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Eosinophils in glioblastoma biology
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Abstract

Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults. The development of this
malignant glial lesion involves a multi-faceted process that results in a loss of genetic or epigenetic gene control,
un-regulated cell growth, and immune tolerance. Of interest, atopic diseases are characterized by a lack of immune
tolerance and are inversely associated with glioma risk. One cell type that is an established effector cell in the
pathobiology of atopic disease is the eosinophil. In response to various stimuli, the eosinophil is able to produce
cytotoxic granules, neuromediators, and pro-inflammatory cytokines as well as pro-fibrotic and angiogenic factors
involved in pathogen clearance and tissue remodeling and repair. These various biological properties reveal that
the eosinophil is a key immunoregulatory cell capable of influencing the activity of both innate and adaptive
immune responses. Of central importance to this report is the observation that eosinophil migration to the brain
occurs in response to traumatic brain injury and following certain immunotherapeutic treatments for GBM.
Although eosinophils have been identified in various central nervous system pathologies, and are known to
operate in wound/repair and tumorstatic models, the potential roles of eosinophils in GBM development and the
tumor immunological response are only beginning to be recognized and are therefore the subject of the present
review.
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Introduction
Glioblastoma (GBM), atopy, and the immune response
Cancer is a multi-faceted cellular process involving the
exploitation of genetic and/or epigenetic DNA modifica-
tions by a microenvironment that endows immune pri-
vilege. This process has been characterized as occurring
in three stages known as initiation, promotion and pro-
gression where each stage respectively relates to the bio-
logical events required for the formation, proliferation
and migration of altered immortal cells [1]. Each of
these developmental stages may be influenced by
immune cells [2]. Although the brain has historically
been considered an organ of immune privilege [3],
recent research indicates that immune cells may play a
pivotal role in both the development of and host defense
against brain tumors [4-6].
In U.S. adults, primary brain tumors account for 2% of

all cancers, yielding approximately 22,000 diagnoses and
13,000 deaths annually [7]. The developmental patholo-
gies of brain tumors are diverse and may be influenced

by age, gender, environmental factors and/or genetic
predispositions. These tumors may be classified as
glioma (astrocytoma, oligodendroglioma, ependymomas)
or non-glioma (meningiomas, pituitary tumors and
medulloblastomas) [8]. Gliomas account for approxi-
mately 30% of all brain tumors and 80% of malignant
brain tumors [9]. Glioblastoma multiforme (GBM) is the
most common malignant glioma, and is generally lethal
within one year after diagnosis [10].
Treatment of GBM is confounded by the complex

nature of the tumor and the tumor microenvironment.
GBM tumor cells have been indicated to evade surgical,
radiotherapeutic, chemotherapeutic and immunothera-
peutic interventions by respectively infiltrating into the
surrounding brain tissue, down-regulating tumor sup-
pressor proteins, up-regulating DNA repair enzymes,
and producing immunosuppressive cytokines [11].
Tumor evasiveness is also thought to involve chronic
inflammation and the recruitment of myeloid suppressor
cells and T-regulatory cells that effectively obstruct
innate and adaptive anti-tumor immune responses
[6,12]. This antigenic tolerance is lacking in atopic dis-
eases [13] which reportedly have an inverse association
with glioma risk [14-23] (see Table 1). In the atopic

* Correspondence: colleen_curran@hotmail.com
Department of Biomolecular Chemistry, University of Wisconsin School of
Medicine and Public Health, Madison, WI 53706, USA

Curran and Bertics Journal of Neuroinflammation 2012, 9:11
http://www.jneuroinflammation.com/content/9/1/11

