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Delayed expression of cell cycle proteins
contributes to astroglial scar formation and
chronic inflammation after rat spinal
cord contusion
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Abstract

Background: Traumatic spinal cord injury (SCI) induces secondary tissue damage that is associated with astrogliosis
and inflammation. We previously reported that acute upregulation of a cluster of cell-cycle-related genes
contributes to post-mitotic cell death and secondary damage after SCI. However, it remains unclear whether cell
cycle activation continues more chronically and contributes to more delayed glial change. Here we examined
expression of cell cycle-related proteins up to 4 months following SCI, as well as the effects of the selective cyclin-
dependent kinase (CDKs) inhibitor CR8, on astrogliosis and microglial activation in a rat SCI contusion model.

Methods: Adult male rats were subjected to moderate spinal cord contusion injury at T8 using a well-characterized
weight-drop model. Tissue from the lesion epicenter was obtained 4 weeks or 4 months post-injury, and processed
for protein expression and lesion volume. Functional recovery was assessed over the 4 months after injury.

Results: Immunoblot analysis demonstrated a marked continued upregulation of cell cycle-related
proteins− including cyclin D1 and E, CDK4, E2F5 and PCNA− for 4 months post-injury that were highly expressed
by GFAP+ astrocytes and microglia, and co-localized with inflammatory-related proteins. CR8 administrated
systemically 3 h post-injury and continued for 7 days limited the sustained elevation of cell cycle proteins and
immunoreactivity of GFAP, Iba-1 and p22PHOX− a key component of NADPH oxidase− up to 4 months after SCI.
CR8 treatment significantly reduced lesion volume, which typically progressed in untreated animals between 1 and
4 months after trauma. Functional recovery was also significantly improved by CR8 treatment after SCI from week 2
through week 16.

Conclusions: These data demonstrate that cell cycle-related proteins are chronically upregulated after SCI and may
contribute to astroglial scar formation, chronic inflammation and further tissue loss.
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Background
Spinal cord injury (SCI)-induced astrogliosis and inflam-
mation play a significant role in delayed secondary tissue
damage that occurs for days, weeks and even months
after the initial injury [1-8]. After SCI, astrocytes become
hypertrophic, proliferate and show increased expression

of GFAP. Hypertrophic astrocytes are the major cellular
component of the glial scar, which is considered a phys-
ical and molecular barrier to CNS regeneration [5]. React-
ive astrocytes produce several classes of growth-inhibitory
molecules, including the family of extracellular matrix
molecules known as chondroitin sulfate proteoglycans
(CSPGs), which inhibit both in vitro and in vivo axonal
regeneration [5,9,10]. Proliferation and activation of
microglia, with resultant production of proinflammatory
cytokines and neurotoxic molecules, are also implicated
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in secondary injury [3,11-15]. We have previously demon-
strated that SCI in the rodent causes a delayed, sustained
upregulation of proinflammatory genes such as C1qB,
galectin-3, p22PHOX, gp91PHOX, CD53 and progranulin,
among others [16,17]. p22PHOX and gp91PHOX are com-
ponents of NADPH oxidase, which plays a key role in the
production of reactive oxygen species [18-20]. The latter
have cytotoxic effects, including induction of proinflam-
matory cytokine expression via MAPK and NFkB signal-
ing [19-21]. Thus, modulation of reactive astrocytes and
microglia represent important potential therapeutic tar-
gets for spinal cord injury.
We have shown that cell cycle-related genes and pro-

teins are strongly upregulated immediately after SCI;
they remain elevated for at least several weeks, and are
associated with proliferation and activation of both
astroglia and microglia [22-25]. Tian et al. also found
that the upregulation of expression of cyclins A, B1, E
and proliferating cell nuclear antigen (PCNA) appear as
early as 1 day after injury and peak at day 3 following
spinal cord hemisection [26]. However, it is not known if
cell cycle activation continues more chronically follow-
ing injury, resulting in persistent glial proliferation/acti-
vation that may contribute to late tissue loss.
It has been reported that CDK inhibitors can limit cell

