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Abstract

Exogenous administration of insulin-like growth factor (IGF)-I has anti-depressant properties in rodent models of
depression. However, nothing is known about the anti-depressant properties of IGF-I during inflammation, nor
have mechanisms by which IGF-I alters behavior following activation of the innate immune system been clarified.
We hypothesized that central IGF-I would diminish depressive-like behavior on a background of an inflammatory
response and that it would do so by inducing expression of the brain-derived neurotrophic factor (BDNF) while
decreasing pro-inflammatory cytokine expression in the brain. IGF-I (1,000 ng) was administered
intracerebroventricularly (i.c.v.) to CD-1 mice. Mice were subsequently given lipopolysaccharide i.c.v. (LPS, 10 ng).
Sickness and depressive-like behaviors were assessed followed by analysis of brain steady state mRNA expression.
Central LPS elicited typical transient signs of sickness of mice, including body weight loss, reduced feed intake and
decreased social exploration toward a novel juvenile. Similarly, LPS increased time of immobility in the tail
suspension test (TST). Pretreatment with IGF-I or antidepressants significantly decreased duration of immobility in
the TST in both the absence and presence of LPS. To elucidate the mechanisms underlying the anti-depressant
action of IGF-I, we quantified steady-state mRNA expression of inflammatory mediators in whole brain using real-
time RT-PCR. LPS increased, whereas IGF-I decreased, expression of inflammatory markers interleukin-1ß (IL-1ß),
tumor necrosis factor-(TNF)a, inducible nitric oxide synthase (iNOS) and glial fibrillary acidic protein (GFAP).
Moreover, IGF-I increased expression of BDNF. These results indicate that IGF-I down regulates glial activation and
induces expression of an endogenous growth factor that shares anti-depressant activity. These actions of IGF-I
parallel its ability to diminish depressive-like behavior.

Background
Recent studies have unequivocally linked activation of the
innate immune system with development of metabolic,
subjective and behavioral components of sickness. Per-
ipheral or central administration of the cytokine inducer
LPS induces transient anorexia, social isolation, general
malaise, an increase in non-rapid eye movement sleep
and fever [1]. All of these symptoms are dependent on
neuroinflammation and the production of pro-inflamma-
tory cytokines within the brain. Sustained activation of
the innate immune system can lead to development of
depressive disorders [2]. Several conditions, such as aging
and obesity, and diseases, such as rheumatoid arthritis,

atherosclerosis and congestive heart failure, are asso-
ciated with an increased prevalence of depressive disor-
ders. These conditions have a common underlying
chronic inflammatory component [3]. Indeed, elevated
levels of circulating pro-inflammatory cytokines, includ-
ing TNFa, IL-6 and IL-1b, are frequently observed in
patients with depression [4]. Although an associative link
between neuroinflammation and sickness behavior is
now widely accepted, the above studies do not provide a
cause-effect relationship between neuroinflammation and
development of depression disorders.
There is increasing evidence that development of

depression can be associated with activation of the innate
immune system [5,6]. In particular, cytokine therapy for
certain types of cancer and viral infections induces devel-
opment of depressive symptoms in a significant percen-
tage of the population under consideration [7,8]. Humans
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exposed to low-dose endotoxin elicited a depressed mood
that correlated with cytokine secretion. Interestingly this
low dose of endotoxin did not elicit symptoms of sickness
[9]. A similar reduction in mood occurs in humans
injected with a typhoid vaccine, and this decline signifi-
cantly correlates with an increase in IL-6 secretion and
enhanced activity within subgenual anterior cingulate cor-
tex [10]. These findings provide a direct cause-effect rela-
tionship between neuroinflammation and depression and
a distinction between overt sickness and depression. At
the preclinical level, acute and chronic activation of the
immune system reliably induces depressive-like behavior
of mice. LPS induces transient sickness followed by
depressive-like behavior, increased immobility in the
forced swim test (FST) and the TST. These behaviors are
reversed by anti-depressants and by minocycline which
attenuates neuroinflammation [11,12]. These and other
studies clearly suggest that development of anti-inflamma-
tory regimes would be a viable strategy as a potential ther-
apeutic for inflammation-associated depressive disorders.
IGF-I, a neurotrophic hormone, elicits a broad spectrum

