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Abstract

Background: Amyloid b (Ab) accumulates in Alzheimer’s disease (AD) brain. Microglial activation also occurs in
AD, and this inflammatory response may contribute to disease progression. Microglial activation can be
induced by Ab, but the mechanisms by which this occurs have not been defined. The nuclear enzyme poly
(ADP-ribose) polymerase-1 (PARP-1) regulates microglial activation in response to several stimuli through its
interactions with the transcription factor, NF-�B. The purpose of this study was to evaluate whether PARP-1
activation is involved in Ab-induced microglial activation, and whether PARP-1 inhibition can modify microglial
responses to Ab.
Methods: hAPPJ20 mice, which accumulate Ab with ageing, were crossed with PARP-1-/- mice to assess the effects
of PARP-1 depletion on microglial activation, hippocampal synaptic integrity, and cognitive function. Ab peptide
was also injected into brain of wt and PARP-1-/- mice to directly determine the effects of PARP-1 on Ab-induced
microglial activation. The effect of PARP-1 on Ab-induced microglial cytokine production and neurotoxicity was
evaluated in primary microglia cultures and in microglia-neuron co-cultures, utilizing PARP-1-/- cells and a PARP-1
inhibitor. NF-�B activation was evaluated in microglia infected with a lentivirus reporter gene.

Results: The hAPPJ20 mice developed microglial activation, reduced hippocampal CA1 calbindin expression, and
impaired novel object recognition by age 6 months. All of these features were attenuated in hAPPJ20/PARP-1

-/-

mice. Similarly, Ab1-42 injected into mouse brain produced a robust microglial response in wild-type mice, and this
was blocked in mice lacking PARP-1 expression or activity. Studies using microglial cultures showed that PARP-1
activity was required for Ab-induced NF-�B activation, morphological transformation, NO release, TNFa release, and
neurotoxicity. Conversely, PARP-1 inhibition increased release of the neurotrophic factors TGFb and VEGF, and did
not impair microglial phagocytosis of Ab peptide.

Conclusions: These results identify PARP-1 as a requisite and previously unrecognized factor in Ab-induced
microglial activation, and suggest that the effects of PARP-1 are mediated, at least in part, by its interactions with
NF-�B. The suppression of Ab-induced microglial activation and neurotoxicity by PARP-1 inhibition suggests this
approach could be useful in AD and other disorders in which microglial neurotoxicity may contribute.
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Background
The accumulation of beta amyloid (Ab) peptide contri-
butes to disease pathogenesis in Alzheimer’s disease
(AD) [1,2]. Ab induces microglial activation under
experimental conditions, and microglial activation may
in turn lead to neuronal loss and cognitive decline in
AD [3]. However, microglial activation is not a univa-
lent state, but instead encompasses a variety of mor-
phological, biochemical, and secretory responses [4],
many of which can occur independently of one another
[5-7]. Activated microglia can release NO, proteases,
and other neurotoxic factors, but they can also release
certain neurotrophic factors and clear Ab plaques and
fibrils by phagocytosis [8-11]. Epidemiological studies
suggest that anti-inflammatory drugs may reduce AD
incidence [12], but in a randomized controlled trial,
non steroidal anti-inflammatory therapy did not slow
cognitive decline in AD [13]. Thus, the net effect of
microglial activation in AD remains unresolved, and it
is possible that interventions selectively targeting neu-
rotoxic aspects of microglial activation may be more
effective than broad-spectrum anti-inflammatory
approaches.
Poly(ADP-ribose) polymerase-1 (PARP-1) is a nuclear

protein that regulates cellular inflammatory responses
through interactions with several transcription factors
[14,15]. In particular, PARP-1 interaction with NF-�B
has been identified as a major factor regulating macro-
phage and microglial activation [14,16-18]. Auto poly
(ADP-ribosyl)ation of PARP-1 enhances the formation
of the NF-�B transcription complex by dissociating NF-
�B p50 from PARP-1 and thereby allowing NF-�B to
bind to its DNA binding sites [19-21]. PARP-1 can also
bind to the p65 NF-�B subunit [22,23]. Both PARP-1
gene deficiency and PARP-1 inhibitors prevent the mor-
phological changes associated with microglial activation,
and suppress microglial release of proteases, NO, and
cytokines [16,17,19,24,25]. PARP-1 activation occurs in
human AD [26], but the role of PARP-1 activation in
microglial responses to Ab is not known.
In this study we characterize the effects of PARP-1

inhibition and gene deletion on Ab-induced microglial
activation, and show that these effects are mediated, at
least in part, through PARP-1 regulation of NF-�B.
PARP-1 inhibition in microglial cultures reduced Ab-
induced release of NO and TNFa and prevented neuro-
toxicity, but did not impair microglial uptake of Ab pep-
tides. In vivo studies confirmed that PARP-1 gene
depletion reduces Ab-induced microglial activation, and
studies in mice expressing human amyloid precursor
protein with familial AD mutations (hAPPJ20 mice)
showed ameliorated neuronal and behavioral deficits
when crossed to PARP-1-/- mice. These results suggest

that PARP-1 inhibition reduces deleterious effects of
Ab-induced microglial activation.