cycle activation and certain components of secondary tis-
sue injury after neurotrauma [23,24,26-34]. We found that
the non-selective CDK inhibitor flavopiridol reduced tis-
sue damage and associated neurological dysfunction
1 month after impact SCI in rats [23,24]. However, be-
cause this drug inhibits most CDKs as well as transcrip-
tion of cyclin D1, the role of specific CDKs after SCI has
remained unclear. Olomoucine, a relatively selective CDK
inhibitor, reduces neuronal apoptosis, suppresses astroglial
scar formation and therefore ameliorates behavior out-
come after spinal cord hemisection [26]. However, its po-
tency for inhibition of purified CDKs and CDK activity in
cell lines is relatively weak [35]. Recently, an N6-biaryl-
substituted derivative of roscovitine, called CR8, was
synthesized and optimized in an effort to generate
second-generation roscovitine analogs with greater thera-
peutic potential compared to the parent compound [36].
In the present study, we evaluated the expression of

cell cycle-related proteins up to 4 months after SCI. In
addition, we examined a more clinically relevant delayed
systemic treatment paradigm, using a newer and more
potent roscovitine analog to assess the role of cell cycle
activation in the progressive tissue loss and chronic
astrogliosis after SCI.

Methods
Spinal cord injury
Contusive SCI was performed in adult male Sprague-
Dawley rats weighing 275–325 g as previously described

[24,37]. Briefly, rats were deeply anesthetized with so-
dium pentobarbital (65 mg/kg i.p.), and a moderate
spinal cord contusion injury was induced at vertebral
level T8 by dropping a 10-g weight from a height of
25 mm onto an impounder positioned on the exposed
dura. Sham animals underwent the same procedure as
injured rats, but received a laminectomy only, without
weight drop. After injury, rats were placed into a heated
cage to maintain normal core temperature until fully
alert, and their bladders were manually expressed twice
a day until a reliable bladder emptying reflex was estab-
lished (10–14 days after SCI). The experimental proto-
cols were approved by the University of Maryland
School of Medicine Animal Care and Use Committee
and met all NIH guidelines.

Drug treatment
Following SCI, rats were randomly and blindly assigned
to either drug or vehicle treatment group. Rats received
intra-peritoneal (IP) injection of CR8 (second-generation
roscovitine analog, 1 mg/kg, Tocris Bioscience) or an
equal volume of vehicle once daily beginning 3 h post-
injury and continuing for 7 days. CR8 was dissolved in
sterile saline. This dose of CR8 was based on the results
obtained from pilot studies in vitro and in vivo. More
specifically, anti-apoptotic concentrations of CR8 in cul-
tured cortical neurons were similar to those of flavopiri-
dol, a potent pan-CDK inhibitor. Rats were sacrificed for
histological/immunohistochemical study at 4 months
post-injury.

Immunoblot analysis
At 4 weeks and 4 months post-injury, rat spinal cord tis-
sue (5 mm) centered on the injury site was collected and
frozen on dry ice for Western analysis [38,39] with n= 4–
5 rats per time point plus four laminectomy controls.
Briefly, tissue was lysed in radioimmunoprecipitation
assay (RIPA) buffer (Sigma) supplemented with 100 mM
phenylmethylsulfonyl fluoride, 1× protease inhibitor
cocktail, phosphatase inhibitor cocktail II and III (Sigma),
then homogenized and sonicated. After centrifugation at
20,600 × g for 20 min, protein concentrations in super-
natant were determined by the Pierce BCA method
(Thermo Scientific). Normalized protein samples were
denatured in LDS loading buffer. Each sample was from
a different subject and run in an individual lane on 4 to
12% NuPAGE Novex Bis-Tris gradient gels (Invitrogen),
and then transferred to nitrocellulose membranes (Invi-
trogen). After blocking in 5% nonfat milk for 1 h at room
temperature, membranes were probed with antibodies
against CDK4 (polyclonal, 1:1,000, Santa Cruz Biotech-
nology), cyclin D1 (polyclonal, 1:500, Neomarker), cyclin
E (monoclonal, 1:500, Santa Cruz Biotechnology), E2F5
(polyclonal, 1:500, Santa Cruz Biotechnology), PCNA
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(polyclonal, 1:500, Santa Cruz Biotechnology), ionized
calcium-binding adaptor molecule 1 (Iba-1,polyclonal,
1:1,000, Wako Chemicals) and p22phox (polyclonal,
1:500, Santa Cruz Biotechnology) overnight at 4 °C
followed by horseradish peroxidase-conjugated sec-
ondary antibodies (GE Healthcare) for 1 h at room
temperature. The immunocomplexes were then visua-
lized using SuperSignal West Dura Extended Duration
Substrate (Thermo Scientific) and quantified by band
densitometry of scanned films using the Gel-Pro
Analyzer program (Media Cybernetics, Inc.) in the lin-
ear detection range. GAPDH was used as control for
gel loading and protein transfer. Each sample was re-
peatedly run three times using the same blot and a
pooled average was taken. The error bars in the West-
ern blot quantification reflect variance across subjects
and repeated runs of the same blots.