of biological activities [13]. However, few studies have
been reported that describe an anti-inflammatory action of
IGF-I. IGF-I decreased expression of pro-inflammatory
cytokines following treatment with galactosamine plus
LPS, which results in IGF-I mediated liver protection [14]
and reduced atherosclerosis progression in ApoE mice
[15]. Also, IGF-I gene transfer attenuated glial activation
and tau hyper-phosphorylation following spinal cord
injury [16]. These studies and others illustrate that IGF-I
may be anti-inflammatory. However, the positive effects in
these studies may reflect the ability of IGF-I to modulate
macrophage or neutrophil infiltration into tissues, rather
than a direct anti-inflammatory action on the immune sys-
tem, which would be evident as decreased cytokine
expression per cell. Only a couple of in vitro studies have
shown a direct anti-inflammatory potential for the IGF
system. Microglia-derived IGF-II, which acts similar to
IGF-I, inhibited TNFa-activation of JNK in oligodendro-
cytes [17] and IGF-I increased dephosphorylation of IкB
in astrocytes; thereby diminishing NF-кB activity following
TNFa exposure [18,19]. IGF-I also depressed TNFa-
induced NF-кB activation in colonic adenocarcinoma cells
[6,20]. Importantly, IGF-I mediates the anti-inflammatory
actions of the neural cell adhesion molecule (NCAM)
mimetic, FGL, thus tempering glia activation associated
with aging and glial activation following treatment with
interferon-(IFN)g [21]. Similarly, IGF-I decreased IFNg-
induced and age-associated microglial activation, IL-1b
induction and deficit in long-term potentiation [22]. Exo-
genous IGF-I, given i.c.v., can even temper the develop-
ment of sickness behavior induced by either TNFa or LPS
[23-25]. Taken together, these data indicate that IGF-I can
attenuate an inflammatory response both at the cellular

and subcellular levels and antagonize neuroinflammatory-
induced behavioral changes.
To date, IGF-I has been tested for anti-depressant activ-

ity using naïve rodents and following chronic mild unpre-
dictable stress (CUS). Chronic IGF-I administration, s.c. at
50 μg/kg/d, decreased immobility in the FST of naïve
mice, decreased consumption latencies in the novelty-
induced hypophagia test of naïve mice and increased
sucrose consumption by mice following CUS [26-29]; all
suggesting anti-depressant activity. In the same study,
exercise-induced improvement in the FST was blocked by
an anti-IGF-I antibody [29], suggesting that exercise has
an anti-depressant activity that is dependent on IGF-I.
Again with naïve mice, IGF-I and NBI-31772 (a drug
which frees endogenous IGF-I from a natural inhibitor)
decreased immobility in the TST. The action of IGF-I and
NBI-31772 was blocked by the IGF type 1 receptor
antagonist JB1 [28]. These actions were independent of
changes in general locomotor activity, which is used an
index of sickness [30,31], suggesting behavioral specificity.
Using naïve rats, a single i.c.v. injection of 1 μg IGF-I
decreased immobility in the FST [26]. JB1 blocked the
decreased immobility in the FST that was present after a
single i.c.v. 1 μg dose of IGF-I [27]. These data clearly indi-
cate that IGF-I has anti-depressant activity using a variety
of measures (ex., FST, TST, sucrose consumption; which
parallel each other as reliable indices of depressive-like
behaviors of rodents treated with IGF-I).
However, IGF-I has not yet been evaluated for anti-

depressive actions on the important background of acute
neuroinflammation. Here we have filled this void by defin-
ing the ability of exogenous IGF-I to modulate depressive-
like behavior of LPS-challenged mice. LPS and IGF-I were
both administered i.c.v. to directly test if IGF-I was able to
modulate a central inflammatory response, independent of
actions at the periphery. Based on the association of neu-
roinflammation with depression, we then examined
whether the anti-depressive effect of IGF-I was associated
with its ability to temper the neuroinflammatory processes
within the brain. Our data show that central IGF-I signifi-
cantly impairs development of depressive-like behavior and
this action was related to an anti-inflammatory response in
the brain measured as measured by a reduction in expres-
sion of inflammatory markers. Moreover, IGF-I induced
expression of BDNF, which has well-characterized anti-
depressant activity. These results provide strong evidence
that IGF-I within the brain tempers depressive-like beha-
vior in both naïve and LPS-challenged mice.

Methods
Animals
Male CD-1 mice, 7 to 8 weeks old, were purchased from
Charles River Laboratory International, Inc. (Wilming-
ton, MA). Upon arrival, mice were allowed to acclimate
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to the new environment for 2 weeks. Mice were group
housed in ventilated cages and maintained in the stan-
dard colony room under a 12:12 h reversed light: dark
cycle (lights off at 10:00 h). Juvenile 3 to 4 wk of age
C57BL/6J mice from our in-house breeding colony were
used for tests of social exploration. All mice were pro-
vided feed and water ad libitum. Animal care and pro-
cedures were conducted with the approval of the
University of Illinois’ Institutional Animal Care and Use
Committee.

Surgery
Surgery for cannula placement was performed under
aseptic conditions. Each CD-1 mouse was anesthetized
with a mixture of ketamine (100 mg/kg body weight)
and xylazine (10 mg/kg body weight); post-surgical pain
was attenuated using buprenorphine (0.05 mg/kg body
weight). The head of each mouse was secured in a
stereotaxic instrument (David Kopf Instruments,
Tujunga, CA). A 26-gauge stainless-steel guide cannula
(Plastics One Inc, Roanoke, VA) was unilaterally
implanted above the lateral cerebral ventricle of the
brain 0.6 mm posterior and 1.3 mm lateral to the
bregma. The pedestal extended 1.3 mm below the skull
at the point of entry. Each implanted guide cannula was
secured with “cold cure” Teets denture mixture (Co-
oral-lte Dental MFG Co, Diamond springs, CA). After
surgery, mice were individually housed in conventional
cages and allowed a 2-week recovery period before
treatment.