JOURNAL OF 
NEUROINFLAMMATION

© 2012 Curran and Bertics; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

mailto:colleen_curran@hotmail.com
http://creativecommons.org/licenses/by/2.0


immune response, aberrant recognition of antigen/aller-
gen by antigen presentation cells (APCs: e.g. Dendritic
cell, B cell) allows for the processing of antigen/allergen
into a peptide for presentation via major histocompat-
ibility complex (MHC) [24]. Full activation of APCs
requires MHC plus peptide interaction with the T cell
receptor (TCR) and CD40 ligation whereas full activa-
tion of T cells requires MHC:peptide:TCR interaction
and CD28 ligation to CD80/86 [25]. Further interactions
involving the B cell surface marker, CD21, with soluble
CD23 and B cell cytokine stimulation (IL-4, IL-13)
induces the generation of plasma cells specific for the
immunoglobulin IgE, the most common immunoglobu-
lin in allergy and asthma [26,27]. High serum CD23 and
IgE levels are associated with increased GBM patient
survival [28,29]. These molecules are also found to acti-
vate of mast cells and eosinophils [30]. Cytokines and
chemokines produced by activated mast cells, T cells,
and APCs increase vascular permeability for the
enhanced recruitment of granulocytic immune cells (e.
g., eosinophils, macrophages, and neutrophils) and the
development of chronic inflammation [31]. In the tumor
immunological response, chronic inflammation is also
found to occur but the biological features distinctly dif-
fer [12]. Immuno-suppressive cytokines (IL-10, TGF-b)
secreted by tumor cells, suppressor macrophages, and T
regulatory (CD4+ Treg) cells that in association with

additional mediators or cell:cell interactions inhibit the
pro-inflammatory functions of dendritic cells, provoke
chronic inflammation associated with tumorigenesis,
and prevent a specific adaptive immune response
required in tumor eradication [12,32]. Thus, the distinct
immune activation parameters in an allergic response
may be imperative to immunotherapeutic treatments in
cancer. In this regard, a comparison of the immune
responses observed in cancer versus atopic diseases is
summarized in Figure 1.

Eosinophils
Eosinophils are myeloid cells known to accumulate at
specific sites, such as the lung and gastrointestinal tract,
in the pathobiology of atopic disease [33]. The functions
of eosinophils are diverse and include organ develop-
ment, tissue homeostasis, antigen presentation, wound
repair, tissue remodeling, cytotoxic clearance of patho-
gens, nerve growth, and the production of various che-
mokines and cytokines known to influence both innate
and adaptive immune responses [34-36]. In asthma,
eosinophil recruitment has been characterized by early
phase IgE-mediated activation of mast cells, the produc-
tion of pro-inflammatory cytokines (e.g.: IL-2, IL-4, IL-5,
GM-CSF) and the late phase recruitment of Th2 cells
and eosinophils [37]. These events are preceded by the
generation of IgE producing plasma cells (see Figure 1).

Table 1 Case studies assessing the association between atopic disease and glioma

Number of glioma cases Relationship between atopic disease and glioma risk
Relative risk (RR), Odds ratio (OR),

Confidence interval (CI)

Year/
Reference

1,178 Allergy: RR = 0.59, 95% CI: 0.49-0.71
Asthma: RR = 0.75, 95% CI: 0.55-1.03
Eczema: RR = 0.64, 95% CI: 0.47-0.86

1999/[14]

405 Allergy: OR = 0.47, 95% CI: 0.33-0.67 2002/[15]

489 Allergy: OR = 0.67, 95% CI: 0.52-0.86
Asthma: OR = 0.63, 95% CI: 0.43-0.92
Eczema: OR = 0.76, 95% CI: 0.45-1.27

2002/[16]

965 Allergy: OR = 0.65, 95% CI: 0.47-0.90
Asthma: OR = 0.71, 95% CI: 0.54-0.92
Eczema: OR = 0.74, 95% CI: 0.56-0.97

2006/[17]

1,527 Allergy: OR = 0.70, 95% CI: 0.61-0.80
Asthma: OR = 0.65, 95% CI: 0.51-0.82
Eczema: OR = 0.65, 95% CI: 0.54-0.79

2007/[18]

3450 Allergy: OR = 0.61, 95% CI: 0.55-0.67
Asthma: OR = 0.68, 95% CI: 0.58-0.80
Eczema: OR = 0.69, 95% CI: 0.58-0.82

2007/[19]

535 Allergy: OR = 0.59, 95% CI: 0.41-0.85 2009/[20]

366 Allergy: OR = 0.92, 95% CI: 0.70-1.22
Asthma: OR = 0.65, 95% CI: 0.36-1.19
Eczema: OR = 0.91, 95% CI: 0.65-1.27

2009/[21]

388 Allergy: OR = 0.34, 95% CI: 0.23-0.50
Asthma: OR = 0.96, 95% CI: 0.58-1.59
Eczema: OR = 0.70, 95% CI: 0.30-1.64

2009/[22]