Methods
Materials
Cell culture reagents were obtained from Cellgro/Media-
tech (Herndon, VA), unless otherwise stated. Culture
plates (24-well plates) and 75 cm2 polystyrene culture
flasks were from Falcon/Becton Dickinson (Franklin
Lakes, NJ). N-(6-oxo-5,6-dihydrophenanthridin-2-yl)-N,
N-dimethylacetamide (PJ34) was obtained from Sigma.
(E)-3-(4-methylphenylsulfonyl)-2-propenenenitrile (BAY
11-7082) was obtained from Alexis Biochemicals. Amy-
loid beta 1-42 (Ab), reverse amyloid beta 42-1 (rAb), and
carboxyfluorescein (FAM)-labeled amyloid beta 1-42

(FAM-Ab), were obtained from Biopeptide Co. Inc. (San
Diego, CA). Primary antibodies used were: rabbit poly-
clonal anti-poly(ADP-ribose) (PAR; Trevigen, Gaithers-
burg, MD), rabbit polyclonal anti-mouse ionized
calcium binding adapter molecule 1(Iba-1; Waco), rabbit
polyclonal anti-glial fibrillic acid protein (GFAP; Chemi-
con, Temecula, CA), rabbit polyclonal anti-microtubule-
associated protein 2 (MAP2; Chemicon, Temecula, CA),
mouse monoclonal anti-amyloid b 3D6 (Elan Pharma-
ceuticals) and rabbit polyclonal anti-Calbindin D-28k
(Swant, Bellinzona, Switzerland). Secondary antibodies
used were: anti-rabbit IgG conjugated with Alexa Fluor
488 or 594 (Molecular Probes Inc., Eugene, OR).

Mice
All animal studies were approved by the San Francisco
Veterans Affairs Medical Center animal studies commit-
tee and follow NIH guidelines. PARP-1-/- mice were
derived from the 29S-Adprt1tm1Zqw strain, originally
developed by Z. Q. Wang [27], and obtained from Jack-
son Laboratory (Bar Harbor, ME). PARP-1-/- mice used
for cell culture studies were backcrossed for over 10
generations with wt CD-1 mice, and wt CD-1 mice were
used as their controls. PARP-1-/- mice used for in vivo
studies and for generating the hAPPJ20/PARP-1

-/- mice
were backcrossed to the C57BL/6 strain for over 10 gen-
erations. The hAPPJ20 mice on the C57BL/6 background
were obtained from Dr. Lennart Mucke (Gladstone
Institute). These mice express a hAPP minigene with
the familial AD-linked Swedish (K670N, M671L) and
Indiana (V717F) mutations, under control of the plate-
let-derived growth factor (PDGF) b-chain promoter [28].
The hAPPJ20 mice were crossed with the PARP-1-/- mice
to obtain the breeder genotypes: PARP+/- and hAPPJ20
/PARP-1+/-. These were in turn crossed to generate sub-
sequent generation breeder genotype mice along with
the four genotypes of interest: wt, PARP-1-/-, hAPPJ20
and hAPPJ20/PARP-1

-/-. Male mice 5 - 6 months of age
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were used for in vivo studies. Genotype was re-con-
firmed on each mouse using tissue obtained at
euthanasia.

Neuron cultures
Neuron cultures were prepared as described previously
[29]. In brief, cortices were removed from embryonic day
16 wt mice, dissociated into Eagle’s minimal essential
medium (MEM) containing 10 mM glucose and supple-
mented with 10% fetal bovine serum (Hyclone, Ogden
UT) and 2 mM glutamine, and plated on poly-D-lysine-
coated 24-well plates at a density of 7 × 105 cells per
well. After 2 days in vitro, 22 μM cytosine b-D-arabino-
furanoside (Sigma, St. Louis, MO) was added to inhibit
the growth of non-neuron cells. After 24 hours, the med-
ium was removed and replaced with a 1:1 mixture of glial
conditioned medium (GCM) and MEM. This medium
was 50% exchanged with fresh medium after 5 days. The
cultures contained about 97% neurons and 3% astrocytes
as assessed by immunostaining for the neuron marker
MAP2 and the astrocyte marker GFAP.

