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670-nm light treatment reduces complement
propagation following retinal degeneration
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Abstract

Aim: Complement activation is associated with the pathogenesis of age-related macular degeneration (AMD). We
aimed to investigate whether 670-nm light treatment reduces the propagation of complement in a light-induced
model of atrophic AMD.

Methods: Sprague–Dawley (SD) rats were pretreated with 9 J/cm2 670-nm light for 3 minutes daily over 5 days;
other animals were sham treated. Animals were exposed to white light (1,000 lux) for 24 h, after which animals
were kept in dim light (5 lux) for 7 days. Expression of complement genes was assessed by quantitative polymerase
chain reaction (qPCR), and immunohistochemistry. Counts were made of C3-expressing monocytes/microglia using
in situ hybridization. Photoreceptor death was also assessed using outer nuclear layer (ONL) thickness
measurements, and oxidative stress using immunohistochemistry for 4-hydroxynonenal (4-HNE).

Results: Following light damage, retinas pretreated with 670-nm light had reduced immunoreactivity for the
oxidative damage maker 4-HNE in the ONL and outer segments, compared to controls. In conjunction, there was
significant reduction in retinal expression of complement genes C1s, C2, C3, C4b, C3aR1, and C5r1 following
670 nm treatment. In situ hybridization, coupled with immunoreactivity for the marker ionized calcium binding
adaptor molecule 1 (IBA1), revealed that C3 is expressed by infiltrating microglia/monocytes in subretinal space
following light damage, which were significantly reduced in number after 670 nm treatment. Additionally,
immunohistochemistry for C3 revealed a decrease in C3 deposition in the ONL following 670 nm treatment.

Conclusions: Our data indicate that 670-nm light pretreatment reduces lipid peroxidation and complement
propagation in the degenerating retina. These findings have relevance to the cellular events of complement
activation underling the pathogenesis of AMD, and highlight the potential of 670-nm light as a non-invasive
anti-inflammatory therapy.

Introduction
Age-related macular degeneration (AMD) is a global
epidemic with an estimated worldwide prevalence of 30
to 50 million [1], and a leading cause of blindness in
people aged over 65 (reviewed in [2]). While anti-
vascular endothelial growth factor (VEGF) therapy has
proved to be of benefit for neovascular or ‘wet’ AMD
[3], there are presently no treatments that mitigate pro-
gression of photoreceptor loss in the more common
atrophic or ‘dry’ form of AMD [4]. Although the

pathogenesis of AMD is a complex multifactorial
process, the recent discovery of a direct association of
complement activation with the incidence of AMD has
firmly established inflammation as an important factor
mediating its pathogenesis [5,6].
The complement system is a component of the innate

immune response, which provides a rapid host defense
against a range of immunological challenges, and aiding
in the maintenance of homeostasis [7,8]. Complement
activation initiates a cascade of proteolytic cleavages
[9,10], which augment the ability of the host to initiate
humoral defenses against infectious pathogens [11], and
promote the removal of potentially noxious substances
including extracellular debris [7,9,10,12], immune com-
plexes [8,13-15], and apoptotic cells [14,16-19]. When
activated and poorly regulated, however, complement

* Correspondence: matt.rutar@anu.edu.au
1The John Curtin School of Medical Research, College of Medicine, Biology
and Environment, The Australian National University, Building 131, Garran Rd,
Canberra ACT 2601, Australia
2ARC Centre of Excellence in Vision Science, The Australian National
University, Canberra ACT 2601, Australia
Full list of author information is available at the end of the article