855 Allergy: OR = 0.62, 95% CI: 0.51-0.76 2011/[23]
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Murine in vitro and in vivo studies suggest that eosino-
phils are required for the long-term maintenance of
plasma cells [38,39]. Cytokines produced by mast cells
or CD4+ T cells (e.g.: IL-3, IL-5, GM-CSF) are known
to induce the differentiation, activation, and survival of
eosinophils [40,41]. Activated eosinophils produce cyto-
toxic mediators, pro-inflammatory cytokines, pro-fibro-
tic and angiogenic factors that may alter innate
(basophils, mast cells, neutrophils, dendritic cells) and
adaptive (T cells) immune responses [35,42]. The activa-
tion state of eosinophils may therefore also affect the
tumor microenviroment and tumor development.

Eosinophils and cancer
Previous research has suggested that organs interfacing
with the external environment (i.e., mouth, gastrointest-
inal tract, cervix) are more likely to exhibit inverse

associations between allergy and cancer risk than non-
interfacing organs (i.e., ovary, breast, prostate) [43]. The
possible interaction of neural stem cells and glial pro-
genitor cells with airborne pathogens via the olfactory
bulb in the lateral ventricles of the brain suggests that
glioma development may also be precluded as a result
of an interface with the external environment [43,44].
Eosinophils are an established effector cell in atopic dis-
ease [33] and may therefore participate in the reported
inverse associations between atopic disease (allergy,
asthma, eczema) and the risk of glioma (see Table 1),
oral cancers [45], and gastrointestinal tract cancers
[46,47]. Despite differences in clinical protocols, organ
microenvironment, and measurements to identify eosi-
nophilia, a link between certain tumors (colon, stomach,
brain, oral/mouth, penile, and uterine/cervix; see Table
2) and eosinophilia has been identified at various stages
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Figure 1 The immune response in cancer and atopic disease. (1) Full activation of antigen presentation cells (APCs: e.g. Dendritic cell, B cell)
and T cells. (2) T cell cytokines (IL-4, IL-13) and soluble CD23 ligation to CD21, induces B cell differentiation, the generation of plasma cells, the
production of IgE, and the subsequent IgE-dependent activation of mast cells. (3) Activated mast cells, APCs, and T cells produce chemokines
and cytokines that recruit granulocytic cells (eosinophils, macrophages, neutrophils). (4) Immuno-suppressive cytokines (IL-10, TGF-b) are
produced by tumor cells, suppressor macrophages, and T regulatory (CD4+ Treg) cells. These cytokines and additional mediators or cell:cell
interactions prevent a specific adaptive immune response required in tumor eradication (see text for additional details).
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of disease progression and in association with enhanced
patient survival [48-57]. Similar studies with respect to
genitourinary cancers, however, are not uniform in out-
come [43] (see Table 2). This observation may be a
result of patient exposure to certain viruses [58], the
organ interface with the external environment [43], hor-
monal influence [59,60] or a lack of relevant investiga-
tional research. Of interest, eosinophilia in human
cancers involving the immune system (Hodgkin’s dis-
ease, cutaneous T cell lymphoma (CTCL)) has been
associated with reduced patient survival (Table 2). The
progression of these same diseases is positively influ-
enced by immune factors (IgE, IL-5) known to promote
the allergic response and induce the recruitment and
activation of eosinophils [30,37,49,61-63]. These human
cancers also exhibit a strong Th2 (CD4+) response but

lack specific Th1 cytotoxic T cell (CD8+) populations
[64,65]. Human atopic diseases are characterized not
only by CD4+ T cell influx but also by CD8+ T cell
effector functions [66,67], suggesting that the eosinophi-
lia associated with adaptive CD8+ T cell immune
responses may be essential in the host defense to
tumors and allergens.

Eosinophils and GBM
Eosinophils accumulate in various human central ner-
vous system disorders (eosinophilic meningoencephalitis,
idiopathic hypereosinophilic syndrome encephalopathy,
eosinophilic meningitis, peripheral neuropathy), includ-
ing tumors of the brain (neuroblastoma, leiomyoma,
glioblastoma) [52,68-75]. Interestingly, eosinophilic
meningitis has been identified in a case of disseminated

Table 2 Identification of eosinophilia in human cancers

Cancer Type Treatment Eosinophil localization Outcome

Colonic epithelial
neoplasms [48]

Resection Tumor tissue Tissue eosinophilia significantly identified in
adenomas was not found in invasive

carcinomas.