Treatments
Mice were handled for at least 5 days prior to treatment
to minimize restraint stress during the injections. Mice
were transferred to the behavioral test room 2 or 3 days
before treatment. Experimental mice were 11 to 12
weeks of age on the day of treatment, which were all
administered at the end of light phase. Recombinant
human IGF-I (GroPep, Adelaide, Australia) was pre-
pared at 1,000 ng/μl and LPS (serotype 0127:B8, Sigma,
St. Louis, MO) was prepared at 10 ng/μl. Preliminary
dose response experiments revealed that these were the
optimal doses of LPS and IGF-I for reliably inducing
depressive-like behavior and decreasing depressive-like
behavior, respectively. The 1 μg dose of IGF-I was the
same as the i.c.v. dose that had anti-depressant activity
[26,27] and that we had previously shown to have posi-
tive behavioral effects against central LPS [23]. LPS and
IGF-I were administered into the lateral cerebral ventri-
cle with a 33-gauge stainless-steel guide internal cannula
with a 1 μl total volume. IGF-I or PBS was administered
30 min prior to LPS or PBS for the 4 treatment combi-
nations: PBS/PBS (Control), IGF-I/PBS (IGF-I), PBS/LPS
(LPS) and IGF-I/LPS (IGF-I + LPS). Fluoxetine and

desipramine (Sigma) were prepared at 4 and 2 mg/ml
and administered i.p. at 100 μl/10 gm body weight for a
final dose of 40 and 20 mg/kg body weight, respectively.
PBS served as the excipient control. Fluoxetine and desi-
pramine were given as a single injection 30 min prior to
the TST.

Sickness response
Sickness was assessed by measuring changes in body
weight, feed intake and social exploration. Body weight
and feed weight were recorded the day before treatment,
immediately before treatment and prior to each beha-
vioral assessment. Feed intake was estimated as the dis-
appearance of feed. For social exploration, a C57BL/6J
juvenile was confined to a 8 × 8 × 11.5 cm wire cage
and placed in the corner of the experimental mouse’s
home cage. The home cage lid was replaced by a Plexi-
glas plate for ease of observation. The time spent by the
experimental mouse showing exploratory behavior
towards the caged juvenile was recorded by a trained
person blind to treatment. Each experimental mouse
was recorded for 5 min. All behavioral assessments were
performed during the dark phase of the light cycle
under red light illumination. A white noise machine
(Marpac soundscreen) was used to minimize interfer-
ence from external sounds. Baseline social activity was
assessed 2 h into the dark cycle the day before treat-
ment (i.e. equivalent time of day to the 2 h experimental
time point).

Depressive-like behavior
Depressive-like behavior was measured as duration of
immobility in the TST. The TST was performed as pre-
viously described [12] using the Mouse Tail Suspension
Package (MED-TSS-MS; Med Associates, St Albans,
VT). In brief, adhesive tape was attached to the tail of
the experimental mouse for suspension from a hook
connected to a strain gauge. Generated force from the
mouse’s struggle was recorded in real time during a
10 min test session. Program settings were start trigger =
10, gain = 4, lower threshold = 3 and upper threshold =
100. Mice were considered immobile if the recorded force
was below the lower threshold. In order to minimize the
number of behavioral manipulations, we specifically
chose to use the TST as a measure of depressive-like
behavior. We [12] and others [32] have previously
reported nearly identical results using either the TST or
forced swim test.

Tissue preparation, mRNA extraction and real-time RT-PCR
Mice were euthanized in a carbon dioxide filled cham-
ber and transcardially perfused with 30 ml of cold PBS.
The brain was excised and frozen on dry ice. The brains
were stored at -80°C until pulverized with pestle and
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mortar that were pre-chilled with dry ice. Pulverized tissue
was homogenized using an ultra sonicator and TRIzol
reagent (Invitrogen Life Technologies, Carlsbad, CA).
Chloroform was added to the dissolved tissue followed by
acid phenol for phase separation. The aqueous phase was
transferred to isopropanol to precipitate RNA. The RNA
was washed with 75% ethanol and re-suspended with
diethyl polycarbonate-treated water. RNA concentration
was estimated using a Nanodrop ND-1000 spectrophot-
ometer (Nanodrop Technologies, Inc. Wilmington, DE).
To synthesize cDNA, RNA was reverse transcribed using
High Capacity cDNA Reverse Transcription Kits accord-
ing to the manufacturer’s instructions (catalog no.
4368813, Applied Biosystems, Foster city, CA). Real-time
reverse transcription PCR was performed to quantify the
steady-state mRNA level of targeted genes as described
previously [12]. In brief, primers were purchased from
Applied Biosystems (Foster City, CA), and amplification
was performed with a Prism 7900 (Applied Biosystems)
using TaqMan universal PCR master mix (Applied Biosys-
tems, catalog no. 4305719) and 2 μg of sample cDNA. The
endogenous housekeeping gene, GAPDH, was used to
normalize target gene expression. Relative and quantitative
changes of amplified target cDNAs were analyzed by com-
paring 2-ΔΔCts, where Ct is the cycle threshold. A brief
description of the target genes and primers are listed in
Table 1.