JOURNAL OF 
NEUROINFLAMMATION

© 2012 Rutar et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

Rutar et al. Journal of Neuroinflammation 2012, 9:257
http://www.jneuroinflammation.com/content/9/1/257

mailto:matt.rutar@anu.edu.au
http://creativecommons.org/licenses/by/2.0


may induce the destruction of host tissue (reviewed in
[20,21]). In AMD, a pathogenic role of the complement
system has been revealed through a number of gene as-
sociation studies. These identified a significant associ-
ation between the Y402H sequence variant in the
regulatory gene complement factor H (CFH) with the in-
cidence of AMD [22-25], as well as other susceptibility
variants in complement pathway genes C2 [5,26], CFB
[5,26], and the central component C3 [27-31]. While the
precise cellular events that promote complement activity
in the degenerating retina are unclear (reviewed in [5]) it
is known that oxidative damage to photoreceptors pro-
motes the activation of complement and deposition of
C3 protein, as documented in a carboxyethylpyrrole
(CEP)-mediated mouse model of AMD [32,33].
Previous investigations have indicated that oxidative

damage may be modulated by exposure to irradiation
with 670-nm red light. Exposure to light concentrated in
the red to near-infrared light range (630 to 1,000 nm) is
known to react with the redox active metal centers of
cytochrome c oxidase (a key constituent of the electron
transport chain) that results in increased electron trans-
fer and improved mitochondrial respiration, and ATP
synthesis [34-36]. Studies have indicated that 670-nm
light exposure reduces oxidative damage in models of
rotenone-induced neurotoxicity [37], optic nerve tran-
section [38], and 2,3,7,8-tetrachlorodibenzo-p-dioxin
(TCDD)-induced toxicity [39]. Moreover, 670-nm light
irradiation has been shown to accelerate wound heal-
ing [40], and ameliorate tissue damage in models of
Parkinson’s disease [41], multiple sclerosis [42], and
methanol-induced retinal toxicity [43].
We have previously shown that retinal irradiation with

670-nm light attenuates photoreceptor apoptosis induced
by exposure to bright continuous white light (BCL) in
rats [44], a model with pathogenic features in common
with the atrophic ‘dry’ form of AMD [45-49]. Addition-
ally, we have shown that a suite of complement-related
genes are upregulated following BCL exposure, and that
C3 is expressed in the retina by infiltrating monocytes/
microglia [50]. However, the effect of 670-nm light
irradiation on complement propagation in the degener-
ating retina has not been explored. In the current study
we aimed to investigate the expression and localization
of complement genes, in correlation with oxidative
damage, following 670-nm light treatment and light
damage. Our data show that pretreatment with 670-nm
light reduces the expression of complement components
and receptors including in the retina following BCL
exposure. Further, we find a reduction in the recruit-
ment of C3-expressing microglia/macrophages in the
retina following 670-nm light, in spatiotemporal coinci-
dence with decreases in the oxidative damage marker
4-hydroxynonenal (4-HNE) [51].

Methods
Animals and light exposure
All experiments conducted were in accordance with the
Association for Research in Vision and Ophthalmology
(ARVO) Statement for the Use of Animals in Ophthal-
mic and Vision Research. Adult Sprague–Dawley (SD)
rats were born and reared in dim cyclic light conditions
(12 h light, 12 h dark) with an ambient light level of ap-
proximately 5 lux.
Prior to BCL exposure, some animals were precondi-

tioned with 670-nm light using a WARP75 670 nm
LED array (QBMI Photomedicine, Barneveld, WI, USA)
while others were sham treated. Animals in the treat-
ment group were exposed to 9 J/cm2 of 670-nm light
for 3 minutes daily over a period of 5 days, according to
our protocol described previously [44]. All animals
were then dark adapted for a minimum of 15 h then
transferred to individual cages designed to allow light
to enter unimpeded. BCL exposure commenced con-
sistently at 9:00 am, and was achieved using a cold-
white fluorescent light source positioned above the
cages (18 W, Cool White; TFC, Taipei, Taiwan), at an
intensity of approximately 1,000 lux at the cage floor.
BCL exposure was maintained for 24 h, after which ani-
mals were immediately returned to dim cyclic condi-
tions for a post-exposure period of 7 days. This
timepoint was chosen for analysis since maximal upre-
gulation of C3, recruitment of C3-expressing mono-
cytes/microglia, and formation of the lesion occurs at
this time [50]. Age-matched dim-reared animals, either
treated or sham treated with 670 nm, served as con-
trols. Animals were then killed and retinal tissue
obtained for analysis.

