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Abstract

Traumatic injury to the brain (TBI) results in a complex set of responses involving various symptoms and long-term
consequences. TBI of any form can cause cognitive, behavioral and immunologic changes in later life, which
underscores the problem of underdiagnosis of mild TBI that can cause long-term neurological deficits. TBI disrupts
the blood–brain barrier (BBB) leading to infiltration of immune cells into the brain and subsequent inflammation
and neurodegeneration. TBI-induced peripheral immune responses can also result in multiorgan damage. Despite
worldwide research efforts, the methods of diagnosis, monitoring and treatment for TBI are still relatively ineffective.
In this review, we delve into the mechanism of how TBI-induced central and peripheral immune responses affect
the disease outcome and discuss recent developments in the continuing effort to combat the consequences of TBI
and new ways to enhance repair of the damaged brain.
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Introduction
Traumatic brain injury (TBI) is a complex process in-
volving a broad spectrum of symptoms and long-term
consequences including disabilities. It is a serious health
problem in the United States and around the world. Re-
cent data show that approximately 1.7 million people
sustain a TBI annually [1,2] including U.S. soldiers
involved in combat operations and public safety
personnel surviving terrorist attacks. An estimated 150
to 300,000 military personnel from Operation Iraqi Free-
dom and Operation Enduring Freedom suffered from
TBI [3-5]. It contributes to 30% of all injury-related
deaths and costs about $60 billion annually. TBI of any
form, mild to severe, can cause intellectual and cognitive
deficits, mood and behavioral changes both short- and
long-term [6-9]. In the long term, these can cause poten-
tially permanent changes and may lead to post-traumatic
stress disorder (PTSD) in the general population as well
as those in the military. Besides psychological symptoms,

immune suppression from TBI and subsequent infec-
tions are important consequences [10].
Although TBI can range from mild to severe, most

TBI is mild and characterized by brief changes in mental
status and cognitive ability [11]. Although the conse-
quences of mild TBI are not readily appreciated, it can
still cause infrastructural damage to the brain and sec-
ondary axonal injury [12] and shows symptoms like
cognitive or intellectual deficits and behavioral and per-
sonality changes even six months after injury [10]. In
most patients suffering from mild brain injury, the
symptoms disappear within six months but many others
suffer in a variety of ways that may be underappreciated
and treated inadequately or improperly. Even under
asymptomatic conditions, unhealed neurodegeneration
may cause a spectrum of diseases with huge cost to
society [10].
Once the brain suffers mechanical insult, the injury

process evolves over time and includes (a) primary in-
jury caused by direct or indirect contusion resulting in
shearing or stretching of brain tissue, subdural
hematoma and cerebral ischemia (b) secondary injury
characterized by diffuse axonal injury and inflammatory
reactions, and (c) regeneration. The secondary, that is,
the nonmechanical injury phase, is progressive and lasts
from hours to days [13,14], significantly contributing to
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neurological disabilities [15]. Injury to the cerebral vas-
culature breaks the blood–brain barrier (BBB), allows
entry of immune cells and stimulates inflammatory
reactions. The molecular events result in apoptosis,
inflammation, altered plasticity and neuronal regener-
ation. The complex nature of acute and chronic inflam-
matory reactions may aggravate the pathologic outcome
or promote the repair process [16,17]. Also, multiorgan
damage in trauma patients can lead to elevated circula-
tory levels of inflammatory cytokines that may contrib-
ute to the post-TBI pathogenesis of the brain [18] and
cause multiple organ dysfunction syndrome (MODS)
and death [19]. In this review we discuss the mechanism
of interaction between the systemic immune response
and the brain after TBI and current novel treatment
approaches to combat TBI-induced damage (Figure 1).