Microglia and microglia-neuron co-cultures
Cortices were dissected from 1-day old mice and disso-
ciated by mincing followed by incubation in papain (40
units) and DNase (2 mg) for 10 minutes at 37°C. After
centrifugation for 5 minutes at 500 g, the cells were re-
suspended and triturated with a fire-polished Pasteur
pipette into Eagle’s minimal essential medium (MEM)
containing 5 mM glucose and supplemented with 10%
fetal bovine serum (Hyclone, Ogden UT) and 2 mM
glutamine. Cells were plated on 24-well plates or glass
coverslips at a density of 2 × 105 cells per well, or in 75
cm2 flasks at a density of 5 × 106 cells per flask, and
maintained in a 37°C in a 5% CO2 incubator. The med-
ium was changed at 3 days in vitro and once per week
thereafter. These cultures contained both astrocytes and
microglia. Microglia were isolated from these cultures at
age 2 to 3 weeks in vitro by shaking, and collecting the
floating cells [24]. The cells were re-plated at a density
of 5 × 105 cells per well in 24-well plates for microglial
monocultures, or at the density of 5 × 104 cells per well
on top of 6-day in vitro neuron cultures in 24-well
plates for microglia-neuron co-cultures. The purity of
the re-plated microglial monocultures was > 99%, and
the microglia-neuron co-cultures contained about 7%
microglia, 90% neurons, and 3% astrocytes as assessed
by immunostaining for the microglial marker Iba-1, the
neuron marker MAP2 and the astrocyte marker GFAP.

Preparation of Ab
For in vitro use, 1 mM stock solutions of Ab peptides
(Ab and rAb) were diluted to 250 μM with MEM and
incubated for 1 hour at 37°C to produce a mixture of

Ab monomers and oligomers [30]. For in vivo use Ab
peptides were diluted to 1 mg/ml (220 μM) with normal
saline. The solution was prepared within one hour of
use and kept at room temperature in order to maintain
the peptides in oligomeric form (fibrils would block the
syringe) [30,31].

Cell culture treatments
Neuron monocultures and microglia-neuron co-cultures
were used at neuron day 7 in vitro. Microglial cultures
were used at day 2-3 after re-plating. Cultures were
incubated with 5 μM of Ab or 5 μM of rAb alone, or
with inhibitors of PARP activation (PJ34, 400 nM) or
NF-�B activation (BAY 11-7082, 5 μM) for the desig-
nated intervals. In some experiments, 5 μM of carboxy-
fluorescein-labeled amyloid b1-42 (FAM-Ab) was used to
detect microglial phagocytosis of Ab fibrils. All com-
pounds were dissolved in MEM (microglia) or GCM/
MEM mixture (neurons), and these solutions were used
alone for control conditions.

Microglia activation, neurotoxicity, and phagocytosis in
vitro
All evaluations in this study were performed by obser-
vers blinded to the experimental conditions. Neuronal
survival was determined by cell counting in 5 randomly
selected phase contrast microscopic fields per culture
well. Values were normalized to counts in control wells
from the same 24-well plate. Microglia morphology was
assessed by phase contrast microscopy of unfixed cells.
Microglia with two or more thin processes were consid-
ered as ramified, resting microglia, and microglia with
less than two processes, or with amoeboid cell soma,
were classified as activated [24]. The numbers of resting
and activated microglia were counted in 5 randomly
selected fields per culture well. Immunostaining was
performed with cultures fixed with 1:1 methanol:acetone
at 4°C. Cultures were characterized with antibodies to
GFAP and Iba-1 as previously described [24]. Antibody
binding was visualized with suitable Alexa Fluor - conju-
gated anti-IgG. Negative controls were prepared by
omitting the primary antibodies. For detection of poly
(ADP-ribose), cultures were incubated with rabbit anti-
body to PAR. Microglial phagocytosis of Ab was imaged
using three-dimensional confocal imaging of cultures
with microglia-astrocyte co-cultures exposed to 5 μM of
FAM-Ab. Microglial phagocytic activity in microglial
monocultures was quantified as described [32] with
minor modifications by measuring FAM fluorescence
remaining in the cells after two washes with MEM.
Nonspecific Ab adherence to the culture plate surface
was evaluated by measuring FAM fluorescence in cell-
free culture wells that had been incubated with FAM-
Ab for 24 hours.
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Nitric oxide, cytokine and trophic factor measurements
Microglial cultures were placed in 250 μl of MEM and
incubated with Ab or rAb for 24 hours. Nitric oxide
production was measured by using Griess reagent as
previously described [25]. Cytokines and tropic factors
were analyzed in 50 μl aliquots of cell culture medium
using a Milliplex mouse multiplex immunoassay bead
system according to the manufacturer’s instructions
(Millipore). Each sample was assayed in duplicate, and
the fluorescent signal corresponding to each cytokine
was measured with a BioPlex 200 system (Bio-Rad, Her-
cules, CA) in parallel with known standards. Nonspecific
interactions between beads and test compounds were
screened by running the immunoassay with test com-
pounds dissolved in medium without cell culture expo-
sure. The reverse sequence Ab42-1 (but not Ab1-42) was
found to interfere with the assay in a non-specific man-
ner, and thus rAb-treated cultures could not be ana-
lyzed. Values for cytokine and trophic factor assays were
normalized to the protein content of each well as deter-
mined by the bicinchoninic assay [33].

Microglial NF-�B activity
Microglia were infected with lentivirus encoding destabi-
lized, enhanced green fluorescence protein driven by the
NF-�B promoter (Lenti-�B-dEGFP) [34] at 8-9 days in
vitro, while still in co-culture with astrocytes. Infection
was performed in culture medium with viral titer of 6.4
× 10-8 pg of p24 antigen/ml. The microglia were isolated
and re-plated 5-6 days later, and used for experiments 2
days after re-plating. Photographs were prepared at the
designated intervals after Ab exposure, and the percent
of cells expressing green fluorescent protein (GFP) were
counted in five random fields within each well.