Tissue collection and processing
Animals were killed with an overdose of barbiturate
administered by an intraperitoneal injection (60 mg/kg
bodyweight, Valabarb; Virbac, Milperra, Australia). The
eye from some animals was marked at the superior sur-
face for orientation then enucleated and processed for
cryosectioning, while the retina from others was excised
through an incision in the cornea and prepared for RNA
extraction.
Eyes for cryosectioning were immediately immersion

fixed in 4% paraformaldehyde in 0.1 M phosphate-
buffered saline (PBS) (pH 7.3) for 3 h at room
temperature, then processed as previously described
[46], and cryosectioned at 16 μm. Retinas for RNA ex-
traction were immediately immersed in chilled RNAlater
solution (cat. no. 7024; Ambion, Austin, TX, USA), then
stored in according to the manufacturer’s instructions.
RNA was then extracted from each sample and analyzed
following previously established methodology [52,53].
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Quantitative real-time polymerase chain reaction (qPCR)
First-strand cDNA synthesis was performed using a
protocol described previously [53]. Gene amplification
was measured using commercially available TaqManW

hydrolysis probes (Applied Biosystems, Foster City, CA,
USA), the details of which are provided in Table 1. The
hydrolysis probes were applied following a previously
established qPCR protocol [53]. The fold change was
determined using the ΔΔCq method. Expression of the
target gene was normalized relative to the expression of
the reference gene glyceraldehyde-3-phosphate dehydro-
genase (GAPDH), which has shown no appreciable
change following BCL exposure previously [50].

In situ hybridization
To investigate the localization of C3 mRNA transcripts
in the retina following BCL, a riboprobe to C3 was gen-
erated for in situ hybridization on cyrosections of retinal
tissue, as described in previous studies conducted by our
group [50,54]. The C3 riboprobe was hybridized over-
night at 57°C, and then washed in saline sodium citrate
(pH 7.4) at 60°C.

Outer nuclear layer (ONL) thickness measurements
Thickness of the ONL in each age group was measured
in increments of 1 mm along the full length of retinal
cyrosections cut in the parasaggital plane (superioinfer-
ior), which were in close proximity to the vertical merid-
ian. The DNA-specific dye bisbenzamide (Calbiochem,
La Jolla, CA, USA) was used to visualize the cellular
layers. ONL thickness was calculated as the ratio of
ONL thickness to the distance between the outer and
inner limiting membranes (OLM-ILM), to take into ac-
count any obliquely cut sections. The total ONL ratio
from each retina is the average of two retina sections at
comparable locations.

Immunohistochemistry
Cryosections from each group were used for immuno-
histochemistry with an antibody against complement C3
(1:50, cat. no. ab11887; Abcam, Cambridge, MA, USA),

4-HNE (1:200, cat. no. HNE11-S; Alpha Diagnostic, San
Antonio, TX, USA), and ionized calcium binding adaptor
molecule 1 (IBA1) (1:1,000, cat. no. 019–19741; Wako,
Osaka, Japan). Immunohistochemistry was performed
using methodology previously described [53]. Immuno-
fluorescence was viewed using a Zeiss laser scanning
microscope (Carl Zeiss, Jena, Germany), and acquired
using PASCAL software (Zeiss, v4.0). Images were pre-
pared for publication using Adobe Photoshop software.

Quantification of C3-expressing nuclei
Counts of C3-expressing nuclei were performed on ret-
inal cryosections stained for C3 using in situ
hybridization (as described above); identification of these
C3-expressing nuclei as monocytes/microglia was con-
firmed in a previous investigation by our group [50].
Counts of C3-expressing nuclei were carried out along
the full length of retinal sections cut in the parasaggital
plane (superoinferior) close to the vertical meridian, in
adjacent fields measuring 1 mm across.

Statistical analysis
Statistical analysis was performed using one-way analysis
of variance (ANOVA) with Tukey’s multiple comparison
post test. For each analysis, differences with a P value
<0.05 were considered statistically significant.