Response of the central nervous system to TBI:
neuroinflammation and pathobiology of the CNS
The BBB protects the brain and maintains the homeo-
stasis. Following TBI, a massive release of excitatory
amino acid neurotransmitters, particularly glutamate,
takes place [20,21]. These molecules interact with neu-
rons and astrocytes and cause increased Ca2+, Na+, and
K+ fluxes through overstimulation of glutamate recep-
tors. As a consequence, catabolic processes are activated
resulting in BBB breakdown [17]. The kinin system,

excitotoxicity, activation of the innate immune system
leading to neutrophil recruitment, mitochondrial altera-
tions and microglial activation lead to generation of re-
active oxygen species (ROS) which in turn trigger
downstream pathways and cause oxidative damage,
modifications in tight junctions and matrix metallopro-
teinase (MMP) activation. Thus ROS play an important
role in mediating TBI-induced changes in BBB perme-
ability [22]. ROS have also been implicated in fungal
toxin T-2-mediated alteration in BBB permeability [23].
Recent animal studies have shown that BBB breakdown
involves transcriptional changes in the neurovascular
network and eventual neurodegeneration [24].
The leaky BBB allows the passage of inflammatory

molecules and cells into and out of the injured brain ini-
tiating a cascade of responses in the brain and other
organs. The most important events contributing toward
the pathology of TBI are reactive astrogliosis, microglial
activation, infiltration of immune cells in the CNS and
neurodegeneration. Both the primary and secondary
mechanisms of TBI cause neurodegeneration and con-
tribute to post-traumatic neurological deficits [25,26].
One of the major pathological outcomes of these
mechanisms is diffuse axonal injury (DAI), the main
clinical feature of human TBI, leading to diffuse degen-
eration of cerebral white matter [27,28]. In a rodent
model of diffuse TBI, Cernak et al. [26] have shown
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Figure 1 Possible mechanism and the interactions between brain and systemic immunity after traumatic brain injury (TBI). Blood–brain
barrier (BBB) disruption allows peripheral immune cell infiltration into the brain. Interaction between brain and peripheral immune organs can
cause either hyperinflammation or immune suppression. Anti-inflammatory cytokines may eventually lead to neuronal recovery.
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hypertension, brain edema, increased permeability of
BBB, DAI and apoptosis of the cerebral cells following a
high velocity impact. Alder et al. have characterized the
pathological and behavioral changes in a lateral fluid
percussion model (LFPI) of TBI in mice [29]. The
process of TBI-induced neuronal cell death has multiple,
overlapping and distinct molecular mechanisms [30].
Following TBI, neuronal cell death can be induced by
caspase-dependent or -independent pathways [31], by
cell cycle activation in which mature neuronal cells reen-
ter the cell cycle and then die [32] or by autophagy [33].
In the caspase-dependent pathways, caspase 3 appears
to play the major role in causing TBI-induced apoptosis,
although caspase 6 and 7 have also been acknowledged
as proapoptotic molecules [34]. The caspase-independent
pathway is more complex and involves mitochondrial
proapoptotic molecules including apoptosis-inducing fac-
tor (AIF) [35] and its regulators like PARP-1 [36,37],
cyclophilin [38,39] and heat shock protein-70 (HSP-70)
[40]. These mechanisms probably work together in stress-
induced neuronal cell death and, therefore, inhibition of
only one pathway may not be sufficient to protect neurons
after TBI [41] (Table 1).

Role of neurocytokines and neurochemokines in the
central response to TBI
In the 1980s, scientists observed that the brain, endo-
crine system and immune system function together to
maintain homeostasis in health and prevent disease [55].
After Spangelo and co-workers identified cytokines and
their role in inflammation and immunity [56], brain
researchers began to study the actions of cytokines in
the CNS. In 1992, Ban et al. [57] found that interleukin-
1β (IL-1β) was synthesized in the brain under patho-
logical conditions while others showed that peripherally
synthesized cytokines were transported to the brain via
the bloodstream or cerebrospinal fluid (CSF) and
secreted into the brain parenchyma during breakdown

of the BBB [58], thus linking the brain and immune sys-
tem [59]. The chemokines are the chemotactic cytokines
that play an important role in leukocytes migration [60].
Their role in signaling in the CNS was reported by
investigators in the late 1990s [61-63]. Under inflamma-
tory or neurodegenerative conditions in the CNS, che-
mokine molecules are synthesized by activated microglia
or astrocytes which take part in the defense of the CNS
by recruiting monocytes to the injury site [64-67]. Under
normal physiological conditions the tight junctions of
the BBB prevent infiltration of circulating leukocytes
into the brain parenchyma [16,68]. Pathological condi-
tions like infections, mechanical trauma or toxicity may
disrupt the BBB and allow immune cells to enter the
brain parenchyma in response to chemokine signaling
from resident immune cells.
In addition to macrophages and glial cells, neurons have