Statistical analysis
All data were expressed as mean ± SEM; n = 15-16 mice
per mean for behavior and n = 11-12 mice per mean for
real time rtPCR except the fluoxetine/desipramine
experiment with an n = 8. Data were analyzed by a two-

way (LPS × IGF-I; LPS × anti-depressants) analysis of
variance using StatView (SAS Institute Inc., San Fran-
cisco, CA) except the data for social investigation, body
weight and feed disappearance which were analyzed by
repeated-measures ANOVA. Tukey’s HSD was used for
post hoc analysis if an interaction was significant.

Results
IGF-I decreases duration of immobility in the presence
and absence of LPS
The TST was performed 9 h post LPS (Figure 1A) using
mice treated i.c.v. with PBS or IGF-I (1,000 ng) 30 min
prior to PBS or LPS (10 ng). As expected, LPS-treated
mice exhibited an increase in immobility compared
to the control groups [F (1,65) = 4.2, p < 0.05]. IGF-I
significantly decreased the duration of immobility [F
(1,65) = 13.1, p < 0.001]. There was no significant inter-
action. These data indicate that IGF-I attenuated depres-
sive-like behavior in the absence and presence of LPS.
The increased immobility that occurs 9 h after LPS
administration was inhibited by fluoxetine, a classic
selective serotonin reuptake inhibitor (SSRI) anti-depres-
sant, and desipramine, a classic tricyclic anti-depressant,
(Figure 1B, p < 0.05 for the main effect of LPS, p < 0.05
for the main effect of antidepressants) supporting this
behavioral change after LPS as a depressive-like response.
The anti-depressant effect of desipramine mimicked that
of IGF-I (suppressing immobility in the absence or pre-
sence of LPS), whereas, fluoxetine did not affect immobi-
lity in control mice. Collectively, these data establish
that central LPS is capable of inducing depressive-like
behavior, similar to the established effect of peripheral
LPS. More important, the results show that IGF-I shares

Table 1 PCR targets

Protein Gene(transcript) Primary Expressing Cells Function Ct Catalog #

TNFa Tnf Microglia Pro-Inflammatory Cytokine 30 Mm00443258_m1

IL-1ß Il1b Microglia Pro-Inflammatory Cytokine 28 Mm00434228_m1

iNOS Nos2 Microglia Nitric Oxide Generation 30 Mm00440485_m1

IL-10 Il10 Microglia, Astrocytes Anti-Inflammatory Cytokine 35 Mm00439616_m1

IL-4 Il4 Microglia Anti-Inflammatory Cytokine 38 Mm00445260_m1

IL-6 Il6 Astrocytes, Microglia Pro-Inflammatory Cytokine 32 Mm00446190_m1

GFAP Gfap Astrocytes Cytoskeletal 18 Mm00546086_m1

BDNF Bdnf (I-IX) Neuronal Soma Growth Factor 26 Mm01334047_m1

BDNF Bdnf (VI-IX) Neuronal Dendrites-Soma > Astrocytes Growth Factor 25 Mm01334042_m1

IGF-I Igf1 (Ea) Neurons, Activated Glia Growth Factor 27 Mm00710307_m1

IGF-I Igf1 (Eb) Neurons, Activated Glia Growth Factor 30 Mm00439561_m1

COX2 Ptgs2 Endothelial cells Prostanoid Synthesis 25 Mm00478372_m1

GAPDH Gapdh All Cells Glycolysis 17 Mm99999915_g1

Gene expression pattern was designed to initiate work to define the mechanism by which IGF-I affects behavior. To do this; steady state expression of a panel of
genes were quantified. Although not directly translatable to mRNA levels, average Ct values for control mouse samples are provided for each transcript to give
an indication of their relative abundances. Gene expression with Ct values of ≥ 35 were considered as low expression genes (right justified), genes with Ct values
between 30 and 34 were of medium expression (center justified, underlined) and those with Ct values of ≤ 29 were highly expressed (left justified, bold-faced).
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with classic anti-depressants, the ability to inhibit depres-
sive-like behavior.