Results
Quantification of ONL thickness following BCL exposure
and 670-nm light treatment
The effect of 670-nm light pretreatment on photorecep-
tor survival following BCL was assessed using ONL
thickness measurements across the retina (Figure 1).
The average thickness ratio of the ONL decreased by
27% following exposure to BCL, compared to dim-
reared animals (P <0.05). In contrast, animals treated
with 670-nm light prior to BCL exposure showed sub-
stantial preservation of ONL thickness compared to those
exposed to BCL alone (P <0.05), which was comparable
to ONL thickness of dim-reared animals (P >0.05). No
change was observed in ONL thickness in dim-reared

Table 1 TaqMan probes used

Gene symbol Gene name Catalog Entrez gene ID

C1s Complement component 1, s subcomponent Rn00594278_m1 NM_138900.1

C2 Complement component 2 Rn00597176_m1 NM_172222.2

C3 Complement component 3 Mm00437858_m1 NM_009778.2

C3ar1 Complement component 3a receptor 1 Rn00583199_m1 NM_032060.1

C4-1 (C4b) Complement component 4, gene 1 (C4B) Rn00709527_m1 NM_031504.2

C5r1 Complement component 5a receptor 1 Rn02134203_s1 NM_053619.1

GAPDH Glyceraldehyde-3-phosphate dehydrogenase Rn99999916_s1 NM_017008.3
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animals treated with 670-nm light, compared to un-
treated controls (P >0.05).

Immunoreactivity for 4-HNE in the retina
Immunoreactivity (IR) for 4-HNE was detected in the
inner (IS) and outer (OS) segments at low levels in both
670-nm light and untreated control retinas (Figure 2A,B,
arrow). Following exposure to BCL, IR for 4-HNE was
more intense (Figure 2C,D) and formed multiple depos-
its throughout the IS and OS region area (arrow). In ani-
mals treated with 670-nm light prior to BCL however,

levels of 4-HNE IR were lower the IS and OS region area
(Figure 2E), and more comparable to dim reared.

Modulation of complement-related gene expression with
670-nm light pretreatment
We examined the expression of six complement-related
genes using qPCR (Figure 3) that were identified follow-
ing BCL in microarray analysis conducted by us previ-
ously [50]; these include complement components C1s,
C2, C3, and C4b, as well as anaphylatoxin receptors
C3aR1, and C5r1. Following exposure to BCL, the ex-
pression of components C1s, C2, C3, C4b increased sig-
nificantly compared to dim reared (P <0.05, Figure 3A).
Differential expression of C3, and C4b peaked at 1,009%
and 1,204% following BCL, while C1s and C2 showed
more modest increases (389% and 348% respectively).
C3aR1 and C5r1 also showed robust increases in expres-
sion following BCL exposure (359% and 278% respect-
ively, P <0.05, Figure 3B). In animals treated with 670-
nm light prior to BCL, the expression of all complement
components (Figure 3A) and receptors (Figure 3B)
assessed was substantially lower than those subjected to
BCL alone (P <0.05). The differential expression of C2 in
particular was reduced to only 21% in the 670-nm light-
treated BCL group, and was statistically indistinguishable
from dim-reared animals (P >0.05). There was no signifi-
cant change in the expression of complement genes in
dim-reared animals treated with 670-nm light, compared
to untreated controls (P <0.05).

Localization of C3 mRNA and protein in the retina
following BCL and 670-nm light treatment
Because of its central role in the activation and propaga-
tion of complement, we selected C3 for further investi-
gation in relation to 670-nm light treatment. The
localization of C3 expression in the retina was assessed
with in situ hybridization (Figure 4). C3 was expressed

Figure 1 Measurements of outer nuclear layer (ONL) thickness
following 670-nm light treatment and bright continuous white
light (BCL) exposure. The thickness of the ONL decreased
significantly following exposure to BCL, compared to both dim-
reared and dim-reared + 670 nm groups (P <0.05). In comparison,
the ONL was significantly thicker in animals treated with 670-nm
light prior to BCL exposure (P <0.05). Dim reared n = 3, dim reared
+ 670 nm n = 3, light damage n = 3, light damage + 670-nm light
n = 3; error bars represent SEM. *Significant change using analysis of
variance (ANOVA) with Tukey’s post test where P <0.05.