also been found to express chemokines and chemokine
receptors in the brain under physiological and pathological
conditions [2,62,69,70]. Fractalkine (CX3CL1) was the first
chemokine seen to be constitutively expressed by the
neuronal cells of the CNS [66]. Later, other chemokines
like CXCL14/BRAK; [71,72], CCL20 [45], CCL21 [47],
CXCL12/SDF-1 and CCL2/MCP-1, were found in neur-
onal cells under various pathological conditions including
TBI. Helmy et al. [43] have reviewed the temporal profile
of 42 cytokines after TBI in human patients. Upregulation
of CCL20 has been observed in human subjects one day
after severe TBI [43]. Furthermore, a recent study identi-
fied CCL20 as a dual-acting chemokine with the potential
for inhibiting immune reactions and more importantly in
attracting inflammatory effectors and activators [44]. Studies
in our laboratory showed cerebral as well as systemic
expression of CCL20 after mild TBI in rats [45]. Recently,
Biber and co-workers [46,47,73] showed that damaged neu-
rons produce CCL21, which assumes a neuromodulatory
function. In a spinal cord injury model, Zhao et al. [74]
have shown that CCL21 expressed by the damaged neurons

Table 1 Important inflammatory mediators in TBI

Chemokines/ cytokines Functions Reference

CCL2 Macrophage infiltration Striling et. al. , 2004 [42]

CCL20 Inflammatory activator and immune cell attraction Helmy et. al. , 2010 [43]; Comerford et al.,
2010 [44]; Das et. al. , 2011 [45]

CCL21 Neuromodulatory Biber et. al. , 2002 [46]; de Jong et. al. ,
2005 [47]

IL-1 Neuronal injury Rothwell, 1999 [48]

IL-6 BBB dysfunction, neuroprotection Kossmannet.al, 1995 [49]; Penkowa et.al.,
2003 [50]

IL10 Neuroprotective Kremlev and Palmer, 2005 [51]

TNF-α BBB breakdown, Kim et. al. , 1992 [52]

Cerebral inflammation, Ramilo et. al. , 1990 [53]

IL-8 Neutrophil infiltration Whalen et. al. , 2000 [54]
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used the CXCR3 receptor instead of the usual CCR7 recep-
tor to activate the local microglial cells [75-77] and initiate
inflammatory reactions. These neurochemokines can also
be involved in nonimmune-related functions like neuromo-
dulation or neurotransmission, which could be important
in TBI. As Rostene and colleagues have pointed out, this
could be the complex communication network between the
neurons and the cells in its microenvironment that informs
them about the damage [2].
In addition to chemokines, various cytokines have also

been reported to be expressed following TBI, including
TNF-α associated with activated microglia and astro-
cytes that may initiate the inflammatory process [78]. IL-
6 in the injured brain has been associated with reactive
astrogliosis, neuronal injury, and infiltration of periph-
eral cells [78-81]. TGF-β expression in the astrocytes
and microglia after injury has been implicated in the
pathology and dysfunction of the CNS and IL-1, IL-6,
IL-8, IL-10, granulocyte colony-stimulating factor, TNF-
α, FAS ligand and monocyte chemo-attractant protein 1
[18,82-84] are thought to account for the progressive in-
jury. In a rat fluid percussion injury model a biphasic
production of TGF-β, mainly of TGF-β 2, was detected
in the ipsilateral cortex, with a first peak at 30 minutes
and a second peak at 48 hours after the lesion. This re-
sponse was accompanied by transient production of
TNF-α and IL-6 occurring between five and eighteen
hours after trauma. From this temporal pattern,
Rimaniol et al. suggested an alternative pro- and anti-
inflammatory role of TGF-β in the regulation of the
brain cytokine network providing an endogenous mech-
anism for the control of the inflammatory reaction in
traumatic brain injury [85].