Intracerebral amyloid-b injections
Wt and PARP-1-/- mice were given stereotaxic injections
of Ab, rAb, or saline vehicle into hippocampus (antero-
posterior 2.0 mm, mediolateral 1.5 mm, and dorsoven-
tral 2.0 mm from bregma and cortical surface) with a
Hamilton syringe. Mice received 1 μg of Ab (or rAb) in
a 1 μl injection volume. Injections were made over a 5
minute period and the needle was withdrawn after an
additional 5 minutes. Some animals received i.p. injec-
tion of PARP inhibitor (PJ34, 15 mg/kg) 15 minutes
prior the Ab injections. In a subset of experiments
FAM-Ab was used to confirm uniform injection
volumes and identify the area Ab diffusion. Mice were
euthanatized 6 hours after Ab injections, and brains
were removed after transcardial perfusion with a 0.9%
saline and 4% formaldehyde. Brains were post-fixed in
4% formaldehyde overnight, cryoprotected by immersion
in 20% sucrose for 24 hours, and stored at -80°C.

Brain immunostaining and cytokine measurements
One hemisphere (forebrain) was removed after saline
perfusion, frozen, and stored at -80°C for biochemical
studies. The remaining hemisphere was post-fixed in 4%
formaldehyde, cryoprotected in sucrose, and cryostat
sectioned into 30 μm coronal sections for immunostain-
ing. Immunostaining was performed with 30 μm coronal
sections as described previously [25,35]. Microglia were
stained using Iba-1 antibody, Ab plaques were stained
with 3D6 antibody and calbindin expression was
detected with Calbindin D-28k antibody. Primary anti-
body staining was visualized with suitable goat anti-IgG
antibody conjugated with either Alexa Fluor 594 or 488.
Brain sections were mounted on cover slips with DAPI-
labeled mounting media (Vectashield) to facilitate recog-
nition of brain structures. Negative controls were pre-
pared by omitting the primary antibodies. Microscope
imaging settings were kept uniform for all samples.
Microglial morphology was analyzed in hippocampal
CA1 and DG areas and in perirhinal cortex, with the
exception of Ab-injected brains, where microglial mor-
phology was evaluated in 250 × 200 μm area starting
100 μm lateral to the needle track. Microglial activation
was scored according to morphology and cell number
(Table 1), as modified from [25]. Calbindin expression
was determined by measuring the mean optical density
in the designated, uniform-sized regions of interest with
the ImageJ program (NIH). Values were measured on
three comparable sections from each mouse, back-
ground values were subtracted, the resulting values aver-
aged to give one value per mouse. For cytokine assays
(Milliplex multiplex assays, Millipore) the forebrain
hemispheres were homogenized 1:3 weigh to volume in
M/PIER Mammalian Protein reagent (Thermo Scientific)

Table 1 Scoring for microglial activation

Cell shape
(% with activated morphology)

Score

0% 0

1-25% 1

26-69% 2

≥70% 3

Cell number
(cells per 50 mm2)

Score

1-5 1

6-11 2

12-17 3

18-28 4

29-39 5

≥ 40 6

Microglia were identified by Iba-1 immunoreactivity. Scoring with the two
criteria were combined to yield an aggregate microglia activation score (0-9).

Kauppinen et al. Journal of Neuroinflammation 2011, 8:152
http://www.jneuroinflammation.com/content/8/1/152

Page 4 of 17



with complete protease inhibitor (Sigma), following by
centrifugation. Cytokine levels determined using stan-
dards in each assay plate, and values were normalized to
protein content of the supernatants.

Quantification of Ab
The lysates used for cytokine assay were further pro-
cessed with guanidine buffer. ELISAs were performed as
described [36] and normalized to total protein content.
We used antibodies that recognize species referred to as
Ab1-42 and Ab1-X (Elan Pharmaceuticals). The Ab1-42
ELISA detects only Ab1-42, and the Ab1-X ELISA detects
Ab1-40, Ab1-42, and Ab1-43, as well as C-terminally trun-
cated forms of Ab containing amino acids 1-28.