IGF-I does not prevent LPS-induced decreases in body
weight, feed intake or social exploration
To investigate the effect of i.c.v. administered IGF-I on
sickness behavior, social exploration towards a novel
juvenile was assessed (Figure 2A). Baseline duration of
exploratory activity was similar for all treatment groups,
averaging ~3 min over the 5 min test period. LPS signif-
icantly decreased exploratory behavior [F (1,130) = 69.5,
p < 0.0001] with an LPX × time interaction [F (2,130) =
46.6, p < 0.0001]. At 6 h, LPS-treated mice showed an
increase in social activity compared to the 2 h time
point, indicating that they were recovering from the
sickness. IGF-I did not affect social exploration at either
time point. These data show that the effect of IGF-I on
duration of immobility in the TST was not mediated by
a general decrease in sickness behavior.
IGF-I did not affect body weight or feed intake. All groups

of mice lost some weight during the first two hours post-
LPS (Figure 2B). LPS-treated mice showed a significant loss
of body weight by 6 h, whereas controls showed no addi-
tional change in body weight. These data resulted in a signif-
icant time [F (3,129) = 25.9, p < 0.0001], LPS [F (1,129) =
41.0, p < 0.0001] and time × LPS interaction [F (3,129) =
14.1, p < 0.0001], but no significant effects for IGF-I. As
expected (Figure 2C), LPS-treated mice consumed less feed
than controls with significant time [F (3,126) = 7.1, p <
0.001], LPS [F (1,126) = 36.1, p < 0.0001] and time × LPS
interaction [F (3,126) = 15.3, p < 0.0001]. IGF-I did not
affect feed intake. These data establish that central IGF-I
does not alter the sickness response to this dose of LPS.

IGF-I administration up-regulates BDNF expression in the
presence and absence of LPS
To assess the possible inducing effect of IGF-I on neu-
roprotective factors, expression of IGF-I and BDNF
were quantified in the brains of mice. The major IGF-I
transcript in the mouse brain, IGF-IEa, was unaffected
by either LPS or IGF-I (Figure 3A). In contrast, IGF-IEb
was reduced by LPS [F (1,45) = 4.5, p < 0.05] (Figure
3B) but similar to IGF-IEa, IGF-IEb was not significantly
changed by IGF-I. BDNF is synthesized from multiple
transcripts, all of which are expressed in the brain. LPS
differentially regulated BDNF transcripts. BDNF I-IX
(Figure 3C) was decreased by LPS [F (1,44) = 8.8, p <
0.005], whereas BDNF VI-IX was unaffected by LPS
(Figure 4D). Transcripts for both BDNF I-IX [F (1,44) =
5.2, p < 0.05] and BDNF VI-IX [F (1,45) = 5.2, p < 0.05]
were elevated by IGF-I. These important results suggest
that elevated BDNF expression could be one of the
mechanisms underlying IGF-Is’ ability to diminish
depressive-like behavior of mice.

IGF-I administration decreases expression of inflammatory
proteins
Behavioral changes induced by LPS are known to be
mediated by inducing expression of pro-inflammatory
mediators. Here we tested the ability of IGF-I to modu-
late the expression of pro-inflammatory factors induced
by LPS. As expected, central LPS (Figure 4A and 4B) sig-
nificantly increased mRNA expression of IL-1b [F (1,44)
= 62.6, p < 0.0001] and TNFa [F (1,45) = 30.4, p <
0.0001]. Central IGF-I attenuated the LPS induction of
both IL-1b [F (1,44) = 4.9, p < 0.05] and TNFa [F (1,45)
= 4.4, p < 0.05]. LPS also increased iNOS [F (1,45) = 31.0,

Figure 1 IGF-I displays anti-depressant activity in the presence or absence of LPS. IGF-I (1000 ng) or (PBS) was administered i.c.v. 30 min
before i.c.v. PBS or LPS (10 ng). Depressive-like behavior was assessed as immobility in the TST to define the effect of IGF-I (A), fluoxetine and
desipramine (B) on depressive-like behavior. n = 16 to 19 per treatment for data in (A) and n = 8 for 9 for the data in (B).
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p < 0.0001], and LPS-dependent iNOS expression was
significantly suppressed by central IGF-I [F (1,45) = 6.6,
p < 0.05] with a statistically significant interaction between
IGF-I and LPS [F (1,45) = 7.1, p < 0.05] (Figure 4C). LPS
similarly induced expression of IL-6 [F (1,45) = 12.5, p <
0.05]. Although IGF-I appeared to reduce expression of
IL-6, this effect did not reach statistical significance. These
data indicate that central IGF-I is able to attenuate glial
activation, evidenced by its effect on pro-inflammatory
cytokine expression.
To further investigate the mechanism by which IGF-I

is acting within the brain, we measured mRNA expres-
sion of anti-inflammatory factors (Table 1). Similar to
the pro-inflammatory cytokines, IL-10 expression
was increased [F (1,45) = 5.1, p < 0.05] whereas IL-4
[F (1,44) = 7.2, p < 0.05] was decreased by LPS. Expres-
sion of neither cytokine was significantly altered by IGF-
I (Figure 5A and 5B). These data indicate that IGF-I’s
ability to attenuate glial activation was only observed as
an effect on pro-inflammatory cytokine expression.