Activation of resident immune cells of the CNS following
TBI
Microglial activation is integral to the response of the
brain and spinal cord to injury [86]. A number of factors
including pro-inflammatory and anti-inflammatory cyto-
kines, chemokines, growth factors, nitric oxide, prosta-
glandins, and superoxide and other reactive oxygen
species are released by microglia and modulate secondary
injury as well as recovery after injury. Microglial activation
is regulated in part by poly(ADP-ribose) polymerase-1
(PARP-1) [87]. Using a PARP-knockout mouse model of
TBI, Whalen et al. [54] showed improved motor and cog-
nitive functions after TBI and thereby indicated a detri-
mental role of PARP in the pathogenesis of TBI. In 2006,
Bernardo and colleagues [88] observed that inhibition of
microglial activation by peroxisome proliferator-activated
receptor (PPAR)-gamma and its synthetic agonists by ex-
pression of surface antigens, synthesis of nitric oxide,
prostaglandins, inflammatory cytokines and chemokines
by TBI-induced brain inflammation could be controlled

[88]. Perivascular macrophages are reactive cells that pro-
duce IL-1β and TNFα after CNS injury. In the perivascu-
lar endothelium these cytokines induce the expression of
adhesion molecules and promote leukocyte infiltration
[89].

Response of the peripheral immune system to TBI:
systemic immune activation and suppression after TBI
Multi-organ damage following TBI can lead to increased
numbers of infiltrating inflammatory cells and levels of
cytokines in the brain. Because of the compromised BBB,
these cells and molecules gain access to the brain and ag-
gravate the pathogenesis of TBI [18]. In spite of the
importance of systemic inflammation and circulating in-
flammatory molecules in TBI, only limited investigations
have been performed in this area. In a study on rats,
Whalen et al. [54] observed systemic neutrophilia together
with increased BBB permeability when granulocyte-colony
stimulating factor (GCSF) was administered prior to cor-
tical contusion injury (CCI). In another study Utagawa
et al. demonstrated that systemically administered IL-1β
markedly influenced the histopathological and behavioral
outcome following fluid percussion injury. The leaking of
pro-inflammatory molecules like cytokines, arachidonic
acid metabolites, proteins of the contact-phase and coagu-
lation systems, complement factors and acute-phase pro-
teins, as well as hormonal mediators [90] through the
compromised BBB into the circulation may generate a
systemic immune response syndrome (SIRS) [90,91] char-
acterized by hyper-inflammation or may release anti-
inflammatory molecules targeting IL-1β, IL-6 or TNFα
resulting in compensatory anti-inflammatory response
syndrome (CARS) to block development of SIRS [19].
The production of inflammatory mediators is regulated

by the negative feedback provided by the hypothalamus-
pituitary-adrenal (HPA) axis and sympathetic nervous sys-
tem (SNS) efferent limbs in CARS [19]; but in TBI, an im-
balance between these two can lead to immunological
dysfunction like organ damage or susceptibility to infec-
tions [91]. Stress-mediated release of cortisol and catecho-
lamines can enhance the immune suppression. Direct
infection through a skull fracture in TBI or from the
transmigration of enteric bacteria after a closed head in-
jury may cause infection, pneumonia and sepsis which can
be life threatening in TBI or immune-compromised
patients [10]. Griffin [10] has also pointed out that im-
mune suppression after TBI causes retardation of healing
in the brain infrastructure. In a 2001 human study, severe
immune suppression was observed following severe TBI.
Eighteen to seventy-two hours after head trauma, the
numbers of circulating T-cells, T-helper cells, T-
suppressor [92,93] and NK cells were reduced while the
B-lymphocyte count remained normal [92]. There was
also an increase in CD4+/CD45+ T cells [10,93]. The
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immune regulatory functions within the CNS following
TBI, for example, microglia and astrocyte activation lead
to antigen presentation to T-cells that alters their cytokine
response and this may contribute to TBI pathology. On
the other hand, the ability of these neuroantigen-reactive
T cells to specifically infiltrate the CNS can be used to de-
liver molecules to augment a recovery response in degen-
erating CNS tissues [94].