Cutaneous T Cell
Lymphoma (CTCL)

[49]

Physical exam and blood draw Blood Patients in the late stages of CTCL were
found to have significantly elevated IgE levels

and eosinophilia.

Gastric cancer [50] Gastrectomy with lymph node dissection
without preoperative irradiation and

immunochemotherapy

Blood, tumor tissue Tissue eosinophilia was significantly associated
with poorly differentiated tumors and

increased patient survival. The degree of
eosinophilic infiltration into tumors correlated

with blood eosinophilia.

Hodgkin’s disease
[51]

Chemotherapy and/or radiation Diagnostic lymph nodes Clinical outcome was significantly worse for
patients with tissue eosinophilia

Malignant glioma
[52]

IL-2 combined with ex vivo activated
autologous killer cells was infused via an

indwelling catheter placed into the surgical
resection cavity.

Intracavitary fluid,
inracavitary tissue,
cerebral spinal fluid

Immunotherapy induced eosinophilia in the
intracavitary fluid, tissue, and cerebral spinal
fluid. Identified eosinophilia appeared to
correlate with longer patient survival.

Non-hematological
cancers that had
either failed
conventional
therapy or for

which no standard
therapy exists [53]

Simultaneous subcutaneous injections of IL-2
and IL-4 were given 5 days a week for 3
consecutive weeks followed by a 1 week

rest period = 1 cycle.

Blood samples were drawn
before the start of therapy and
at the completion of each cycle

of treatment.

Eosinophilia of unknown significance occurred
in all patients and was generally highest

when measured on the fifth day of the third
treatment week.

Oral squamous cell
carcinoma [54]

Resection Tumor tissue of the oral tongue,
floor of the mouth, retromolar

area and inferior gingiva

Tissue eosinophilia may represent a favorable
prognostic factor in clinical stage II and III oral
squamous cell carcinomas from the floor of
the mouth, oral tongue, retromolar area, and

inferior gingiva.

Penile cancer [55] Partial penectomy, circumcision,
lymphadenectomy and/or irradiation

depending upon staging

Tumor tissue Penile cancer patients with tissue eosinophilia
tended to live longer. Eosinophils were

identified at a higher rate in stages I and II
than in stages III and IV.

Renal cell
carcinoma [56]

IL-2 was given subcutaneously for 5 days
per week, together with interferon-alpha by

intramuscular route twice weekly, for 4
consecutive weeks corresponding to one

treatment cycle.

Blood Pre-treatment and post-treatment eosinophilia
was a predictive indicator of immunotherapy

failure.

Uterine cervix
carcinoma [57]

Hysterectomy Tumor tissue Eosinophilia was associated with statistically
improved survival in women with stage IB

cervical carcinomas.

Curran and Bertics Journal of Neuroinflammation 2012, 9:11
http://www.jneuroinflammation.com/content/9/1/11

Page 4 of 14



GBM [74]. Eosinophils have also been shown in an in
vivo murine model to be recruited to necrotic tissue
[76], which is also a primary determinant of human
GBM [77]. Clinico-pathological assessment of human
eosinophil migration to the brain has been indicated to
occur in the development of subdural hematomas
[78,79], a condition that emerges in response to
increased intracranial pressure in some human GBM
case studies [80,81]. Marked eosinophilia in sediments
of spinal fluid has been identified in patients with intra-
cerebral neoplasms, including one case of GBM [82]. In
two separate clinical trials, enhanced GBM patient survi-
val was associated with tissue eosinophilia found after
postoperative treatments with interleukin-2 (IL-2)
[52,75]. Human eosinophils in an in vitro study have
also been reported to be responsive to S100B [83], a
possible blood marker in some GBM cases that is
known to be released by CD8+ T cells, astrocytes, oligo-
dendrocytes, and tumor cells [84-86]. However, the
mechanisms by which eosinophils may function in tissue
destruction or remodeling and repair are not clearly
understood [35,87]. Thus, the purpose of this review is

to examine the potential roles of eosinophils in the
stages of GBM development and the tumor immune
response (see Figure 2).