Tissue processing and histopathology
At 4 weeks and 4 months after injury, rats were anesthe-
tized and intracardially perfused with 200 ml of saline
followed by 300 ml of 10% buffered formalin. The dis-
sected spinal cords were post-fixed for 2 h and cryopro-
tected through a sucrose gradient. A 1.5-cm segment of
spinal cord centered at the injury area was sectioned at
20-μm thickness and thaw-mounted onto Superfrost
Plus slides (Fisher Scientific) by placing them serially on
sequential sets of ten slides, each set representing a 200-
μm length of spinal cord. A representative slide from
each set was stained with eriochrome cyanine (ECRC)
for myelinated white matter (blue). The lesion epicenter
was identified as the section with the least amount of
spared white matter [40].

Estimation of lesion volume
Lesion volume was assessed using the Stereologer 2000
software (Systems Planning and Analysis, Alexandria,
VA). Sections spaced 1 mm apart from 5 mm caudal to
5 mm rostral from the injury epicenter were stained
with GFAP and DAB as the chromogen for lesion vol-
ume assessment based on the Cavalieri stereology
method with a grid spacing of 200 μm. Lesion volume
where GFAP is absent is expressed as a percentage of
total volume including both areas of GFAP present and
absent [24].

Immunohistochemistry
Immunohistochemistry was performed on spinal cord cor-
onal sections at specified distances rostral and caudal to
the injury epicenter. Standard fluorescent immunocyto-
chemistry on serial, 20-um-thick sections was performed
as described previously [38]. The following primary anti-
bodies were used: rabbit anti-CDK4 (1:100, Santa Cruz
Biotechnology), rabbit anti-cyclin D1 (1:50, Neomarker),

mouse anti-cyclin E (1:100, Santa Cruz Biotechnology),
rabbit anti-E2F5 (1:100, Santa Cruz Biotechnology), rabbit
anti-PCNA (1:100, Santa Cruz Biotechnology), rabbit or
mouse anti-GFAP (1:500, Chemicon), rabbit anti-Iba-1
(1:500, Wako Chemicals) and rabbit anti-p22phox (1:100,
Santa Cruz Biotechnology). Fluorescent-conjugated sec-
ondary antibodies (Alexa 488-conjugated goat anti-mouse
or rabbit, 1:400, Molecular Probes) were incubated with
tissue sections for 1 h at room temperature. Cell nuclei
were labeled with bis-benzimide solution (Hoechst 33258
dye, 5 ug/ml in PBS, Sigma). Finally, slides were washed
and mounted with an anti-fading medium (Invitrogen).
Immunofluorescence was visualized by tile scan using a
Leica TCS SP5 II Tunable Spectral Confocal microscope
(Leica Microsystems Inc., Bannockburn, IL). The images
were processed using Adobe Photoshop 7.0 software
(Adobe Systems, San Jose, CA). All immunohistological
staining experiments were carried out with appropriate
positive control tissue as well as primary/secondary-only
negative controls.

