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Abstract

Monocytes are a heterogeneous population of bone marrow-derived cells that are recruited to sites of infection
and inflammation in many models of human diseases, including those of the central nervous system (CNS). Ly6Chi/
CCR2hi inflammatory monocytes have been identified as the circulating precursors of brain macrophages, dendritic
cells and arguably microglia in experimental autoimmune encephalomyelitis; Alzheimer’s disease; stroke; and more
recently in CNS infection caused by Herpes simplex virus, murine hepatitis virus, Theiler’s murine encephalomyelitis
virus, Japanese encephalitis virus and West Nile virus. The precise differentiation pathways and functions of
inflammatory monocyte-derived populations in the inflamed CNS remains a contentious issue, especially in regard
to the existence of monocyte-derived microglia. Furthermore, the contributions of monocyte-derived subsets to
viral clearance and immunopathology are not well-defined. Thus, understanding the pathways through which
inflammatory monocytes migrate to the brain and their functional capacity within the CNS is critical to inform
future therapeutic strategies. This review discusses some of the key aspects of inflammatory monocyte trafficking to
the brain and addresses the role of these cells in viral encephalitis.
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Background
Virus infection of the brain can cause severe and life-
threatening disease. Despite this, few therapies beyond
intensive supportive care are available to treat patients
with encephalitis [1,2]. Anti-viral drugs have been deve-
loped for some viruses that can infect the brain, such as
Herpes simplex virus (HSV)-1 and 2, and human im-
munodeficiency virus (HIV), but even with these treat-
ments outcomes remain relatively poor [2-5]. Many
patients succumb to disease, and survivors often suffer
permanent neurological sequelae [6-9].
While the development and clinical implementation of

novel anti-viral drugs may improve patient outcomes, it
is becoming increasingly clear that therapies targeting
pathogenic elements of the host immune response may
be critical for successful intervention during infection

[10-14]. Monocyte infiltration is a hallmark of central
nervous system (CNS) inflammation, including viral in-
fection. These cells migrate into the infected brain,
where they differentiate into dendritic cell (DC), macro-
phage and, arguably, microglial populations. Once differ-
entiated, these cells engage in a number of potent
effector functions including antigen presentation and T
cell stimulation, the production and secretion of nume-
rous pro-inflammatory mediators as well as reactive oxy-
gen species (ROS), all of which are focused on viral
containment and clearance (Table 1). However, unba-
lanced and poorly controlled migration and effector
functions of these cells may result in immune-mediated
pathology, resulting in tissue damage and destruction
during some infections (Table 1). Therefore, it is of high
importance to understand the processes driving mono-
cyte development, recruitment, differentiation and func-
tion, to aid in the development of novel therapeutics
that inhibit immunopathological responses.* Correspondence: nickk@pathology.usyd.edu.au
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Monocytes are derived from hematopoietic precursors in
the bone marrow
Monocytes are derived from hematopoietic stem cells
(HSC) in the bone marrow (BM) (Figure 1). The earliest
defined precursor is the common myeloid precursor
(CMP), distinguished from HSC by the expression of CD34
but not SCA-1 [39-42] (Figure 1). These cells give rise to a
pool of precursors called granulocyte/macrophage

precursors (GMPs), which express CD16/32 [39]. Included
within this subset is the recently defined macrophage/DC
precursor (MDP), which specifically expresses high levels of
the PU.1-controlled chemokine receptor CD115 (CSF-1R/
M-CSFR), chemokine receptor CX3CR1 (fractalkine
receptor), and Flt-3 (CD135/Flk2) [43-48] (Figure 1). The
MDP gives rise to CD11b+, CD115+, F4/80+, CD11c-,
Ly6G- monocytes, that can be isolated from the BM and

Table 1 Evidence for macrophage-driven pathogenesis and control of viral encephalitis

Macrophage-derived
mediators

Pathogenic and anti-
viral functions in the
central nervous
system

Pathogenic role in mouse models Anti-viral role in mouse models

Pro-inflammatory
cytokines

IL-1β ↑ pro-inflammatory
cytokines

IL-1β−/− mice resistant to fatal neurovirulent
Sindbis virus encephalitis [15]

IL-1β−/− mice exhibit increased mortality
and virus loads in HSV-1 encephalitis [16]

↑ leukocyte
chemoattractants

IL-6 ↑ adhesion molecules IL-6−/− mice exhibit reduced seizures in TMEV
encephalitis [17]

↑ NO/reactive oxygen
species production

↑ neuronal misfiring/
seizures

↑ neuronal

↑ breakdown of BBB

↑ MMP

Reviewed in [18-22]IL-12 IL-12−/− mice show decreased clinical score
during MHV encephalitis [23]