IGF-I decreased GFAP but not COX2 expression
Glial fibrillary acidic protein (GFAP) expression was
quantified to determine if IGF-I influenced astroglial
activation. As shown in Figure 6, LPS did not alter
expression of GFAP at 9 h. However, central treatment
with IGF-I significantly decreased the expression of
GFAP [F (1,44) = 4.3, p < 0.05]. As expected, LPS
increased COX2 expression [F (1,44) = 7.6, p < 0.01],
but this increase was not modulated by IGF-I.

Discussion
The most important finding of this study was that cen-
tral administration of 1,000 ng IGF-I significantly
reduces the duration of immobility after the injection of
either vehicle or LPS. This is the first evidence to estab-
lish that IGF-I tempers the innate immune response
within the brain following central administration of LPS.
IGF-I acts to reduce expression of central inflammatory
markers while increasing expression of the neurotrophin
BDNF. There was no statistical interaction between
IGF-I and LPS on depressive-like behavior (immobility
during the TST), thus IGF-I did not act to specifically
block LPS-induced depressive-like behavior. However,
these data do establish that the anti-depressant activity
of IGF-I is present in both naïve and LPS-challenged
mice. To assure that immobility in the TST could be
used to model depressive behaviors, we confirmed that
immobility was responsive to classic anti-depressants,
fluoxetine and desipramine. Both of these drugs had
anti-depressant activity 9 h after LPS, fluoxetine elimi-
nating the LPS response and desipramine acting more
like IGF-I; i.e. lowering immobility in the absence or
presence of LPS. These findings are in line with other

Figure 2 Central IGF-I does not affect central LPS-induced
sickness. Social exploration, time spent investigating a novel
protected juvenile mouse, was assessed as an index of sickness
behavior (A). Body weight change (B) was determined over the
indicated time intervals relative to LPS treatment. Feed
disappearance over the same intervals (C) was used as an estimate
of feed intake. Data were analyzed as repeated measures by
ANOVA. n = 16 to 19 for the data in (A) and n = 11 to 13 per
treatment for data in (B) and (C).
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work with fluoxetine and desipramine [33,34]. The anti-
depressant effect of IGF-I was also observed in the
absence of LPS, which is consistent with other studies
with rodents where increasing IGF-I activity decreases
depressive-like behaviors, including diminished immobi-
lity during the FST or TST [26-28].
Activation of the innate immune system of the brain

contributes to pathophysiologic changes that occur in
depression due to the generation of inflammatory media-
tors including nitric oxide, via iNOS, and pro-inflamma-
tory cytokines such as IL-1b and TNFa. Although tested
at much higher doses (500 to 25,000 ng) than used for
the current experiment, numerous experiments have
shown that LPS given centrally induces steady-state
mRNA expression of cytokines that are directly related to
an increase in the content of the transcribed proteins n
the rodent brain [35-42]. Our results showed that as little
as 10 ng LPS induces expression of cytokines and iNOS.

In contrast, central administration of IGF-I reduced the
expression of IL-1b, TNFa and iNOS (Figure 4). The
effects of LPS and IGF-I on pro-inflammatory cytokine
and iNOS expression directly paralleled depressive-like
behavior. Although having a similar inhibitory trend, cen-
tral IGF-I did not significantly affect IL-4, IL-6 or IL-10.
IGF-I also decreased the expression of GFAP. GFAP
expression is recognized as a marker of astrocyte activa-
tion [43] and LPS has been shown to increase GFAP
expression [44] and cytokine expression [45] by astro-
cytes. However, our low i.c.v. dose of LPS was not cap-
able inducing GFAP expression. These data do, however,
provide strong evidence that the general degree of activa-
tion of the innate immune system within the brain was
depressed by IGF-I.
Fluoxetine and desipramine, which blocked the

increase in duration of immobility caused by LPS, both
have anti-inflammatory activity [46-49]. This finding

Figure 3 IGF-I increases BDNF mRNA transcripts in the presence or absence of LPS. Steady-state mRNA expression for the two 3’ classes of
IGF-I (A, B) and two distinct BDNF transcripts (C, D) was quantified by real-time rtPCR. Expression was relative to GAPDH, which was used as a
housekeeping control gene. n = 10 to 12 per treatment.

Park et al. Journal of Neuroinflammation 2011, 8:12
http://www.jneuroinflammation.com/content/8/1/12

Page 8 of 14



Figure 4 LPS increases the expression of pro-inflammatory mediators whereas IGF-I attenuates their expression. Steady-state mRNA
expression for IL-1b (A), TNFa (B), iNOS (C) and IL-6 (D) was quantified by real-time rtPCR. Expression was relative to GAPDH. *p < 0.05 following
mean separation. n = 10 to 12 per treatment.

