closely packed on cell membranes [37],
and allow detection of AQP4 autoantibodies binding to
extracellular epitopes of human AQP4. Our results
show that cell-based IIFA detects AQP4 autoantibodies
in 78% of NMO patients and 75% of patients having
relapsing myelitis with LETM, while tissue-based IIFA
detect NMO-IgG in 61% of NMO patients and 50% of

Table 1 Clinical and neuroradiological characteristics of patients with neuromyelitis optica and relapsing myelitis

NMO (n = 18) RM (n = 15)

Female (%) 15 (83%) 15 (100%)

Mean onset age in years (range) 40.1 (18-64) 45.7 (17-70)

Mean duration of follow-up in years (range) 6.8 (2-16) 5.1 (1-12)

Mean number of AM attack (range) 3.1 (2-9) 2.7 (2-5)

Patients with LETM (%) 17 (94%) 12 (80%)

Mean number of ON attacks (range) 1.9 (1-6) not applicable

Mean relapse rate in first 2 years in number of attack per year (range) 1.5 (0.5-4.0) 0.8 (0.3-2.0)

Mean length of MRI T2W hyperintense signal abnormalities in number of vertebral segments (range) 4.9 (1-16) 4.2 (1-10)

Patients with MRI brain lesions compatible with inflammatory demyelination (%) 10 (56%) 6 (40%)

Patients with CSF OCB (%) 3 (17%) 3 (20%)

Patients with other autoimmune disorders or autoantibodies (%) 9 (50%) 7 (47%)

Patients with poor visual outcome (%) 7 (39%) not applicable

Mean EDSS score at latest follow-up (range) 5.9 (2.0-10) 5.4 (1.0-10)

Patients with poor neurological outcome (%) 12 (67%) 10 (67%)

Mortality 2 (11%) 2 (13%)

Abbreviations: n = number of patients, NMO = neuromyelitis optica, AM = acute myelitis, RM = relapsing myelitis, LETM = longitudinally extensive transverse
myelitis, MRI = magnetic resonance imaging, CSF = cerebrospinal fluid, OCB = oligoclonal bands, EDSS = Expanded Disability Status Scale.

Table 2 Seropositivity rates for NMO-IgG and AQP4 autoantibodies in different groups of central nervous system
idiopathic inflammatory demyelinating disorders, other neurological disorders, and healthy subjects

Patient/control
groups

Number of
subjects

Number seropositive for NMO-IgG by
tissue-based IIFA (%)

Number seropositive for AQP4 autoantibody
by cell-based IIFA (%)

Significance
p value

NMO 18 11 (61%) 14 (78%) [3 +++, 3 ++, 8 +] ns

Relapsing myelitis 15 6 (40%) 9 (60%) [4 ++, 5 +] ns

Relapsing myelitis
with LETM

12 6 (50%) 9 (75%) [4 ++, 5 +] ns

Single attack of
acute myelitis

25 0 1 (4%) [+] ns

Single attack of
LETM

2 0 1 [+] ns

Relapsing ON 9 2 (22%) 3 (33%) [2 ++, 1 +] ns

Single attack of ON 14 1 (7%) 2 (14%) [1 ++, 1 +] ns

Classical MS 40 0 0 ns

ADEM 7 0 0 ns

Healthy subjects 10 0 0 ns

Other neurological
disorders

35 0 0 ns

Abbreviations: NMO = neuromyelitis optica, LETM = longitudinally extensive transverse myelitis, ON = optic neuritis, MS = multiple sclerosis, ADEM = acute
disseminated encephalomyelitis, IIFA = indirect immunofluorescence, AQP4 = aquaporin-4, +++ strongly positive, ++ positive, + weakly positive, ns = not
significant.
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patients having relapsing myelitis with LETM. In addi-
tion, cell-based IIFA detects AQP4 autoantibodies in
33% of relapsing ON patients while tissue-based IIFA
detects NMO-IgG in 22% of this group. These results
suggest that cell-based IIFA is more sensitive than tis-
sue-based IIFA in detection of IgG AQP4 autoantibodies
in NMOSD. Takahashi and colleagues reported that 91%
of NMO and 85% of high-risk syndrome (recurrent
LETM) patients are seropositive for AQP4 autoantibo-
dies detected by a similar cell-based IIFA, with a specifi-
city of 100% [34]. In addition, among their 21 NMO
patients seropositive for AQP4 autoantibodies by cell-
based IIFA, patients seropositive for NMO-IgG by tis-
sue-based IIFA (15 patients) had a higher frequency of
longitudinally extensive spinal cord lesions on MRI than
patients seronegative for NMO-IgG by tissue-based IIFA
(6 patients), 100% versus 50% (p = 0.015) [34]; this was
not observed in our patients. Waters and colleagues stu-
died AQP4 autoantibodies in NMO and LETM patients
by tissue-based IIFA, FIPA and a similar cell-based IIFA;
and reported that 14 of 24 NMO patients (58%) were
seropositive by tissue-based IIFA, 19 of 25 NMO
patients (76%) seropositive by FIPA and 20 of the
25 NMO patients (80%) seropositive by cell-based IIFA.
In addition, 5 of 10 LETM patients (50%) were seroposi-
tive by tissue-based IIFA and 6 of 11 LETM patients
(55%) seropositive by both FIPA and cell-based IIFA
[30]. Our results are consistent with those of Waters
and colleagues.
McKeon and colleagues compared sensitivities and