Function assessment
Rat hind limb locomotor recovery was assessed at 1 day
post injury and weekly thereafter for up to 16 weeks
using the Basso, Beattie and Bresnahan (BBB) open field
expanded locomotor score [41]. In the BBB test, normal
animals are given a score of 21, while animals with no
hind-limb function are given a 0, with any combination
of indicators of paralysis or regained function yielding
scores in between. Rats were also scored on a battery
of tests to determine recovery of hind limb motor and
sensory function including: open field locomotion
(motor score); withdrawal reflex to hind limb extension,
pain and pressure; foot placing, toe spread and righting
reflexes; maintenance of position on an inclined plane
and swimming tests. Results of these tests are reported
as a Combined Behavioral Score (CBS) [42]. Rats with
normal function receive a score of 0, while rats with
abnormal scores on all tests receive a score of 100. All
rats were tested without knowledge of treatment group.

Sampling and statistical analysis
All data are plotted as mean± SEM where “n” is the
number of individual animals. Western blot, lesion vol-
ume and stereological analyses were performed by an in-
vestigator blinded to treatment group. The expressions
of various proteins (% of sham) were analyzed by using
Kruskal-Wallis one-way ANOVA based on ranks, fol-
lowed by Dunnett’s or Tukey’s post-hoc test (Sigma Stat
Program, Version 3.5, Systat Software). BBB and CBS
scores were analyzed with two-way ANOVA and
repeated measures. All other statistical tests were per-
formed using the GraphPad Prism Program, version 3.02
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for Windows (GraphPad Software). A p< 0.05 was con-
sidered statistically significant.

Results
Spinal cord injury induces long-term changes in
expression of cell cycle-related proteins
Quantitative analysis of Western blots showed that
CDK4 expression was significantly increased at both

4 weeks (3.5 fold of sham) and 4 months (4.5 fold of
sham) post SCI (p< 0.05, respectively Figure 1). The
expressions of cyclin D1 and E were significantly
increased at 4 weeks and 4 months post injury
(Figure 1C and D). E2F5 expression levels were three fold
that of sham at 4 weeks post injury and remained ele-
vated (1.8 fold of sham) at 4 months. Levels of PCNA
protein in spinal cord tissue were approximately two fold

Figure 1 Spinal cord injury induces long-term upregulation of expression of cell cycle-related proteins. Analysis of expression of cell cycle
proteins in intact and injured spinal cord at 4 weeks and 4 months post-injury was performed by Western blotting. (A-B) Representative
immunoblots for cell cycle-related proteins (CDK4, cyclin D1 and E, E2F5 and PCNA) and the loading control (GAPDH). (C-D) Expression levels of
cell cycle proteins were normalized by GAPDH, as estimated by optical density measurements, and expressed as a percentage of sham spinal
cord. Quantitative analysis of Western blots showed significant upregulation of these cell cycle proteins at 4 weeks, which remained elevated for
at least 4 months post injury. *p< 0.05 compared with the sham group. n= 4-6 rats per time point.
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Figure 2 Upregulated cell cycle proteins are associated with GFAP+ reactive astrocytes at 4 weeks after SCI. (A-D) Immunohistochemistry
for qualitative assessment of CDK4 expression at 4 weeks after SCI. Coronal section in intact spinal cord showed that CDK4 was mostly expressed
in the gray matter (A). CDK4 immunoreactivity was increased in the spared tissues surrounding the central lesion at 1 mm caudal to the
epicenter (B), which co-labeled with GFAP+ astrocytes (C and insert in D). Note that CDK4+ cells also appeared in the central lesion area where
GFAP+ astrocytes are absent. (E-H) Double-labeling immunohistochemistry revealed increased expression of cyclin D1 (F) and GFAP (G), and their
co-localization (insert in H) in the injured tissue at 4 weeks post-injury. (I-L) Cyclin E+/GFAP+ cells were broadly observed in the spared tissue
(insert in L). (M-P) E2F5 is not only expressed by GFAP+ hypertrophic astrocytes (insert in P) in the lesion scar border, but also in the central
lesion area where GFAP+ astrocytes are absent. Scale bars = 500 μm.
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that of sham from 28 days through 4 months post-injury
(Figure 1A and B).