Initiation
Known factors in initiating GBM tumor formation
Malignant gliomas are thought to originate from neu-
roectodermal stem cells or tumor progenitor cells [88].
Genetic and/or epigenetic alterations in these cells pro-
mote the dysregulation of several signaling molecules/
networks involving intracellular (MDM2, PTEN, TP53,
annexin A7) and extracellular (platelet-derived growth
factor, epidermal growth factor, vascular endothelial
growth factor, fibroblast growth factor) protein function
[88,89]. While the development of this genomic instabil-
ity is not clearly known, rare genetic disorders (Li-Frau-
meni syndrome, neurofibromatosis, Turcot’s syndrome),
ionizing radiation, and oxidative stress from toxic che-
mical exposure or biological aging have been implicated
in gliomagenesis [90-93]. Evidence supporting human
cytomegalovirus (HCMV) infections and interleukin-4
receptor alpha (IL-4Ra) or IL-13 single nucleotide
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Figure 2 The potential role(s) of tumor associated eosinophils. Tumor development has been characterized as proceeding through several
stages (initiation, promotion, progression). The initiation stage is a period of mutagenesis where genetic and/or epigenetic alternations in stem
cells or progenitor cells are established. The promotion stage invokes cellular growth (mitogenesis) that is induced by growth factors and altered
apoptotic cell signal pathways. This increased cell division creates a microenvironment of metabolic stress, hypoxia and necrotic cell death that
has also been associated with thrombosis. The progression stage involves additional genetic and epigenetic events that confer phenotypic
changes necessary for tumor cell autonomous growth, invasiveness, and migration. Eosinophils are able to produce growth factors, cytokines,
chemokines, blood coagulants, and cytotoxic mediators that may affect each stage of tumor development.
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polymorphisms (SNPs) as GBM risk factors have also
been found [94-98], suggesting that inflammation may
play a role in GBM etiology.

IL-4 and cancer
The cytokines, IL-4 and IL-13, share a common receptor
component, the IL-4Ra, and can initiate many similar
immune responses [99]. These cytokines also play a
pivotal role in the allergic response by stimulating B cell
IgE synthesis and inducing epithelial production of pro-
eosinophilic chemokines (eotaxin, monocyte chemotactic
protein-1 (MCP-1)) [99]. As a result, clinical assessment
of anti-IL-13 antibodies is being explored in the treat-
ment of asthma with some improvement in lung func-
tion indicated [100]. However, in one asthmatic study
involving 56 patients, the recruitment of eosinophils was
not affected by anti-IL-13 therapy [101], perhaps due to
alternative responses via IL-4 [99]. In a Phase I clinical
trial of IL-4 involving cancer patients with non-hemato-
logical refractory malignancies, systemic eosinophil
degranulation was identified in patient serum, urine, and
skin biopsies of rashes via increased identification of the
eosinophil granule protein, major basic protein (MBP)
[102]. Patient sera were also examined for eosinophil
viability factors where the cytokines IL-5, IL-3 and GM-
CSF were identified in mediating the response [102].
Because of the identified activity of eosinophils, addi-
tional Phase I and II trials were explored but no signifi-
cant tumor response was obtained in examinations of
refractory malignancies [103,104]. Further assessment
involving the co-administration of IL-4 and IL-2
resulted in eosinophilia of unknown significance in all
patients studied [53] (see Table 2). Efforts to understand
eosinophilia and the tumor response to IL-4 in rodent
models, including studies of GBM, revealed that the
release of IL-4 at the tumor site induced significant eosi-
nophil influx, tumor rejection, and the prolonged survi-
val of nude mice [105-107]. Another in vivo murine
study demonstrated that IL-4-mediated tumor suppres-
sion involved the production of the cytokine interferon-
gamma (IFN-g) [108], which supports subsequent find-
ings indicating that IL-4-transfected tumor cell vaccines
promoted Th1 immunity [109]. In asthmatic patients,
production of IFN-g by CD8+ T cells has been identified
[110,111]. In ovalbumin sensitized rats, production of
IFN-g by CD8+ T cells suppressed eosinophilia, and in
human eosinophils, IFN-g has also been found to
enhance cytokine- (GM-CSF, IL-5) induced degranula-
tion and superoxide anion production [112,113]. Thus,
in certain cases, effective GBM tumor eradication may
occur in response to IL-4 and the concomitant recruit-
ment of CD8+ T cells and eosinophils whereby the CD8
+ T cells identify specific antigens and produce IFN-g
that enhances eosinophil activation and the release of

cytotoxic granules. Modifications of these events via the
aforesaid SNPs (IL-4Ra, IL-13) may allow for immune
evasion and tumor formation.