Figure 2 Immunoreactivity (IR) for 4-hydroxynonenal (4-HNE; red) in the retina following 670-nm light treatment and exposure to
bright continuous white light (BCL). (A,B) IR for 4-HNE was faintly detected in the inner (IS) and outer segments (OS) of both untreated (A)
and 670-nm light-treated (B) dim-reared animals (arrows). (C,D) IR for 4-HNE was more intense in the IS and OS (arrow) following exposure to
BCL. (E) Treatment with 670-nm light prior to BCL resulted in a marked reduction in IR for 4-HNE (arrow), compared to light damage alone (C).
(F) Negative controls showed no specific staining for 4-HNE following BCL exposure. ONL = outer nuclear layer; OS = outer segments.
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in the retina by C3-expressing nuclei IR for the monocyte/
microglia marker IBA1 (Figure 4C-F), consistent with
our previous investigation [50]. C3-expressing nuclei
were sparsely distributed in the retinal vasculature in
dim-reared animals, at near zero per retina on average
(Figure 4A, histogram). Following exposure to BCL,
we detected a substantial increase (P <0.05) in the num-
ber of C3-positive cells to 26.7 per retina (Figure 4,

histogram), which were mostly associated with the de-
generative remains of photoreceptors in the ONL
(Figure 4C,D, arrows). In contrast, pretreatment with
670-nm light resulted in a dramatic reduction in the
number of C3-expressing nuclei to near zero following
BCL (P <0.05), consistent with dim-reared animals.
IR for C3 protein was performed using an antibody

against C3 (Figure 5A-J). C3 was detected faintly within
the retinal vasculature (Figure 5A, arrows), and the chor-
oid (data not shown) of dim-reared animals. Following
BCL exposure we detected strong C3-IR in multiple
deposits throughout the ONL (Figure 5C,D, arrows) and
the layer of outer segments (Figure 5E,F, arrows) at the
site of the developing lesion. Using coimmunolabelling
for 4-HNE, we observed colocalization between C3-IR
deposits in the outer segment layer and aggregations of
4-HNE IR (Figure 5I-L, arrows) in animals exposed to
BCL alone. In animals treated with 670-nm light prior
to BCL however, C3-IR was nearly absent from in the
ONL and outer segments (Figure 5G), with a distribu-
tion similar to dim-reared controls (Figure 5G, arrows).

Discussion
The results of this study demonstrate the efficacy of ir-
radiation with 670-nm light in suppressing lipid peroxi-
dation and complement propagation following BCL
exposure through several novel findings. First, we show
that 670-nm light irradiation reduces immunoreactivity
for 4-HNE in the inner and outer segment region fol-
lowing BCL exposure. Second, using qPCR we show that
670-nm light pretreatment inhibits the expression of a
suite of complement genes following BCL, including
components from the classical pathway (C1s, C2, C3,
C4b), and anaphylatoxin receptors (C3aR1, C5r1). Third,
we show a decrease in C3-expressing monocytes/microglia
to the ONL following 670-nm light pretreatment, which
coincides with reduced deposition of C3 protein in the
ONL and photoreceptor outer segments.
Previous investigations, including our own, have

shown that irradiation of the retina with various 670-nm
light paradigms reduces photoreceptor degeneration fol-
lowing exposure to BCL [44,55]. The current study,
however, is the first to show that retinal pretreatment
with 670-nm light reduces the expression of
complement-related genes following BCL exposure.
These include classical components C1s, C2, and C4b,
which mediate assembly of the C3 convertase [9], as well
as macrophage receptor genes C3aR1 and C5r1 that
recognize cleavage products of C3 and C5 respectively
[20]. Furthermore, we show that irradiation with 670-
nm light reduces the recruitment of microglial cells that
synthesize and deposit C3 protein in the outer retina fol-
lowing BCL exposure. Our findings are also consistent
with a previous study demonstrating a reduction IBA1