Delayed expression of cell cycle proteins is associated
with reactive astrocytes and chronic inflammation after
SCI
To determine the distribution and the cellular localization
of increased cell cycle proteins in the injured rat spinal
cord, we performed immunofluorescent double labeling
of key cell cycle molecules and several cell-specific mar-
kers. In the intact spinal cord, immunoreactivity of
CDK4, E2F5, cyclin D1 and E was weakly detected in
neurons across the gray matter (Figure 2A, E, I and
M). Four weeks after injury, expression was increased
for each of these proteins in the spared tissues sur-
rounding the central lesion at 1 mm rostral to the
epicenter, especially in the border between spared tis-
sue and the lesion (Figure 2B, F, J and N). At 4 months
post-injury, there was an increase in immunolabeling
of cyclin D1 and E, E2F5 and CDK4 in contrast to
sham tissue (Figure 3Ab and Bd-f ). Double-
immunolabeling demonstrated that cyclin D1+/GFAP+

and cyclin E+/GFAP+ cells were readily apparent in
the spared tissue (Figure 2H and L and Figure 3Bb, e,
h), whereas CDK4 and E2F5 were not only expressed
by GFAP+ hypertrophic astrocytes in the lesion scar
border, but also in the central lesion (Figure 2C-D, G-
H, K-L and O-P).
To examine whether increased expression of cell

cycle-related proteins was associated with chronic

inflammation, Western blotting and immunohistochem-
istry were performed for inflammatory markers Iba-1,
p22PHOX and CD11b (OX42) at 4 weeks and 4 months
after SCI. Western blot analysis of Iba-1 protein expres-
sion indicated a 2.5-3.0-fold increase in injured spinal
cord extracts compared to sham tissue (Figure 4C).
We also found a significant increase in p22PHOX pro-
tein expression at 4 weeks (3.5 fold of sham) followed
by a prolonged upregulation for up to 4 months post
injury (Figure 4A and B), consistent with our prior re-
port [17]. Immunohistochemistry at 28 days and
4 months post-injury demonstrated an increase in
immunolabeling of Iba-1, p22PHOX and OX42 in con-
trast to sham tissue (Figure 5C, G, K, O and
Figure 6Ae and B c-d). Moreover, double-labeling
immunohistochemistry revealed that large numbers of
PCNA+, cyclin E+ and D1+ cells in the injured coronal
sections were co-labeled with OX42, p22PHOX or Iba-1
at 1.5 mm rostral to the epicenter (Figure 5 and
Figure 6Ab, f, h). Overall, these data suggest that SCI-
induced upregulation of cell cycle-related proteins
occurs persistently for up to 4 months, and is asso-
ciated with reactive astrocytes and activated microglia/
macrophages.

Delayed systemic cell cycle inhibition limits astrogliosis
and delayed inflammatory protein expression
To further investigate the role of cell cycle pathway
in SCI-induced astrogliosis and inflammation, injured
rats were given the selective CDK inhibitor CR8 or

Figure 3 Delayed upregulation of cell cycle proteins and GFAP is suppressed by cell cycle inhibition. (A) Coronal section in intact spinal
cord showed that cyclin D1 was mostly expressed in the gray matter (a). Cyclin D1 immunoreactivity at 4 months after injury was increased in
the spared white matter surrounding the central lesion at 1 mm caudal to the epicenter (b), whereas this was attenuated by treatment with CR8
(c). GFAP immunoreactivity was weak in sham (d), but was strongly upregulated at 4 months post-injury (e). CR8 reduced expression of cyclin D1
(c) and GFAP (f), and their co-localization (i). (B) In the intact spinal cord, immunoreactivity of cyclin E (a), CDK4 (b) and E2F5 (c) was weakly
detected in neurons across the gray matter. SCI resulted in increased expression of cyclin E (d), CDK4 (e) and E2F5 (f) at the site of the injury,
which were attenuated in CR8-treated sections (g-i). Scale bars = 500 μm.
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vehicle by ip injection 3 h post-injury and daily there-
after for 7 days. Our pilot data showed that CR8
exhibits a 50-fold higher potency than roscovitine in
in vitro neuroprotection. In the present study, rats
were treated with 1 mg/kg CR8 or the equivalent vol-
ume of saline, and spinal cord sections were collected
at 4 months after SCI for immunohistochemical study.
GFAP is an indicator of astrocyte reactivity associated with
glial scar formation [5]. Immunohistochemical analysis
revealed increased expression of cyclin D1 (Figure 3Ab)
and GFAP (Figure 3Ae), and their co-localization
(Figure 3Ah) in the spared tissue surrounding the lesion
site. In contrast, CR8-treated rats showed less immunoreac-
tivity for both cyclin D1 and GFAP (Figure 3Ac, f, i). In
addition, SCI resulted in increased expression of cyclin E,