Eosinophils and GBM initiation
Previous studies linking eosinophil function and tumor
biology have indicated that eosinophil production of
eosinophil peroxidase (EPO) and reactive oxygen species
(ROS) may amplify oxidative damage and tumorigenesis
in the lung [114], possibly via induced activation by the
cytokine, GM-CSF, which has been shown in vitro to
elicit these responses in human eosinophils [112]. Of
note, human astrocytes and GBM tumor cells are also
known to produce GM-CSF [115-117], which may
enhance oxidative stress in a microenvironment invol-
ving eosinophils. Oxidative stress not only functions to
induce DNA mutations but may also affect cell senes-
cence and apoptosis in developing tumors [118]. Acti-
vated eosinophils are also known to produce eosinophil
derived neurotoxin (EDN, RNase 2) and eosinophil
cationic protein (ECP, RNase 3) [119]. EDN and ECP
exhibit antiviral functions [120,121] that may play role
in preventing HCMV induced tumor formation. EDN
has also been identified as a toll-like receptor-2 (TLR2)
ligand that can promote the in vivo activation of murine
dendritic cells (DCs) [122]. In experimental GBM mod-
els, TLR2-ligands have been indicated to induce an
influx of tumor-infiltrating immune cells (DCs, CD8+ T
effector cells) and significant tumor regression
[123,124], which raises the possibility that EDN may
operate comparatively. In addition, ECP can alter cell
membrane permeability and induce toxicity in cancer
cell lines [121]. EDN and ECP may therefore be effectual
eosinophilic components in preventing tumor formation
(see Figure 2).

Promotion
Eosinophils and growth factors in GBM promotion
The promotion phase of carcinogenesis involves mito-
genesis that is dependent upon apoptotic inhibition and
growth stimulation [125]. In GBM, the cell signal cas-
cades that regulate the activation of members of the
NF-�B transcription factor family are altered, which in
turn leads to enhanced expression of the anti-apoptotic
molecules Bcl-2 and survivin [126,127]. This pathway is
known to be stimulated by various growth factors, ROS,
and viruses such as HCMV [128]. Platelet-derived
growth factor (PDGF) and PDGF receptors are
expressed in GBM tumor cells and found to regulate
NF-�B activation and cell proliferation [129-131]. Eosi-
nophils likewise express PDGF receptors and PDGF has
been reported to activate eosinophils [132]. Activated
eosinophils may then release their cytotoxic granules
and encourage anti-tumor and/or anti-viral responses
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during tumor promotion. Alternatively, activated eosino-
phils may enhance the promotion process through the
production of tumor promoting growth factors (see Fig-
ure 3) [117].
Eosinophils and additional innate immune cells

(microglia, mast cells, neutrophils) are activated by
GBM mediators (GM-CSF, PDGF, CXCL12, CXCL8)
and damage associated molecular patterns (DAMPs: e.g.:
S100 proteins, high mobility group box 1) which may in
turn induce the production of growth factors and matrix
metalloproteinases in promoting tumorigenesis
[83,84,117,132-141]. Human eosinophils stimulated in
vitro with GM-CSF produce amphiregulin and trans-
forming growth factor-alpha (TGF-a), which are ligands
known to activate epidermal growth factor receptors
(EGFR) [134,135]. In primary GBM, amplification of the
EGFR gene and subsequent over-expression of EGFR
protein is the most common genetic alteration [142].

Increased expression of epidermal growth factor recep-
tors, ligands and cell signals are highly implicated in the
promotion of many tumors, including GBM [143]. Of
interest, GBM cell lines cultured in eosinophil-condi-
tioned media, generated in the presence or absence of
GM-CSF, demonstrated increased cell growth compared
to controls [117]. Thus, because GBM tumors are
known to produce GM-CSF [115-117], a paracrine loop
may develop where eosinophils promote GBM develop-
ment by producing amphiregulin, TGF-a, or other
growth factors in response to GBM-derived GM-CSF.