Infusion of IL-12 reduces viral loads and
improves survival during vesicular
stomatitis virus encephalitis [24]

TNF TNF-R−/− mice show improved survival in
rabies virus encephalitis [25]

TNF−/− mice exhibit increased mortality
and virus loads in HSV-1 encephalitis [16]

Free radicals NO/
reactive
oxygen
species

↑ neuronal misfiring/
seizures

Inhibition of NOS2 prolonged survival in rabies
virus encephalitis by delaying virus replication
and inhibiting of apoptosis [26]

NOS2−/− mice show increased
susceptibility to CNS invasion and death
in Murray Valley virus encephalitis [27]

↑ neuronal damage/
death

↑ formation of reactive
oxygen species

Inhibition of NOS2 reduces mortality
during Junin virus encephalitis [28] and
neurovirulent Sindbis virus encephalitis
[29]

Inhibition of NOS2 prolonged survival of WNV-
infected animals [30]

Reviewed in [31]

Proteases MMP ↑ breakdown of the
BBB

MMP-9−/− mice show reduced viral loads and
increased survival during WNV encephalitis [32]

↑ neuronal damage/
death

↑ demyelination

↑ pro-inflammatory
cytokines

Reviewed in [33,34]

Neurotransmitters Glutamate ↑ neuronal misfiring/
seizures

Competitive and non-competitive glutamate
receptor antagonists promote survival during
neurovirulent Sindbis virus encephalitis [35,36]
and improved outcomes during coronavirus
encephalitis [37]

↑ neuronal damage/
death

↑ production of NO/
ROS

Reviewed in [38]

BBB blood brain barrier; CNS central nervous system; HSV herpes simplex virus; MDP macrophage/dendritic cell precursor; MHV murine hepatitis virus; MMP matrix
metalloproteinases; NO nitric oxide; NOS2 nitric oxide synthase-2; ROS reactive oxygen species; TMEV Theiler’s murine encephalomyelitis virus; WNV West Nile virus.
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blood [49-52] (Figure 1). The spleen has also been identi-
fied as an important reservoir of undifferentiated mono-
cytes that are rapidly deployed to sites of inflammation,
including the ischemic heart and brain [53-55]. Further-
more, a recent study has shown that cardiac infarction trig-
gers a significant increase in numbers of MDPs in the
spleen, which supply monocytes throughout the duration
of acute inflammation [56]. Whether the spleen is a signifi-
cant source of monocytes during CNS infection is yet to be
determined, but presents a critical area of future investiga-
tion. It is likely that both the BM and spleen are critical for
supplying monocytes to the infected CNS, particularly in
cases of acute and severe infection, in which large numbers
of these cells are rapidly deployed and recruited to the
brain.

Monocytes are classified into two phenotypically and
functionally distinct subsets
The MDPs give rise to two phenotypically and function-
ally distinct subsets of monocytes [50,57]. Ly6Chi

monocytes are characterized by high expression of the
chemokine receptor CCR2, adhesion molecule CD62L
and low expression of the fractalkine receptor CX3CR1

[48,51,58]. These cells have been termed ‘inflammatory’
because they are selectively recruited to sites of inflam-
mation and infection in many models of disease, inclu-
ding atherosclerosis [59-62]; rheumatoid arthritis [63];
experimental colitis [64]; cardiac infarction [65]; and
CNS infections including experimental autoimmune en-
cephalomyelitis (EAE) [66,67], amyotrophic lateral scler-
osis [68], and stroke [53]. Recent studies have shown
that these cells are also recruited to the virus-infected
brain in animal models of HSV, HIV, murine hepatitis
virus (MHV), Theiler’s murine encephalomyelitis virus
(TMEV) and a number of flaviviral encephalitides, where
they give rise to macrophage, DC and, arguably, to
microglial populations [11,13,14,69].
Conversely, Ly6Clo/- monocytes are smaller in size than

their Ly6Chi counterparts and express low levels of CCR2
and CD62L and high levels of CX3CR1 [48,51,58] (Figure 1).