Figure 3 Expression of complement-related genes in the retina
by quantitative polymerase chain reaction (qPCR) following
670-nm light treatment and bright continuous white light (BCL)
exposure. (A,B) The expression of complement components C1s,
C2, C3, C4b (A) and receptors C3aR1, C5r1 (B) increased significantly
following BCL relative to dim-reared animals (P <0.05). In animals
treated with 670-nm light prior to BCL exposure, the expression of
all complement-related genes assessed was substantially reduced,
compared to those exposed to BCL alone (P <0.05). Dim-reared
animals exposed 670-nm light showed no significant modulation of
complement gene expression relative to controls (P >0.05). Dim
reared n = 3, dim reared + 670 nm n = 3, light damage n = 3, light
damage + 670-nm light n = 3; error bars represent SEM. *Significant
change using analysis of variance (ANOVA) with Tukey’s post test
where P <0.05.
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positive microglia in aging mice following irradiation
with 670-nm light [36]. While complement activation
has beneficial properties such as aiding debris clearance
by recruited phagocytes (reviewed in [10]), other experi-
mental evidence suggests that robust complement pro-
pagation may be detrimental following injury. Indeed, a
study using mice deficient in the regulatory gene comple-
ment factor D (CFD) indicates that complement propa-
gation exacerbates photoreceptor death following light
damage [56].

The present findings suggest that 670-nm light pre-
treatment attenuates oxidative damage to photoreceptors
and reduces inflammation, which may in turn reduce
stimulation of the complement cascade. These effects of
670-nm light may be due to an interaction with mito-
chondria, since compromised mitochondrial function
may initiate proinflammatory signaling pathways, and
generation of reactive oxygen species (reviewed in [57]).
This is supported by the findings of Kokkinpoulos and
colleagues, who found that 670 nm irradiation increases

Figure 4 In situ hybridization for C3 mRNA in the retina following 670-nm light and bright continuous white light (BCL) exposure.
(A-E) Representative images from the superior mid-periphery show in situ hybridization for C3 mRNA in the retina. Retinas from dim-reared (A)
and 670-nm light-treated dim-reared (B) animals showed no staining for C3 mRNA in the retina except for infrequent C3-expressing nuclei
associated with the retina vasculature (data not shown). In BCL-exposed animals (C-D) C3-expressing nuclei were more numerous in the outer
nuclear layer (ONL) and outer segments within the lesion area, while none were observed in those treated with 670-nm light prior to BCL
exposure (E). (F,G) C3 expression (dark grey) in sections counterimmunolabelled with anti-IBA1 (green), showing immunoreactivity in C3-expressing
nuclei within the degenerating ONL (arrows) following BCL. Histogram: Quantification of C3-expressing nuclei per retina showed a dramatic
increase from near zero in dim-reared animals to 26.7 following BCL exposure (P <0.05). In contrast, the number of C3-expressing nuclei was
reduced to near zero in animals pretreated with 670-nm light following BCL (P <0.05). Dim reared n = 3, dim reared + 670-nm light n = 3,
light damage n = 3, light damage + 670-nm light n = 3; error bars represent SEM. *Significant change using analysis of variance (ANOVA) with
Tukey’s post test where P <0.05.
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mitochondrial membrane polarization (and consequently
and ATP synthesis) in vitro, and reduces deposition of
C3 in aged mice [36].
Irradiation with 670-nm light has previously been

shown to reduce markers of oxidative damage, such as
manganese superoxide dismutase (MnSOD), in other
degenerative models [37-39], and our current findings
indicate that 670-nm light therapy decreases production
of 4-HNE, a byproduct of lipid peroxidation [58], in
photoreceptors following BCL exposure. We also find
deposition of C3 occurs in spatiotemporal coincidence
with increases in 4-HNE following BCL exposure. This
is consistent with the investigations by Hollyfield and
colleagues, in which mice immunized with the oxidative
damage byproduct CEP develop AMD-like retinal de-
generation and show increased deposition of complement
C3 in the outer retina [32,33]. Several investigations also
show that exposing RPE cultures to photo-oxidative stress,
or to oxidized photoreceptor outer segments, reduces

their ability to express the complement regulatory gene
CFH [59,60], thus promoting complement activation.
The mechanism by 670 nm modulates the recruitment

of C3-expressing microglia is unclear, though it may be
related to reduction of oxidative stress and/or reduced
expression of proinflammatory factors. Irradiation with
670-nm light reduces expression of the proinflammatory
cytokine tumor necrosis factor α (TNFα) in the retina
of aged mice [36], and the chemokine Ccl2 (a chemo-
attractant for monocytes/microglia [61,62]) following light
damage [63]. Furthermore, accumulation of lipofuscin
constituents, such as the bisretinoid A2E, may promote
activation and deposition of complement by microglia
in vitro, by simultaneously reducing synthesis of the
inhibitor CFH while increasing synthesis of CFB, a
promoter of the alternative pathway [64]. Increased gen-
eration of C3 activation products has also been observed
in RPE cells that have accumulated photo-oxidative pro-
ducts of A2E [65].