Behavioral testing
Novel object recognition was tested in a white square
plastic chamber 35 cm in diameter under a red light, as
previously described [37]. Mice were transferred to the
test room and acclimated for at least 1 hour. On the
first day, mice were first habituated to the testing arena
for 15 minutes and then each mouse was presented with
two identical objects in the same chamber and allowed
to explore freely for 10 min a training. On the second
day, mice were placed back into the same arena for the
10 min test session, during which they were presented
with an exact replica of one of the objects used during
training (familiar object) and with a novel, unfamiliar
object of different shape and texture. Object locations
were kept constant during training and test sessions for
any given mouse. Arenas and objects were cleaned with
70% ethanol between each mouse. Frequency of object
interactions and time spent exploring each object was
recorded with an EthoVision video tracking system
(Noldus Information Technology, Leesbug, VA). Fre-
quency of object interactions was used for analyses.
Spatial learning and memory were tested by the Mor-

ris Water Maze test, using a circular pool (122 cm in
diameter, filled with opaque water at 24°C as describe
previously [25,35]. The mice were trained first to locate
a platform with a visible cue (days 1 - 2), and then to
locate a hidden platform (days 3 - 5) using large spatial
cues in the room. The platform was moved to a new
quadrant in each session during the visible platform cue
training. The platform remained in the same quadrant
throughout all the sessions during hidden platform
training. The mice received two training sessions per
day for five consecutive days. Each session consisted of
three one-minute trials with a 10-minute inter-trial
interval. The interval between the two daily sessions was
3 hours. Once the mice located the platform they were
allowed to remain on it for 10 seconds. Mice that failed
to find the platform within one minute were manually
placed on the platform for 15 seconds. Time to reach

the platform (latency), distance traveled (path length),
and swim speed (velocity) were recorded with a video
tracking system (Noldus).

Statistical analysis
For in vivo studies, the “n” denotes the number of mice
in each group, and for cell culture studies the “n”
denotes the number of independent experiments, each
performed in triplicate or quadruplicate. All data are
expressed as the mean ± SEM. Microglial morphological
changes were evaluated with the Kruskal-Wallis test fol-
lowed by the Dunn’s test for multiple group compari-
sons. Data form Morris Water Maze test was analyzed
by repeated measures one-way ANOVA. All other data
were compared with ANOVA followed by the Bonferro-
ni’s test for multiple group comparisons.

Results
Effects of PARP-1 deficiency in hAPPJ20 mice
The hAPPJ20 mouse expresses human amyloid precursor
protein with AD-linked mutations [28]. The hAPPJ20

mice were crossed with PARP-1-/- mice to evaluate the
effects of PARP-1 gene deletion in this mouse model of
AD. Spatial memory decline in hAPPJ20 mice correlates
with loss of calbindin in the hippocampus [38]. A loss
of calbindin in the hAPP mouse hippocampus was like-
wise observed in the present study (Figure 1A). This
loss was attenuated in the hippocampal CA1 pyramidal
layer of the hAPPJ20/PARP-1

-/- mice, but not in the den-
tate gyrus (Figure 1). Cognitive testing confirmed defi-
cits in the hAPPJ20 mice as assessed by both the novel
object recognition test and the Morris water maze test
of spatial memory (Figure 2). The hAPPJ20/PARP-1

-/-

mice performed better than the hAPPJ20 mice in the
novel object recognition test, but not in the Morris
water maze test (Figure 2).
The hAPPJ20 mice exhibit Ab accumulation and scat-

tered amyloid plaque formation by age 6 months [28].
These mice also show accumulation of amoeboid micro-
glia at the amyloid plaques, and increased number of
activated microglia throughout cortex and hippocampus
(Figure 3). Despite comparable levels of Ab accumula-
tion in hAPPJ20 and hAPPJ20/PARP-1

-/- mice (Figure
3E), microglial activation was reduced in the hAPPJ20/
PARP-1-/- mice, in both amyloid plaques and in non-pla-
que areas (Figure 3). The total number of microglia was
not statistically different between genotypes, in either
amyloid plaque areas (hAPPJ20 vs. hAPPJ20/PARP-1

-/-;
7.06 ± 0.94 vs. 6.22 ± 1.36 cells per mm2) or in non-pla-
que areas (Figure 3).
Cytokine levels in the hAPPJ20 mouse brains were not

significantly different than in wt brains, but some cyto-
kines were altered in the PARP-1-/- and the hAPPJ20/
PARP-1-/- brains (Table 2).
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PARP-1 regulates Ab-induced microglial activation in
brain
We considered the possibility that ageing hAPPJ20 mice
might express other factors, in addition to Ab, that pro-
mote microglial activation. To directly determine the
effects of PARP-1 deficiency on Ab-induced microglial
activation, we injected oligomeric Ab directly into the
hippocampus of wt and PARP-1-/- mice. The Ab injec-
tions induced soma enlargement and process retraction
characteristic of activated microglia, and also increased
microglial number in the area of injection (Figure 4).
These changes were evident within 6 hours of the Ab
injections and were restricted to the area where Ab was

detected, i.e. ~500 μm from the injection needle track.
In contrast, mice injected with vehicle (saline) or with a
control, reverse-sequence Ab (rAb) showed microglial
activation only in the immediate vicinity of the needle
track lesion. Ab injected into either PARP-1-/- mice or
wt mice treated with the PARP-1 inhibitor PJ34 pro-
duced substantially less microglial activation than Ab
injected into untreated wt mice (Figure 4).