CDK4 and E2F5 at the site of the injury (Figure 3Bd-f),
which were attenuated by CR8 treatment (Figure 3Bg-i).
Chronic inflammation was also evaluated by immu-

nohistochemical analysis of spinal cord sections using
Iba-1, p22PHOX and OX42. Double-labeling immuno-
histochemistry revealed increased expression of PCNA
(Figure 6Ab) and OX42 (Figure 6Ae), and their co-
localization (Figure 6Ah) in the injured tissue at
4 months post-injury. CR8 treatment reduced immu-
noreactivity for both PCNA and OX42 (Figure 6Ac, f,
i). SCI increased expression of Iba-1 and p22PHOX as
compared to sham (Figure 6Bc-d); these changes were
attenuated by CR8 treatment (Figure 6Be-f ). Taken to-
gether, these data demonstrated that delayed systemic
treatment with a novel, selective and potent CDK

Figure 4 Delayed inflammatory protein expression at 4 weeks and 4 months after contusive rat SCI. Protein expression of microglia/
macrophages marker Iba-1 and NADPH oxidase component p22PHOX were analyzed using Western blotting at 4 weeks and 4 months post-injury.
(A-B) Representative Western blots of Iba-1, p22PHOX and the loading control at 4 weeks (A) and 4 months (B) after SCI. (C) Western blot analysis
of Iba-1 and p22PHOX protein expression indicated a significant increase at 4 weeks after SCI followed by a prolonged upregulation for up to
4 months post-injury. Bars represent mean± SEM. *p< 0.05 compared with sham group. n= 4-6 rats per time point.
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inhibitor reduced astrogliosis and microglial prolifera-
tion at 4 months post-SCI.

Cavity formation is progressive after chronic contusion
and is attenuated by CDK inhibition
SCI-induced lesion volume/cavity formation was mea-
sured with GFAP/DAB staining at 1 and 4 months after
SCI and analyzed by unbiased stereological techniques.
Histological assessment showed that tissue collected
4 months post-SCI possessed a larger lesion cavity
(52.4 ± 5.0% of total volume) than that at 1 month after
injury (28.4 ± 3.9% of total volume), indicating progres-
sive damage in the injured spinal cord (Figure 7). Not-
ably, a significant reduction in lesion volume was found

in CR8 treated rats at 4 months post-injury (40.8 ± 3.6%
of total volume, Figure 7A and B). These reductions oc-
curred in both white and gray matter, with an overall
decrease in cavity formation and tissue loss.

Cell cycle inhibition favors functional recovery after SCI
To further address whether inhibition of cell cycle-
related proteins improves neurological outcome, we next
examined whether this same treatment strategy could in-
fluence long-term functional recovery after SCI. We
assessed the behavior of CR8 and vehicle-treated rats
over the 16 weeks after injury. Testing was performed
1 day after injury and weekly thereafter using the BBB
test of hind limb locomotor function [41] and the Com-
bined Behavioral Score (CBS), an evaluation of overall
hind limb sensory-motor deficits [42]. Both BBB and
CBS tests showed significantly improved functional re-
covery after delayed systemic CR8 treatment (Figure 8).