Figure 5 LPS differentially regulates anti-inflammatory cytokine expression, but IGF-I does not alter the expression of IL-10 or IL-4.
Steady-state mRNA expression for the anti-inflammatory makers IL-10 (A) and IL-4 (B) was quantified by real-time rtPCR. Expression was relative
to GAPDH, which was used as a housekeeping control gene. n = 10 to 12 per treatment.
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supports a possible direct role of the innate immune
system in depressive-like behavior and the possible
importance of the anti-inflammatory impact of IGF-I on
behavior. Whether the decrease in cytokine expression
induced by IGF-I was causative, remains speculative.
However, administration of the anti-inflammatory agent,
minocycline, similarly depressed cytokine expression in
the brain of mice and this anti-depressant was more
effective in diminishing depressive-like behavior than
decreasing the sickness response [12]. Similar to the
results reported here, this finding indicated dissociation
between sickness and depressive-like behavior. Such dis-
sociation was also found with cancer patients wherein
paroxetine, a SSRI class anti-depressant, had little activ-
ity against neurovegatative symptoms of sickness follow-
ing IFNg treatment, whereas symptoms of depression
were more responsive to paroxetine [8].
The neurotrophic hypothesis of depression considers

that functional changes in existing neurons and their
synapses (neuronal plasticity) and the organism’s ability
to adapt/respond to the environment via neurogenesis
or reorganization of neuronal networks (brain plasticity)
are dysfunctional because of a deficient degree of neuro-
trophic support and classic anti-depressants, such as
fluoxetine, reactivate plasticity in the adult brain [50,51].
The IGF system is one of the most characterized neuro-
trophic networks yet described with IGF-I inducing the
proliferation, survival, differentiation and maturation of
all cells of the central nervous system [52]. In addition,
IGF-I directly supports neuronal and brain plasticity
[53], key components of the neurotrophic hypothesis. In
the brains of naïve mice, IGF-I mRNA is expressed pri-
marily by neurons [54-56]. IGF-IEa is the primary tran-
script in the rodent brain throughout development

although IGF-IEb (also sometimes referred to as IGF-
IEc) expression can be induced [57]. We confirmed the
prominence of IGF-IEa above IGF-IEb in the mouse
brain (Table 1). The effect of central administration of
LPS on IGF-I expression has not been reported.
Although not a major source of IGF-I in the naïve
rodent brain, LPS depressed the secretion of IGF-I from
cultured microglia [58]. This inhibitory effect of LPS
agrees with the reduction in IGF-IEb mRNA expression
in the brain reported here.
Pro-inflammatory cytokines induce IGF resistance of

multiple cell types (reviewed in [13]), but this possibility
has never been tested with cells of the central nervous
system. Whether activation of the immune system by
central LPS and the subsequent expression of pro-
inflammatory cytokines decrease IGF-I activity in the
brain is unknown. However, it is important to note that
addition of exogenous IGF-I strikingly diminished
depressive-like activity. Thus, our IGF-I treatment para-
digm may have been successful in LPS-challenged mice
because it either restored the effect of lowered IGF-I
mRNA expression, caused by LPS, or overcame the
effect of cytokines-induced IGF resistance. Further work
is necessary to clarify the mode by which LPS/cyto-
kines-induced and IGF-I-reduced depressive-like
behavior.
In a previous study, 1,000 ng IGF-I attenuated the

decrease in exploration of a novel object induced by i.c.v.
administration of 100 ng LPS to CD-1 mice [23]. This was
accompanied by an IGF-I induced reduction in the body
weight loss that occurred following LPS treatment. IGF-I
also attenuated the decreased social exploration induced
by centrally administered TNFa or IL-1b although IGF-I
was more potent against TNFa than IL-1b and only

Figure 6 IGF-I decreases the expression of GFAP but not COX2. Steady-state mRNA expression for GFAP (A) and COX2 (B) were quantified
by real-time rtPCR. Expression was relative to GAPDH, which was used as a housekeeping control gene. n = 10 to 12 per treatment.
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blocked the reduction in body weight loss that was
induced TNFa [24]. These results were replicated in a dif-
ferent set of experiments using only TNFa [25]. Since the
decrease in social exploration caused by inflammation is
essentially mediated by IL-1b, with TNFa having only an
accessory role [59], the present results, wherein IGF-I did
not block sickness, are not necessarily in contradiction
with our previous results on the effects of IGF-I on sick-
ness behavior. A sub-optimal very low dose of LPS was
chosen for the current study in order to elicit a minimal
and transient bout of sickness and thus a lower metabolic
challenge to the mice. In addition, this very low dose of
LPS was carefully chosen not to induce IGF-I sensitive
sickness behavior, but to cause reliable depressive-like
behavior at a time at which the mice are recovering from
sickness. The time interval of 9 h post-LPS was shorter
than the 24 h time interval that was used in our previous
experiments with LPS administered i.p. [12] for the simple
reason that a low i.c.v. dose of LPS caused more transient
behavioral alterations than systemically administered LPS.
The important finding of this work clearly still remains
that IGF-I decreased depressive-like behavior independent
of an effect on the sickness response. This indicates that
although linked, sickness behaviors and depressive-like
behaviors of mice have subtle yet distinct underlying etiol-
ogies. This dissociation between sickness behavior and
depression has already been noted in both preclinical [12]
and clinical studies [8].
The role of BDNF in depression was recently reviewed