PARP-1 regulates Ab-induced microglial activation in cell
culture
Results of the studies presented above suggest that the
protective effects of PARP-1 deficiency are attributable
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to attenuated activation of PARP-1-/- microglia. How-
ever, since PARP-1-/- mice also lack PARP-1 in neu-
rons, astrocytes, and other cell types, it is alternatively
possible that the attenuated microglia response in
these mice is secondary to effects of PARP-1 gene
deletion in other cells. We therefore used cell cultures
to assess the direct effects of PARP inhibition on
microglia. Ab stimulation of wt microglia induced
transformation to either the fully activated amoeboid
appearance or to a partially activated morphology, with
enlarged soma and fewer, thickened processes. By con-
trast, PARP-1-/- microglia retained the resting, ramified
morphology, as did microglia of either genotype trea-
ted with vehicle or with the control peptide, rAb (Fig-
ure 5). Microglial proliferation and viability were not
affected by Ab incubation (not shown). A rapid accu-
mulation (within 1 hour) of poly(ADP-ribose) (PAR)

was detected in Ab-stimulated wt microglia, indicating
enzymatic PARP-1 activity. The accumulation of PAR
was blocked by co-incubation with the PARP inhibitor,
PJ34 (Figure 5). PJ34 also blocked morphological trans-
formation in microglia treated with Ab exposure, sup-
porting a requisite role for microglial PARP-1 activity
in this process (Figure 5).

PARP-1 regulates microglia - mediated Ab neurotoxicity
Microglial activation by Ab and other stimuli can pro-
mote neuronal death [34,39-41]. We evaluated the role
of PARP-1 in microglial neurotoxicity using neuron-
microglia co-cultures. Twenty-four hours incubation
with 5 μM Ab caused no significant cell death in neuron
monocultures, but killed more than 50% of neurons cul-
tured with wt microglia. The microglia-mediated Ab
toxicity was abolished in cultures treated with the
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sequential testing days. * p < 0.05 vs. wt; n = 8-12.
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PARP-1 inhibitor, PJ34, and in wt neurons co-cultured
with PARP-1-/- microglia (Figure 6).

PARP-1 regulates Ab-induced microglial activation via NF-�B
The transcription factor NF-�B is involved in many aspects
of microglial inflammatory responses [42], and PARP-1
regulates the transcriptional activity of NF-�B [15,19].
Microglia cultures were transfected with an NF-�B-driven
eGFP reporter gene [34] to evaluate the effects of Ab and
PARP-1 on NF-�B transcriptional activation in microglia.
Ab produced a large increase in the number of microglia
expressing eGFP when assessed at either 90 minutes or 24
hours, and this increase was prevented by PARP inhibition
(Figure 7A,B). Nitric oxide release and TNFa release are
both regulated by NF-�B in myeloid cells [40,43]. Accord-
ingly, microglial release of NO and TNFa were found to
be stimulated by Ab, and blocked by the NF-�B inhibitor,
BAY 11-7082 [44]. The release was also blocked by the
PARP-1 inhibitor PJ34 and in PARP-1-/- cells (Figure 7C,
D). PJ34 and BAY 11-7082 also reduced microglial release
of NO and TNFa in the absence of Ab stimulation
although basal release was not reduced in PARP-1-/- micro-
glia (data not shown). Ab stimulation also increased release
of other NF-�B regulated cytokines (KC, RANTES, MCP-
1and MIP-1b; Table 3). The magnitude of increase was
reduced by PARP-1 abrogation, but the statistical signifi-
cance was not reached or was lost after correction for the
multiple group comparisons (Table 3).

PARP-1 modulates microglial trophic factor release
Activated microglia can also release, in addition to neu-
rotoxic agents, several cytokines and trophic factors that

can promote neuronal survival [8,45-47]. In particular,
vascular endothelial growth factor (VEGF) and trans-
forming growth factor b (TGFb) are released by micro-
glia [48-50] and have beneficial effects in experimental
AD ([51,52], but see also [53]). Here, Ab was found to
reduce microglial release of both VEGF and TGFb. This
reduction was reversed by inhibitors of PARP-1 and NF-
�B (Figure 8). These treatments also increased basal
VEGF and TGFb release (not shown).

PARP-1 inhibition does not impair phagocytosis of Ab
peptides
We examined the possibility that the reduced microglial
activation produced by PARP-1 inhibition might also
result in reduced clearance of Ab peptides, using FAM-
labeled Ab. Cultured microglia rapidly engulfed and
accumulated the FAM-Ab peptides, and this was unaf-
fected by PARP-1 inhibition or PARP-1-/- genotype (Fig-
ure 9). Of note, PARP-1-/- microglia with engulfed Ab
peptide maintained the resting, ramified morphology,
unlike the wt microglia (Figure 9C).