Figure 5 The later upregulation of cell cycle proteins is
associated with activated microglial/macrophages. The
expression of PCNA, cyclin D1 and E was evaluated by
immunohistochemistry at 1.5 mm caudal to the epicenter of sham
or injured spinal cord at 1 month post-injury. (A-D) PCNA expression
was undetectable in sham, but was strongly upregulated in OX42+

microglia/macrophages. (E-H) The membrane bound component of
the NADPH oxidase enzyme, p22, co-localized with PCNA+

microglia/macrophages. (I-P) Large numbers of cyclin E+ and D1+

cells in the injured coronal sections were co-labeled with Iba-1+ or
OX42+ microglia/macrophages. Scale bars = 500 μm.

Figure 6 Delayed systemic treatment with CR8 reduces chronic
inflammatory protein expression at 4 months post-SCI. (A)
Double-labeling immunohistochemistry revealed increased
expression of PCNA (b) and OX42 (e), and their co-localization (h) in
the injured tissue at 4 months post-injury. Delayed systemic CR8
treatment reduced immunoreactivity in both PCNA and OX42 (c, f, i).
(B) SCI induced the increase of expression of Iba-1 and p22PHOX in
contrast to sham tissue (c-d), whereas these increases were
attenuated by CR8 treatment (e-f). Scale bars = 500 μm.
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The effect of treatment was statistically significant begin-
ning at week 2 as measured by BBB score (Figure 8A)
and beginning at week 3 as measured by CBS score
(Figure 8B). Both measures showed significantly
improved recovery chronically from 4–16 weeks after
SCI.

Discussion
Our current results demonstrate that SCI results in a
marked, chronic upregulation of the expression of cell
cycle-related proteins associated with reactive astrocytosis

and microglial proliferation. Delayed systemic administra-
tion of CR8 limited chronic upregulation of cell cycle pro-
teins and improved functional recovery up to 4 months
post-SCI; this was associated with reduced astrogliosis and
chronic inflammation that may contribute to the observed
progressive tissue loss and glial scar formation.
SCI causes secondary biochemical changes that persist

for months after SCI. The role of reactive astrocytes in the
restorative stage after injury is complex, as they secrete
numerous bioactive substances− including cytokines,

Figure 7 Cavity formation is progressive after chronic
contusion and is attenuated by CDKs inhibition. SCI-induced
lesion volume/cavity formation was measured with GFAP/DAB
staining and analyzed by unbiased stereological techniques. (A)
Representative images showed lesion cavity at 3 mm rostral to the
injury center at 4 weeks (b) and 4 months (c) after SCI. Scale
bars = 500 μm. (B) Histological assessment showed that 4 months-
SCI rats developed a larger lesion cavity (52.4 ± 5.0% of total volume)
than that in 4 weeks-SCI animals (28.4 ± 3.9% of total volume).
Notably, a significant reduction in lesion volume was found in rats
that received delayed systemic treatment of CR8 at 4 months post-
injury (40.8 ± 3.6% of total volume). *p< 0.05 vs. SCI-4 weeks Veh
group; #p< 0.05 vs. SCI-4 months Veh group. n= 6 rats/group.

Figure 8 Cell cycle inhibition by CR8 significantly improves
functional recovery after SCI. Both BBB and CBS scores were
evaluated 1 day post injury and weekly thereafter in drug- vs.
vehicle-treated rats. Both BBB and CBS tests showed a significant
beneficial effect of delayed systemic CR8 treatment on functional
recovery. The effect of treatment was statistically significant
beginning at week 2 as measured by BBB score and beginning at
week 3 as measured by CBS score. Both measures showed
significantly improved recovery chronically at 4–16 weeks after SCI.
*p< 0.05 vs. vehicle group at indicated time point.
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antioxidants, recognition molecules and growth factors−
that can be either neurotrophic or neurotoxic [43,44].
GFAP expression and immunoreactivity were increased at
1 month and 4 months after SCI. Several cell cycle pro-
teins were upregulated in GFAP+ reactive astrocytes con-
centrated in the boundary zone between spared tissue and
the lesion; treatment with a specific CDK inhibitor after
SCI reduced the sustained upregulation of cell cycle pro-
tein expression as well as GFAP immunoreactivity. Taken
together, our data demonstrate chronic cell cycle activa-
tion in reactive astrocytes after SCI, which may contribute
to the glial scar formation. Thus, the ability of cell cycle
inhibitors to limit scar formation may facilitate endogen-
ous restorative potential.
Recent studies demonstrated a secondary peak of in-