Response of peripheral immune organs to TBI.
Despite ongoing research, the effect of TBI on other
organs is largely unknown. In one study Mirzayan et al.
[95] evaluated the histopathological changes in lung and
liver. Following a single TBI event, they observed migra-
tion of immunocompetent cells to peripheral organs lead-
ing to various degrees of organ dysfunction. The spleen is
a reservoir of peripheral macrophages and other immune
cells in the body, and it is now well known that splenic
signaling contributes to injury of various tissues after is-
chemic insult. For example, splenectomy prior to insult
protects both the liver [96] and brain [84] from ischemic
damage. They have also observed a reduction in spleen
size following ischemic insult 84]. Li et al. [97] showed
that splenectomy immediately after severe TBI induced by
weight drop in rats decreased pro-inflammatory cytokine
production, mortality rate and improved cognitive func-
tion. It was observed by Das et al. [45] that splenectomy
immediately after the induction of mild TBI by lateral
fluid percussion in rats attenuated neurodegeneration and
CCL20 chemokine expression in the brain. Although the
mechanism of spleen-brain interaction is not clear, it was
found by Lee et al. [98] that the spleen participates in
cerebral inflammation following intracerebral hemorrhage
in a stroke model, as splenectomy reduced cerebral edema
and inflammatory cell counts (probably by increased cir-
culating catecholamines) [99]. Stewart and McKenzie
[100] suggested that sympathetic stimulation can cause
the release of immune cells from the spleen and subse-
quent infiltration into brain tissues. Regardless of the
neural mechanism, removal of the spleen immediately
after the insult would remove the largest pool of immune
cells, which should decrease infiltration and consequent
neuroinflammation. The thymus is the major source of
maturing T-cells in the body. Although a great deal of in-
vestigation has been done to elucidate the relationship be-
tween brain trauma and the immune system, very little
has been done to explore the function of the thymus after
TBI. In a study of LFPI in rats, Das et al. found elevated
CCL20 expression in the thymus following TBI [45]. Fur-
ther investigation is needed to identify the specific func-
tion of thymus after TBI in adult rats. In a model of
polytrauma combined with shock, Guan et al. observed
apoptosis in the thymus, spleen, lung, liver and intestine
which could cause the early organ injury and late organ

failure seen in polytrauma patients [101]. In an effort to
elucidate the hepatic response to acute brain injury,
Campbell et al. [102] observed that clodronate-mediated
Kupffer cell (KC) depletion reduced neutrophil- and ED-
1-positive macrophage infiltration in IL-1β-injected brain
or contusion-injured spinal cord by 70% and 50% respect-
ively. Suppression of KC proliferation may, therefore, re-
duce secondary injury. Previously this group had pointed
out that hepatic cytokines or chemokines produced as a
result of acute injury may inhibit neutrophil recruitment
to the CNS [102-105]. In recent studies, decreased liver
weight and protein content, altered energy metabolism
[106] and p450 dysfunction [107] have been observed fol-
lowing TBI.

Cytokines and chemokines secreted peripherally control
TBI
Following TBI, the signaling pathways are activated, in-
flammatory cells are mobilized and there is enhanced se-
cretion of multiple inflammatory mediators like cytokines,
chemokines and damage-associated molecular patterns
(DAMPs). DAMPs in turn reactivate the inflammatory
mediators and aggravate the damage [108]. The exact role
of cytokines in brain trauma is not fully known, although
experimental evidences suggest that cytokines play a
major role in the body’s response to TBI. The major cyto-
kines produced after TBI include tumor necrosis factor–
alpha (TNF-α), IL-1β, IL-2, IL-6, IL-8, [91,109], IL-4 [110]
and IL-18 [111]. Free radical nitric oxide (NO) is pro-
duced by the enzyme inducible NO synthase (iNOS)
[112], which is an important inflammatory mediator after
trauma in mice [113]. Among peripherally secreted che-
mokines in response to TBI the role of CCL20 has re-
cently been described. This unique chemokine interacts
specifically with the CC chemokine receptor 6 (CCR6)
and induces chemotaxis of dendritic cells, T cells and B
cells [114]. These cells are residents of the spleen and have
the potential to promote neuroinflammation. CCL20 is
expressed in inflamed epithelial cells [115] and in the syn-
ovial tissues of rheumatoid arthritis patients [116,117]. It
has also been shown to be upregulated under normother-
mic conditions in a rat middle cerebral artery occlusion
(MCAO) model [118]. Upregulation of CCL20 along with
other cytokines has been observed in human subjects one
day after severe traumatic brain injury [43]. Furthermore,
CCL20 has been identified as a dual-acting chemokine
with the potential for inhibiting immune reactions and
more importantly in attracting inflammatory effectors and
activators [44]. In a recent study using the LFPI rat model
of TBI, Das et al. showed the expression of CCL20 mRNA
and protein in spleen and thymus 24 hours after TBI,
which is 24 hours before its expression in the brain. Since
the thymus is the major source of mature circulating T
cells, CCL20 expression in the thymus in adult rats as
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observed in this study seems significant [45] and should
be further investigated.