by several investigators. A genetic link has been identified
between BDNF variants and response of humans to anti-
depressants [60] and lower BDNF expression was asso-
ciated with the development of major depressive disorder
[61]. Using animal models, anti-depressant administra-
tion, therapeutic regimes such as exercise, and IGF-I all
increased BDNF expression within the brain. BDNF and
BDNF receptor (TrkB) deficient mice or those carrying
a human variant, associated with resistance to anti-
depressants, did not respond to anti-depressants. BDNF
deficiency in the forebrain also caused a deficit in the
TST [62,63] and anti-depressants induced BDNF expres-
sion [51]. These studies clearly identify a role for BDNF
in depressive-like behavior; lower BDNF increased
depressive-like behavior whereas higher BDNF lowered
depressive-like behavior. Relative to the current work,
LPS either decreased or did not change BDNF expression
within the hippocampus [64-67] or decreased expression
in the whole brain 3 days after i.p. LPS [68]. One of the
hottest aspects of BDNF biology is the differential expres-
sion and regulation of specific transcript; all of which
produce the same mature protein. The studies mentioned
above quantified total BDNF expression. However, tran-
scripts initiating from exons I, II and III are expressed
predominantly in neurons whereas transcripts initiating

from exons IV, V and VI are expressed by both neurons
and astrocytes within the naïve brain [69]. Normal
expression of all transcripts may be necessary for well-
ness, as a knockout of even one of the 9 BDNF tran-
scripts caused depressive-like behavior of mice [70].
Duloxetine, an SNRI class anti-depressant, increased the
expression of only 4 of the 9 transcripts [71]. Clearly,
considerable effort is needed to clarify the regulation of
BDNF expression, especially relative to immune activa-
tion where little is known except that TNFa induced
transcript IV expression in cultured astrocytes, whereas
LPS and IL-1b did not change expression [72]. There
were no reports of IGF-I regulating the expression of spe-
cific BDNF transcripts. Here we show that LPS decreased
expression of the exon I, not exon VI, driven BDNF tran-
script, whereas IGF-I increased expression of both tran-
scripts. These specific transcripts were chosen since exon
I was known to be neuron-specific, but exon VI tran-
scripts were also present in astrocytes. It was tempting to
speculate that LPS, by some uncharacterized mechanism,
decreased neuronal, but not astrocyte, expression of
BDNF as part of its ability to induce depressive-like beha-
vior. Proof of this relationship awaits further evidence.
IGF-I increased expression of BDNF I and VI; transcripts
found in neurons or both neurons and astrocytes, respec-
tively; and IGF-I decreased depressive-like behavior. Ele-
vated BDNF expression may be a major part of the
mechanism by which IGF-I acted as an anti-depressant.
Since BDNF has anti-depressant activity, the increase

in BDNF expression may be associated with the anti-
depressant actions following central administration of
IGF-I. However, IGF-I also enhances BDNF signaling
within neurons. We had previously shown that IGF-I
sensitizes cortical neurons to BDNF: increasing BDNF
induction of Erk phosphorylation and synergizing with
BDNF to decrease calcium uptake following treatment
with glutamate [73]. Those data support earlier work
showing that IGF-I and BDNF synergize to support neu-
ron survival [74]. Together they clearly indicate that
IGF-I and BDNF work together within the brain. Also,
IGF-I directly supports neuronal plasticity [53] as does
BDNF (reviewed in [51]). It will be interesting to deter-
mine if IGF-I and BDNF synergize to increase neuronal
plasticity thus offsetting the well-characterized loss of
synaptic plasticity following treatment with LPS [75-78].
Such a finding may further define a precise mechanism
by which either growth factor regulates depressive-like
activities.

Conclusions
Data in this report further establish that central admin-
istration of IGF-I results in anti-depressant-like activity.
This main effect of IGF-I, on immobility during the
TST, confirms that the anti-depressant activity of IGF-I
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is similar across naïve and LPS-challenged mice. Impor-
tantly, administration of IGF-I increases the expression
of BDNF while decreasing the expression of inflamma-
tory proteins; similarly across naïve and LPS-challenged
mice. These data form the basis for future work defining
the mechanism for IGF-I’s anti-depressant activity. The
anti-depressant activity of IGF-I may have clinical impli-
cations for psychiatric conditions with or without the
presence of inflammatory diseases.
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