specificities of tissue-based IIFA and FIPA and reported

that the sensitivity rates for NMO are 58% by tissue-
based IIFA, 33% by FIPA and 63% by combining the
two assays, while the sensitivity rates for relapsing
LETM are 29% by tissue-based IIFA, 6% by FIPA and
29% by combined assays; and specificity rates for NMO
and relapsing LETM are 99.6% by tissue-based IIFA,
99.3% by FIPA and 99.2% by combined assays [31]. In
addition, among 331 patients seropositive for AQP4
autoantibodies by FIPA, 76 (23%) were seronegative by
tissue-based IIFA. In this large-scale clinical practice-
based study from the Mayo Clinic, the investigators
concluded that AQP4 autoantibodies detected by tissue-
based IIFA or FIPA are highly specific for NMOSD, and
that FIPA is significantly less sensitive than tissue-based
IIFA, although combined testing improved sensitivity by
5% [31].
In conclusion, cell-based IIFA is slightly more sensi-

tive than tissue-based IIFA in detection of AQP4 auto-
antibodies. As the cell-based IIFA requires technical
expertise in the observation of GFP and AQP4 co-locali-
zation, tissue-based IIFA and FIPA may be more useful
for clinical service, as it allows rapid large-scale screen-
ing for AQP4 autoantibodies, and cases that are serum
negative by tissue-based IIFA and FIPA can be further
studied for AQP4 autoantibodies by cell-based IIFA if
clinical suspicion for NMOSD is high.
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Table 3 Clinical and neuroradiological characteristics of 23 patients with neuromyelitis optica or relapsing myelitis
who are seropositive for AQP4 autoantibodies by cell-based IIFA, divided into those who are seropositive and
seronegative for NMO-IgG by tissue-based IIFA

NMO IgG +ve (n =
17)

NMO-IgG -ve (n
= 6)

Significance p
value

Female (%) 15 (88%) 6 (100%) ns

Mean onset age in years (range) 42.0 (18-64) 52.8 (17-70) ns

Mean duration of follow-up in years (range) 6.6 (2-15) 3.9 (2-8) ns

Patients with LETM (%) 16 (94%) 6 (100%) ns

Mean myelitis attack rate in no. of attacks per year (range) 0.8 (0.2-2.0) 0.7 (0.3-1.0) ns

Mean myelitis attack rate in first 2 years of disease in no. of attacks per year 1.6 (0.5-3.0) 1.4 (0.5-4.0) ns

Mean length of MRI T2W hyperintense signal abnormalities in no. of vertebral
segments (range)

5.3 (2-17) 5.7 (3-10) ns

Patients with MRI brain lesions compatible with inflammatory demyelination (%) 10 (59%) 3 (50%) ns

Patients with CSF OCB (%) 2 (12%) 0 ns

Patients with other autoimmune disorders or autoantibodies (%) 5 (29%) 1 (17%) ns

Patients with poor visual outcome (%) 4 (24%) 1 (17%) ns

Mean EDSS score at latest follow-up (range) 5.9 (2.0-10) 6.8 (6.0-8.0) ns

Patients with poor neurological outcome (%) 11 (65%) 6 (100%) ns

Abbreviations: NMO = neuromyelitis optica, AM = acute myelitis, LETM = longitudinally extensive transverse myelitis, MRI = magnetic resonance imaging, CSF =
cerebrospinal fluid, OCB = oligoclonal bands, EDSS = Expanded Disability Status Scale, ns = not significant.
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