Is TBI associated with other neurodegenerative disorders?
There is increasing evidence showing that TBI is asso-
ciated with neurodegenerative diseases like Alzheimer’s
disease (AD), Parkinson’s disease (PD), multiple sclerosis
(MS), and amyotropic lateral sclerosis (ALS) [119,120].
Epidemiological data indicates a single TBI event may
trigger or accelerate the onset of Alzheimer’s disease
(AD) in later life [121-124]. On the other hand, repeti-
tive mild TBI has been associated with progressive neu-
rodegeneration [125]. Since, Rudelli et al. [126] reported
a case of classic AD pathology in a 38 year old severe
head trauma patient, both tau pathologies and Aβ pla-
ques were identified in survivors of single TBI [121,123]
Subsequently, cases of AD-like pathology including
neurofibrillary tangles and Aβ deposition [124,127-130]
were reported in head trauma victims, including boxers,
irrespective of age [131]. Although the Aβ plaques in
AD and TBI are morphologically different, both contain
primarily Aβ1- 42 with some occurrence of Aβ1-40 in
TBI [129,130,132]. Aβ1-42 has also been observed in the
CSF of severe TBI patients and is thought to be directly
related to the increased level of cerebral Aβ [133] and
neuronal amyloidogenic amyloid precursor protein
(APP) levels after TBI [134]. Although results of animal
studies on TBI induced AD pathologies are conflicting,
it has been observed that post TBI activation of micro-
glia and proinflammatory cytokine release exacerbates
the AD like pathologies [135] in rats and is involved in
APP processing that leads to generation of Aβ plaques
[136,137].
In contrast to AD, studies attempting to correlate TBI

and MS, another neurodegenerative, demyelinating dis-
ease of the CNS, are limited. Goldacre and colleagues
[138] and Kurland [139] found no evidence of association
between TBI and the development of MS. However, risk
analysis using Taiwan’s National Health Insurance Re-
search Database, indicated higher risk of incidence of MS
in patients with a history of TBI compared to non TBI
control group [140]. Parkinson’s disease (PD) is a neuro-
degenerative disorder, which affects the dopaminergic
neurons of the substantia nigra. PD-associated mitochon-
drial dysfunction and pathology was observed after mild
to moderate TBI and trichloroethylene (TCE) exposure in
rats [141]. Also, TBI was reported to cause the nigrostria-
tal dopaminergic neurodegeneration in a rat model of
LFPI suggesting that TBI is a risk factor of PD develop-
ment [142]. Thus, although TBI appears to be associated
with the development of some neurodegenerative diseases,
conflicting data exist and detailed human and animal
studies are necessary in this field. The most studied asso-
ciation between TBI and AD appears to suggest that TBI

activation of immune mechanisms and proinflammatory
cytokine activation of microglia contribute to neurodegen-
erative processes.

Therapeutic approaches for TBI
A number of drugs for TBI have been tested in clinical
trials but none has shown much promise. Most of the
approaches to TBI therapy aim at treating the secondary
neurodegeneration as a single component. Recently, a
therapeutic regimen using multifunctional drugs has
been proposed and tested in experimental neurotrauma
models. The therapeutic agents included hormones like
thyrotropin releasing hormone (TRH) and progesterone,
heat shock proteins, neurotrophic factors, erythropoi-
etin, statin drugs and antibiotics [143,144], substance P
antagonists, cyclosporine, and magnesium salts among
others [145].