Discussion
Ab, in addition to its direct effects on neuronal and
synaptic function, may also stimulate microglial activa-
tion and pro-inflammatory responses in AD. Results
presented here characterize the effects of PARP-1 on
Ab-induced microglial activation. hAPPJ20 mice exhib-
ited microglial activation, reduced hippocampal CA1
calbindin expression, and impaired novel object recogni-
tion at age 6 months, and all these features were attenu-
ated in hAPPJ20 mice lacking PARP-1 expression.
Similarly, Ab injected into mouse brain produced a
robust microglial response, and this response was
blocked in mice lacking PARP-1 expression or activity.
Studies using microglial cultures showed that PARP-1
expression and activity were required for Ab-induced
NF-�B activation, morphological transformation, NO
release, and TNFa release. PARP-1 expression and
activity were also required for Ab-induced microglial
neurotoxicity. Conversely, PARP-1 inhibition increased
microglia release of TGFb and VEGF, and did not
impair microglial phagocytosis of Ab peptide.
Ab injections into brain produced a robust microglial

reaction localized to the area of Ab diffusion. The local
concentration of Ab peptides produced by these injec-
tions is likely much higher than occurs in AD, and the
sudden increase in Ab is non-physiologic; however, the
near-complete absence of Ab-induced microglial activa-
tion in PARP-1-/- mice or in wt mice treated with a
PARP-1 inhibitor supports the idea that PARP-1 activity
is essential for microglial activation in response to Ab.
Microglial activation in the hAPPJ20 mouse was much
less pronounced than that induced by Ab injection, and

Table 2 Cytokine levels in mouse brain

wt PARP-1-/- hAPP hAPP/PARP-1-/-

IP-10 38.2 ± 2.5 62.5 ± 7.7 * 48.9 ± 6.7 87.0 ± 27.1 * #

KC 32.8 ± 3.1 43.6 ± 4.8 * 28.1 ± 2.5 36.6 ± 4.6

MCP-1 69.3 ± 5.3 85.3 ± 7.4 69.2 ± 7.4 85.6 ± 9.3

MIP-1a 18.5 ± 1.5 20.9 ± 2.7 20.6 ± 1.6 18.9 ± 1.8

IFNg 1.8 ± 0.4 2.7 ± 0.6 1.9 ± 0.7 2.3 ± 0.5

IL-1b 6.6 ± 0.7 8.4 ± 1.1 7.6 ± 0.8 9.0 ± 1.1

IL-6 13.5 ± 4.9 8.9 ± 2.4 13.2 ± 9.0 11.3 ± 5.9

TNFa 3.0 ± 0.2 3.6 ± 0.4 3.1 ± 0.2 3.2 ± 0.3

IL-4 0.5 ± 0.3 1.1 ± 0.4 0.8 ± 0.4 2.0 ± 1.1

IL-10 7.0 ± 1.1 9.2 ± 1.0 7.1 ± 1.4 8.2 ± 1.3

IL-13 3.2 ± 1.7 11.7 ± 3.9 * 4.5 ± 1.7 6.9 ± 3.0

VEGF 7.8 ± 1.5 8.4 ± 2.1 10.9 ± 2.4 9.5 ± 2.8

Data presented as pg/mg protein, mean ± SEM. n = 8-12. * p < 0.05 for
comparison against wt, # p < 0.05 for comparisons between hAPP vs. hAPP/
PARP-1-/- (ANOVA with Bonferroni correction). Differences were not statistically
significant when corrected for comparisons between the 12 cytokines
analyzed. RANTES and TGFb were also measured, but values were below
calibration limits.
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interpretation of studies in the hAPPJ20/PARP-1
-/- mice

are complicated by the fact that neurons and other cell
types in these mice also developmentally lack PARP-1
expression. Nevertheless, PARP-1 depletion reduced the
number of activated microglia in hAPPJ20 mice, in both
amyloid plaques and non-plaque areas., while the total
number of microglia was not affected. This finding
together with the in vitro data demonstrates that PARP-
1 abrogation does not affect viability or proliferation of
Ab-stimulated microglia. The comparable numbers of
microglia in these analyses also suggests that PARP-1

depletion does not affect the migration of microglia or
blood-born macrophages during Ab stimulation.
Lesion and c-fos imaging studies suggest that the CA1

is involved in novel object recognition [54,55], whereas
dentate gyrus lesions cause impaired spatial learning
and memory [38]. Here, as previously reported [38], a
loss of calbindin immunoreactivity was observed in the
hippocampus of the hAPPJ20 mice. Relative to the
hAPPJ20 mice, the hAPPJ20/PARP-1

-/- mice had less cal-
bindin depletion in the hippocampal CA1, but not in
the dentate gyrus. There is no obvious explanation for
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this regional difference, but this histological finding does
comport with the mouse cognitive assessments, in
which the hAPPJ20/PARP-1