Eosinophils and RAGE in GBM promotion
Chronic inflammation associated with tumor promotion
has also been linked to the activity of the receptor for
advanced glycation end-products (RAGE) and RAGE
ligands via an in vitro analysis of GBM cell lines and in
an in vivo murine model of skin carcinogenesis
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[144,145]. Eosinophils and GBM tumor cells each
express RAGE and RAGE ligands where cell viability
and migration are reported RAGE-mediated responses
in these cells [83,145]. The S100A8 and S100A9 proteins
are RAGE ligands [146], DAMPs [147], markers of mye-
loid-derived suppressor cells [148], GM-CSF induced
cytokines in eosinophils [83], and tumor promoting fac-
tors in experimental models [144,149]. Interestingly, the
S100A8 and S100A9 complex, calprotectin, is indicated
to induce apoptosis in cancer cell lines [150]. Benign
lesions associated with normal brain aging (corpora
amylacea) also express both S100A8 and S100A9 [151]. In
human GBM primary tumor parenchyma, S100A8 and
S100A9 have been identified with higher levels of S100A9
noted in the tumor regrowth parenchyma of patients that
received primary resection plus irradiation compared to
primary resection alone [152]. Of interest, radiation treat-
ment of pelvic cancers has been found to induce eosino-
philia and increase ECP serum levels [153,154].
Eosinophils cultured in GBM-cell line conditioned media
in vitro have also been shown to release S100A9 [117].
Whether eosinophils are functional in promoting or pre-
venting benign or cancerous lesions in the brain via S100
proteins and RAGE-mediated responses in these various
disease states is not clear but the interactions may repre-
sent an important link between eosinophils and glioblas-
toma biology (see Figure 3).

Progression
GBM is a progressed disease
The progression stage in cancer biology arises from
additional genetic and epigenetic events that confer phe-
notypic changes that are necessary for tumor cell auton-
omous growth, invasiveness, and migration [155]. At
diagnosis, primary GBM (World Health Organization
(WHO) Grade IV astrocytoma) presents at a progressed
stage and is distinguished histopathologically from ana-
plastic astrocytoma (WHO Grade III astrocytoma) by
the presence of necrosis, microvascular hyperplasia and
possibly thrombosis [77]. Necrotic cell death in a devel-
oping tumor may occur in response to the increased
metabolic demands of rapidly dividing cells, resulting in
hypoxia, intravascular occlusion and thrombosis fol-
lowed by the production of pro-angiogenic and pro-
inflammatory mediators (see Figure 2) [77,88,156].

Eosinophils and dexamethasone in GBM
Recruitment of murine eosinophils to the tumor micro-
environment is indicated to occur in response to necro-
tic cell death [76]. In rodent models, eosinophil
numbers and recruitment to the lung are reduced by
dexamethasone [157,158], a common corticosteroid
administered to GBM patients with peritumoral edema
[159]. In some GBM cases, dexamethasone therapy (16

mg/day) has been observed to reduce the imaging of
lesions on contrast-enhanced scans [160,161]. A pro-
posed mechanism underlying this phenomenon involves
a reduction in capillary permeability at the brain-tumor
barrier [162]. In vitro, dexamethasone has been found to
inhibit the release of GM-CSF from human primary T
cells [163] and GBM cell lines [117]. This steroid is also
indicated to reduce GM-CSF-induced survival of human
primary eosinophils in tissue culture experiments
[164,165]. Accordingly, the short-term response to dexa-
methasone therapy in a subset of GBM patients may
partly reflect an increase in eosinophil death and the
release of eosinophilic cytotoxic products in response to
reduced tumor cell-derived GM-CSF. In addition, dexa-
methasone is also indicated to reduce the release of neu-
rotrophins from human eosinophils in vitro [166].
Neurotrophin receptors have been identified in human
GBM and are reportedly integral to disease progression
[167,168]. Human eosinophils activated with GM-CSF
in tissue culture have also been shown to produce vas-
cular endothelial growth factor (VEGF), a pro-angio-
genic mediator [133]. Thus, dexamethasone-induced
occlusion of capilliaries may lower the recruitment of
eosinophils and the production of eosinophil-derived
VEGF, implicating eosinophils as potential participants
in disease progression.