Anti-inflammatories for TBI
The inflammation following TBI causes tissue damage
correlating with the secondary injury phase. Recently
much attention has been drawn to the potential thera-
peutic benefits of inhibiting reactive oxygen species
(ROS), reactive nitrogen species (RNS), and several types
of tissue-digesting enzymes (matrix metalloproteinases),
prostanoids, leukotrienes, and proinflammatory/inflam-
matory cytokines such as tumor necrosis factor-alpha
(TNF-α). Inhibition of TNF-α with cannabinoids like
pentoxifylline and dexanabinol, and use of corticoster-
oids or NSAIDs like ibuprofen or minocycline to reduce
inflammation in the brain have shown promise in ani-
mals but failed in clinical trials [146]. Corticosteroids are
a family of anti-inflammatory drugs that are widely used
in autoimmune and allergic conditions and to reduce
tumor-induced cerebral edema; but they failed to show
any benefit in human trials of TBI involving adults and
children [147]. Reduction of oligodendrocyte death and
axonal degeneration by minocycline, a tetracycline de-
rivative was observed in a spinal cord injury model [42].
Cederberg et al. [148] suggested that timing is crucial in
inflammatory intervention, as IL-1, IL-6, and TNF-α
may also play an anti-inflammatory role in a later stage
of TBI-induced brain inflammation. Also, the PPAR-
gamma agonist 15d-prostaglandin J(2) was shown to
control brain inflammation by inhibiting microglial acti-
vation after TBI [88].

Gene therapy for TBI
Gene therapy is a promising approach for the treatment
of several diseases and conditions including TBI. With
the advent of improved experimental techniques like
microarrays for gene expression analysis, new targets are
emerging for the treatment of diseases, drug develop-
ment, immunotherapeutics and gene therapy. Colak
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et al. have identified several gene networks potentially
involved in TBI that includes the C1ql2, Cbnl, Sdc1,
Bdnf, MMP9, and Cd47 genes [149]. Redell et al.
observed changes in hippocampal miRNA expression
corresponding to the pathophysiological changes follow-
ing injury and identified these as potential targets for
gene therapy [150]. Degeorge and coworkers demon-
strated that administration of viral-mediated glial cell-
line derived neurotrophic factor (AdGDNF) one week
prior to cortical contusion injury in rats resulted in neu-
roprotection but not functional recovery [151]. Attempts
have been made to target mRNA translational regulation
to combat neurodegeneration. Aberrant RNA oxidation,
RNA degradation, altered RNA splicing and ribosomal
changes – all leading to mRNA translational abnormal-
ities have been described by many authors in different
neurodegenerative conditions [152,153]. The mRNA
translational regulation is affected by small non-coding
microRNAs. The miRNA-argonaute complex suppresses
the translation of target mRNA and each miRNA can
regulate the translation of hundreds of mRNA targets
and control the expression of many genes. Under cellu-
lar stress, a subset of microRNAs increases while expres-
sion of other miRNAs is decreased [154]. High
throughput sequencing has shown that the human brain
expresses over 1000 miRNAs, the functions of only ap-
proximately 500 of which have been determined [155].
MiRNAs have been implicated in various neurodegen-
erative conditions including TBI. Using microarray ana-
lysis, Redell and coworkers observed changes in the
hippocampal expression levels of 444 miRNAs at 3 and
24 hours after controlled cortical impact injury in rats.
In this study, 50 miRNAs were overexpressed including
targets for proteins known to be initiated after injury
[150]. Lei et al. also observed up- and down-regulation
of rat cerebral miRNA up to 72 hours after TBI [156]
while Liu et al. reported altered miRNA profiles after
traumatic spinal cord injury in mice [157]. The potential
exists for using miRNAs and small interfering RNAs
(siRNAs) as therapeutic agents, but much work needs to
be done before they will become a regular part of the
physician’s tool kit. The si/miRNAs can be delivered
using various transfection agents including liposomes,
polyethylenimine (PEI), chitosan nanoparticles or by
electroporation. Apart from the potential disadvantage
of off-target effects, RNA knockdown can be useful in
treating TBI.

Transplantation-based approaches for treating TBI
In the past two decades, restorative therapeutic approaches
focusing on repair or replacement of damaged or dead cells
following TBI have gained importance [158]. Cellular trans-
plantation is the method of choice because the brain itself
has a limited capacity for self-repair. Early experiments with