-/- mice performed better
than hAPPJ20 mice in the novel object recognition test,
but not in the test of spatial memory.
NF-�B plays a major role in mediating Ab-induced

microglial neurotoxicity [34]. Results of the present cell
culture studies indicate that effects of PARP-1 expres-
sion on microglial inflammatory responses are mediated,
at least in part, through its interactions with NF-�B.
PARP-1 abrogation prevented Ab-induced NF-�B tran-
scriptional activity, as evaluated with a �B driven eGFP

reporter gene. In addition, pharmacological inhibition of
NF-�B translocation reduced microglial NO and TNFa
release to an extent comparable to that achieved with
PARP-1 abrogation, and inhibitors of both NF-�B and
PARP-1 have been shown to block microglial morpholo-
gical activation [24,25]. A link between PARP-1 activa-
tion and NF-�B has been established [16,17,19,25];
however, PARP-1 also interacts with AP-1, NFAT, and
Elk-1 [14,56,57], and PARP-1 interactions with these or
other transcription factors may also regulate microglia
responses to Ab. Of note, PARP-2 and other PARP spe-
cies also interact with transcription factors that regulate
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Table 3 Cytokine levels in microglia cultures

wt microglia PARP-1-/- microglia

Cytokine Basal
concentration

Fold change with treatment Basal
concentration

Fold change with treatment

Ab Ab+PJ34 Ab Ab+PJ34

KC 0.78 ± 0.27 3.03 ± 1.5# 1.77 ± 0.67 0.39 ± 0.1* 1.17 ± 0.19† 1.08 ± 0.09

RANTES 1.46 ± 0.32 2.26 ± 0.86# 1.4 ± 0.27 0.76 ± 0.1* 1.69 ± 0.29# 2.36 ± 0.83

MCP-1 2.58 ± 1.07 1.81 ± 0.25# 1.15 ± 0.07† 1.06 ± 0.47 0.94 ± 0.18† 1.16 ± 0.33

MIP-1b 60.6 ± 41.9 1.91 ± 0.20# 1.44 ± 0.33 18.9 ± 4.6* 1.77 ± 0.28# 1.68 ± 0.19

IP-10 326 ± 113 0.36 ± 0.12 0.56 ± 0.10 43.4 ± 2.2* 0.48 ± 0.07 0.68 ± 0.21

IFNg 5.63 ± 1.84 1.08 ± 0.13 0.74 ± 0.10 4.78 ± 2.26 3.14 ± 2.27 0.97 ± 0.68

IGF-1 11.1 ± 2.81 1.09 ± 0.02 1.93 ± 0.46 9.93 ± 0.23 1.17 ± 0.07 1.24 ± 0.17

Where indicated, cultures were treated with 5 μM Ab, or 5 μM Ab plus 400 nM PJ34 for 24 hours. Basal concentrations are pg/ml, normalized to microglial
protein concentration; mean ± SEM. * p < 0.05 for comparison between wt and PARP-1-/-. Changes induced by the designated treatments are expressed relative
to the basal concentration from each of 4 independent experiments (means ± SEM). # p < 0.05 for comparison between basal concentration and Ab treatment. †
p < 0.05 for comparisons against the Ab treated wild-type cells (ANOVA with Dunnett’s post-test). Differences were not statistically significant when corrected for
comparisons between the 7 cytokines analyzed. IL-1a, IL-1b, IL-2, IL-3, IL-4, IL-5, IL-6, IL-9, IL-10, IL-12(p40 &p70), IL-13, IL-17 and GM-CSF were also measured but
remained below calibration limits.
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inflammation, and consequently the effects of PJ34 and
other PARP-1 inhibitors could be mediated in part by
these other PARP species [58].
Several secreted factors have been identified as media-

tors of microglial neurotoxicity, including TNFa and
NO [40,59-61]. Results presented here show that Ab-
induced microglial neurotoxicity is PARP-1 dependent,
an effect that may be attributable to the decreased
release of both TNFa and NO observed with PARP-1
abrogation. In addition, Ab-induced reduction of micro-
glial TGFb and VEGF release was attenuated by PARP-1
abrogation. Given that both of these factors suppress
classical microglial activation [10], and TGFb in addition
promotes microglial phagocytosis and reduces Ab accu-
mulation in experimental AD [9], effects mediated by
these trophic factors may be an additional mechanism
by which PARP-1 influences brain response to Ab.
Increased phagocytic activity is also a feature of

microglial activation [4]. We therefore evaluated the
possibility that PARP-1 inhibition could block microglial
phagocytosis of Ab, because this effect may be deleter-
ious in AD brain. Results of these studies showed that
PARP-1 activation does not block Ab phagocytosis:
levels of both total Ab and Ab1-42 were very similar in
the hAPPJ20 and hAPPJ20/PARP-1

-/- mice, and uptake of
Ab by cultured microglia was unaffected by either
PARP-1 deficiency or PARP-1 inhibition. These results
are consistent with prior reports that minocycline,
which is a potent PARP inhibitor [62], likewise does not
block Ab phagocytosis by microglia [63,64].

Conclusions
The present study is, to our knowledge, the first to eval-
uate the therapeutic potential of PARP-1 inhibition in
AD. The results show that PARP-1 inhibition attenuates
Ab-induced microglial activation and microglial neuro-
toxicity. PARP-1 inhibitors are entering clinical use for
other conditions, and compounds such as minocycline
with potent PARP-1 inhibitory effects are being explored
in AD models [65-67]. Results presented here support
the rationale for this approach to suppressing neurotoxic
aspects of Ab-induced microglial activation in AD.
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