Eosinophils, thrombosis, and neurotoxicity in GBM
The increased presence of eosinophils in the peripheral
blood has been characterized as a pro-thrombotic condi-
tion and a potential premonitory sign of occult cancer
[169-171]. Expression of tissue factor (TF) by immune
cells or cancer cells is suspected to enhance the activa-
tion of the extrinsic blood coagulation pathway, result-
ing in the hypercoagulable state of advanced malignancy
[172]. Human eosinophils in vitro are known to express
cell membrane TF upon activation with GM-CSF [173].
Also, cell culture experiments have revealed that plate-
lets are activated by incubation with two of the four
eosinophil granule proteins (EPO, MBP), leading to the
release of serotonin and b-thromboglobulin [174]. Of
interest, EDN and ECP, the remaining granule proteins,
have been found to induce the Gordon phenomenon, a
neurotoxic event involving purkinje cell degeneration
after intracerebral injection of human eosinophils into
animals [175,176]. These functions of eosinophils may
aid in our understanding of GBM progression and the
clinical observations (motor weakness/loss, lack of coor-
dination, altered mental function [177]) associated with
the disease (see Figure 2).

The immune response
The innate immune response is known as the first line
of defense against tumors [178]. In GBM, this includes
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natural killer (NK) cells, microglia, granulocytes (e.g.:
eosinophils, mast cells, neutrophils), the complement
system, and various immune activators (e.g.: pathogen-
or damage- associated molecular patterns (PAMPs or
DAMPs) or the recognition of non-self/foreign pep-
tides) [178,179]. The adaptive immune response
involves the specific identification and elimination of
tumor antigens via the activation of CD8+ T cells and
the generation of antibodies that target tumor-specific
antigens [179,180]. The combined innate and adaptive
immune responses that effectively suppress tumor for-
mation have been termed immunosurveillance [181].
Emerging information indicating that immune cells
may not only be involved in tumor prevention but
also tumor development has resulted in an additional
term called immunoediting [181,182]. This latter con-
cept appears relevant to GBM in that various reports,
particularly with respect to innate immune cells,

indicate that the function of immune cells is altered
by tumor cells to support rather than prevent tumori-
genesis (see Figure 3) [117,136,137,139,183,184].
Because atopic diseases reportedly have an inverse
association with glioma risk [15,18,19,185], immune
activators in atopy may exhibit anti-tumor responses
in GBM (see Figure 4). The cytokines, IL-4 and IL-13,
are known to be up-regulated in allergy/asthma and
have been characterized as integral proteins in GBM
biology [95,96,98,99]. These cytokines in association
with CD23:CD21 ligation, drive the generation of IgE
antibodies [26]. High serum CD23 and IgE levels are
associated with increased GBM patient survival and
the activation of mast cells and eosinophils [28-30].
TLR-ligands are components of the innate immune
system, regulators of immune activation in allergy/
asthma, and recently examined adjuvants in a GBM
clinical trial involving dendritic cells where improved
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survival in certain patient subsets was identified
[178,179,186,187]. In vitro and in vivo experiments
indicate that TLR-ligand activated dendritic cells or
mast cells encourage CD8+ T cell recruitment
[186,188,189]. Of interest, in vivo tumor models invol-
ving IL-4 also exhibited Th1 cell immunity as well as
significant eosinophil influx, tumor rejection/suppres-
sion, and prolonged survival of the host [105-109].
Additional in vivo research revealed that IL-4-produ-
cing Th2 cells were critical for natural killer cell acti-
vation (perforin, granzyme-B) and tumor rejection
[190]. These data concur with in vitro evidence indi-
cating a function of IL-4 in suppressing the induction
of tumor growth factor (TGF)-b-induced T regulatory
cells [191-193]. Thus, the immune parameters in ato-
pic disease (e.g.: IgE, TLR ligands, IL-4) may propel
innate and adaptive immune responses toward tumor
eradication.

Conclusions
The mechanisms and immunobiology of GBM tumor
development are not clearly known and represent areas
of active investigation. In this regard, emerging evidence
reveals that eosinophils may hold a functional role in
the initiation, promotion and progression of developing
GBM tumors. Understanding the complex nature of the
innate and adaptive immune responses may foster more
effective immunotherapeutic approaches in treating
GBM. Because of the multiple associations of eosino-
phils in tumorigenesis, further study of this diverse
immune cell with respect to cancer appears warranted.
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