transplantation of fetal neural tissues with or without
nerve growth factor (NGF) were effective [159], but raised
issues of practicality and ethics. NT2N cells showed prom-
ise in graft survival [160,161]. It was found that ex vivo
NGF gene therapy improved cognitive deficits following
CCI in rodents [162,163]. Both rodent and human embry-
onic stem cells have shown encouraging results in survival,
integration and attenuation of post-traumatic sequellae.
Stem cells have the ability to self- renew and differentiate
depending on specific cues. Neural stem cells in particular
can divide unlimitedly and differentiate into neurons or
glial cells. It was observed that E14.5 mouse embryonic
stem cells transplanted with or without a fibronectin scaf-
fold following CCI improved behavioral symptoms [164].
Xenotransplanted human neural stem cells have been
found to survive in injured rodent brains and to express
astrocytic and neuronal antigens [165,166]. They migrated
to the hippocampus, corpus callosum and ipsilateral sub-
ependymal zone [167] and decreased the number of de-
generating neurons [168]. Bone marrow-derived stem cells
(BMSCs), either hematopoietic or mesenchymal, are advan-
tageous in that they can be harvested from the same animal
and thereby avoid the problems of cell availability and im-
mune rejection. These cells have successfully been trans-
planted into injured rats by different routes where they
express neural and glial cell markers (35, 36) and migrate
to the subventricular zone, hippocampus and pericontu-
sional areas [169] indicating neurogenesis and improved
neurobehavioral outcome [170]. Ma et al. [171] trans-
planted neural stem cells (NSCs) modified to encode brain
derived neurotrophic factor (BDNF) in rats after TBI and
found significant improvement in graft survival, neurogen-
esis and behavioral outcome. In another study in Wistar
rats, functional improvement and colonization of BMSCs
were observed after TBI and the recovery was found to be
facilitated by granulocyte colony stimulating factor (G-CSF)
[172]. Human fetal neural stem cells (hfNPCs) transplanted
after CCI in SD rats increased angiogenesis and reduced
astrogliosis [173]. As a long term effect they observed func-
tional improvement, reduced lesion volume and increased
neuronal survival surrounding the lesion [173].
The potential of therapeutic transplantation of immorta-

lized progenitor cell lines after TBI, has also been tested by
various authors. HiB5 cells derived from embryonic rat
hippocampus [174,175], MHP36, the fibroblast growth fac-
tor 2 (FGF-2)-responsive Maudsley hippocampal cell line
clone 36 [176] and C17.2, which is a clonal multipotent pro-
genitor cell from murine cerebellum [177], have been tested
for their efficacy in improving repair of the contusion site,
migration, neurogenesis and neurobehavioral outcome.
Hunang et al. [178] reviewed successful preclinical studies
and clinical trials of cell-based therapeutics for different
neurodegenerative conditions including TBI. They men-
tioned the use of restorative transplantation involving
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fetal/embryonic brain and spinal cord tissue, stem cells in-
cluding embryonic, neural, hematopoietic, adipose-derived
adult stem/precursor cells, skin-derived precursor and
induced pluripotent stem cells, glial cells (Schwann cells,
oligodendrocyte, olfactory ensheathing cells, astrocytes,
microglia, tanycytes), neuronal cells (various phenotypic
neurons and Purkinje cells), mesenchymal stromal cells
originating from bone marrow, umbilical cord, and umbil-
ical cord blood, epithelial cells derived from the layer of
retina and amnion, menstrual blood-derived stem cells,
Sertoli cells, and active macrophages. Functional recovery
and angiogenesis were observed following transplantation
of endothelial progenitor cells derived from adipose tissues
in the injured rat brain [179] showing promise. Some of
these approaches have also gone to clinical trials for SCI/
TBI [180,181], and the clinical and scientific communities
are paying more attention to the restorative treatment
options for TBI.

Conclusion
Traumatic brain injury is a complex process evoking sys-
temic immune responses as well as direct local responses
in the brain tissues. The primary or direct damage disrupts
the BBB and injures the neurons. This initiates a cascade
of inflammatory reactions including chemokine production
and activation of resident immune cells. The leakage of the
inflammatory molecules through the compromised BBB
attracts peripheral immune cells to the site of injury. The
effect of TBI is not restricted to the brain; it can cause
multi-organ damage and evoke systemic immune response
including cytokine and chemokine production. This facili-
tates the recruitment of immune cells to the site of injury
and progression of the inflammatory reaction and subse-
quent repair processes. In spite of the socioeconomic bur-
den of TBI and worldwide research efforts, an effective
treatment is still not available. Translational regulation of
mRNA by si/mi RNA shows promise as a safe and specific
treatment to combat neurodegeneration. Transplantation-
based therapies also have the potential to repair and restore
brain structure and function but continued in-depth in-
vestigations are needed before they become successful
therapeutics.
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