flammation as late as 2 months post-injury [45,46]. We
have shown that SCI in the rodent is followed by sus-
tained upregulation of a cluster of proinflammatory
genes for up to 6 months that may contribute to the
continuation of damage in the injured cord [16,17]. Al-
though microglia have both neurotoxic and neuroprotec-
tive effects [20,47,48], considerable experimental data
suggest that post-traumatic inflammation, including
microglial activation, contributes to chronic cell damage
and progressive tissue loss [30,49,50]. Indeed, activated
microglia and release of associated inflammatory factors
has been indicated as an important contributing factor
for many acute and chronic neurodegenerative disorders
[51,52]. The present study confirms similar results evi-
denced by increased expression and immunoreactivity of
the inflammatory markers, Iba-1, CD11b and a core
component of the NADPH oxidase enzyme, p22PHOX;
the increased cell cycle protein expression observed was
co-expressed with these inflammatory markers in acti-
vated microglia as late as 4 months after SCI. In agree-
ment with our previous findings [23,24,34], we detected
reduction of inflammation in the SCI rats treated with a
CDK inhibitor− including decreased immunoreactivity
of Iba-1, CD11b and p22PHOX. Together, these data sug-
gest that suppression of chronic inflammation by cell
cycle inhibition may account, at least in part, for the
progressive tissue loss after SCI. The results also suggest
that persistent cell cycle activation after injury may re-
flect a positive feedback loop that can be interrupted
with sub-acute cell cycle inhibitor administration.
Cell cycle proteins are also expressed in other cell types

of the CNS [53,54], such as oligodendrocytes and infil-
trating Schwann cells, which contribute to myelin repair
in the injured spinal cord [55]. We recently reported
increases in the myelinated white matter area and ex-
pression of myelin basic protein in flavopiridol-treated
injured rats [24]. However, it remains unclear whether
cell cycle inhibition increases remyelinated axons by oli-
godendrocytes and Schwann cells, or reduces chronic

progressive demyelination. We showed CDK4 and E2F5
are highly expressed in the central lesion areas where
astrocytes are absent but p75+ Schwann cells have infil-
trated [24,38]. Postnatal Schwann cell proliferation has
been known to be strictly and uniquely dependent on
CDK4 [56]. However, further investigation is required to
elucidate the mechanisms by which cell cycle inhibition
modulates myelination after SCI.
CR8 exhibits a 50-fold higher potency than roscovitine

in different cell lines, possibly owing its added efficacy to
more potent inhibition of CDKs 1, 2, 5, 7 and 9, and
increased solubility, cell permeability and enhanced
intracellular stability [36,57]. More recently, we reported
that CR8 at a single dose 20 times less than roscovitine
[29,30] provides superior neuroprotection to the parent
compound [58]. Given the increased potency and effi-
cacy of CR8 as compared to earlier purine analog types
of CDK inhibitors, this drug was used systemically in the
present study. CR8 treatment limited sustained upregu-
lation of cell cycle protein expression, as well as chronic
reactive astrocytosis and microglial activation. Signifi-
cantly reduced lesion volume and improved long-term
functional recovery were also observed, suggesting that
chronic cell cycle activation may contribute to secondary
injury and expansion of the lesion site after SCI.
In summary, we provide evidence that SCI is accom-

panied by a prolonged, sustained upregulation of cell
cycle-related protein expression that may contribute to
the development of glial scar formation, chronic inflam-
mation and progressive tissue loss. Blockade of cell cycle
pathways by a CDK inhibitor significantly reduces
delayed upregulation of cell cycle proteins, limits astro-
gliosis and chronic inflammation, and subsequent lesion
progression, with marked improvement in functional re-
covery. Thus, sustained cell cycle dysregulation may
contribute to the chronic progressive secondary injury
after SCI.
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