Figure 5 Immunoreactivity (IR) for C3 (red) in the retina following 670-nm light treatment and exposure to bright continuous white
light (BCL). (A-F) Representative images of C3 immunoreactivity taken from the superior mid-periphery. (A,B) IR for C3 was faintly detected in
retinal vasculature (arrows) of dim-reared retinas (A), as well as those treated with 670-nm light (B), at comparable levels of IR. (C-F) Following
BCL exposure, IR for C3 was observed in multiple deposits throughout the outer nuclear layer (ONL) in the lesion area (C-D, arrows) and the layer
of outer segments at the edge of the lesion (E-F, arrows). (G) C3-IR was vastly reduced in the ONL and outer segments of animals treated with
670-nm light prior to BCL, and appeared similar to dim-reared controls (arrows). (H) Negative controls showed no specific staining for C3
following BCL exposure. (I-L) C3-IR (red) in the outer segments of sections counterimmunolabelled with anti-4-hydroxynonenal (4-HNE) (green),
shows colocalization for aggregations of 4-HNE immunoreactivity (arrows) following BCL. C = choroid; ONL = outer nuclear layer; OS = outer
segment layer.
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Relevance to complement propagation in human retinal
degeneration
Our findings, in conjunction with the results from other
investigations, have previously shown that light damage
in rats shares pathological features in common with ‘dry’
AMD [45-49]. Like the widely used laser-induced model
of neovascular AMD, this model employs an acute dam-
aging stimulus to evoke long-term, site-specific changes
in the retina. Although the rat retina lacks a macula and
its key specialization the fovea centralis, it includes a fea-
ture that is homologous to the foveal region: the area
centralis, in the superiotemporal portion of the retina
[66-68]. Following light damage this region develops
focal degeneration of photoreceptors and RPE cells, and
associated changes to the blood-retinal barrier, which
mimics many histopathological aspects of advanced ‘dry’
AMD [45-48].
Complement activation is well established in the litera-

ture as a key factor in the pathogenesis of AMD. Key
among these are gene association studies which show an
association of polymorphisms in a range of complement-
related genes with the pathogenesis of AMD (reviewed
in [5]), including a string of investigations which have
identified a strong association with C2 [5,26] and C3
[27-31]. Additionally, histological analyses of post-
mortem AMD eyes indicate that complement compo-
nents and regulatory proteins are present in drusen
deposits (reviewed in [5]), particularly activation pro-
ducts of C3 such as C3d and C3b [69-71]. We show in
our investigation that irradiation of the retina with 670-
nm light substantially reduces the expression C2 and C3,
as well as the deposition of C3 protein in the outer retina,
following light-induced degeneration. Moreover, mito-
chondrial dysfunction and oxidative damage are thought
to be involved in the pathogenesis of AMD [72-74], and
several recent investigations have shown levels of oxidative
biomarkers are elevated in patients with AMD, compared
to controls [75,76]. As such, 670-nm light irradiation may
have potential as a non-invasive intervention to reduce ac-
tivation of complement in neural degenerations including
atrophic AMD.

Conclusions
Our findings suggest that retinal irradiation with 670-nm
light substantially reduces the propagation of comple-
ment in the retina following light-induced degeneration,
and is associated with a concomitant reduction in oxida-
tive damage to the photoreceptors. Consequently, these
findings further clarify the role of complement and oxi-
dative damage in retinal degeneration, and suggest that
670-nm light irradiation may be a useful strategy to con-
trol detrimental propagation of inflammatory responses
in retinal degenerations including atrophic AMD.
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