Figure 1 Development of monocytes in the bone marrow and recruitment to the virus-infected brain. Monocytes are generated from
hematopoietic precursors in the bone marrow (BM). Sca-1+ Lin- HSC (a) give rise to CD34+, Sca-1- CMP (b). These cells in turn give rise to a pool of
precursors known as granulocyte/macrophage precursors (GMPs), which express CD34 and CD16/32 (c). A fraction of these progenitors also express CD115
and CX3CR1 and are known as macrophage/dendritic cell precursor (MDP) (d). MDPs are the direct precursors of Ly6Chi inflammatory monocytes (e). MDPs
also give rise to circulating Ly6Clo/- monocytes directly, or via a Ly6Chi monocyte intermediate (f). During viral encephalitis, large quantities of the chemokine
CCL2 is produced by infected astrocytes, macrophages/microglia and/or neurons (g). CCL2 binds the chemokine receptor CCR2, expressed at high levels by
Ly6Chi inflammatory monocytes, which promotes the egress of these cells from the BM (h) into the blood, and thus recruitment from the blood into the
infected central nervous system (CNS) (i). Here, these cells can give rise to CD45hi Ly6Chi macrophages (j) and/or CD45int Ly6Cint immigrant microglia (k),
although it is unclear whether Ly6Cint immigrant microglia are derived from a Ly6Chi macrophage intermediate or directly differentiate from Ly6Chi

monocytes. Furthermore, it is unclear whether recruited macrophages and immigrant microglia give rise to CD45lo Ly6Clo/- resident microglia (l) if/when
virus is cleared from the CNS. In some models of viral encephalitis, Ly6Chi inflammatory monocytes can also give rise to Ly6Chi/CD11c+ DC in the brain (m).
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Several studies have shown that Ly6Chi monocytes can give
rise to circulating Ly6Clo/- monocytes [58,70-72]. Interest
in this subset has increased substantially in the past few
years [72,73]. Recent studies have described the patrolling
behavior of these cells in the vasculature [73], and have
shown that in some models of disease they rapidly enter
inflamed tissue and can contribute to early inflammatory
responses before domination by Ly6Chi monocytes [73]. In
the resolution phase of some diseases, Ly6Clo/- monocytes
are critical for wound healing and angiogenesis [50]. While
apparently important in the periphery, the role of Ly6Clo/-

monocytes during CNS infection remains poorly defined,
with little evidence supporting their migration into the
brain during inflammation [74].

Monocyte egress from the bone marrow is controlled by
chemokine/chemokine receptor interactions
The importance of monocyte-derived cells in the patho-
genesis of brain infection highlights the importance of
understanding the pathway(s) through which monocytes
migrate from the periphery into the brain. It is apparent
that this process is regulated by cytokine/chemokine and
integrin/cellular adhesion molecule interactions that
facilitate emigration from the BM into the blood and
entry into the CNS. For example, the chemokine recep-
tor CXCR4 and one of its ligands CXCL12 (SDF-1) di-
rectly enhance VLA-4-dependent adhesion and thereby
aid in retaining immature cells in the BM. Deficiency in
either molecule results in impaired myelopoiesis [75-80].
In addition to CXCR4, CCR2 and its ligands, CCL2 and
CCL7 (MCP-3), are a critical requirement for Ly6Chi

monocyte egress from the BM into the blood. CCL2/
CCR2 deficiency or blockade with antibody results in
monocyte accumulation in the BM in multiple disease
models, including EAE, WNV and HSV encephalitides
[11,61,67,81-87].

Monocyte recruitment into the infected brain is dependent
on chemokine/chemokine receptor interactions
A number of chemokines and their receptors have been
implicated in the recruitment of Ly6Chi monocytes from
the blood and into the brain. CCR5 is expressed by Ly6Chi

monocytes and is important for trafficking to sites of in-
flammation in some models of disease. In the brain, its lig-
and CCL5 (RANTES) expression is highly upregulated
during infection/inflammation, including WNV, MHV,
HSV and tick-borne encephalitis virus encephalitides
[88-92]. Another chemokine of interest that controls the
trafficking of monocytes into the brain parenchyma is
SDF-1/CXCL12, in conjunction with its receptor CXCR4,
expressed by monocytes [93]. In animal models of CNS
inflammation including EAE [94], HIV [95] and WNV
[96], there is significant upregulation of CXCL12. In EAE
and WNV, CXCL12 has been shown to play an important

role in retaining leukocytes in the perivascular space,
thereby inhibiting infiltration into the parenchyma. Loss
of this interaction resulted in the loss of perivascular cuffs
and uncontrolled infiltration of CXCR4+ leukocytes, in-
cluding monocytes, into the parenchyma. [94,96].
While it is clear that there are a multitude of soluble

mediators that represent potential targets for future ther-
apies aimed at blocking monocyte migration, the CCR2/
CCL2 axis remains the most potent pathway based on the
available literature. Ly6Chi /CCR2hi monocyte recruitment
into the CNS in models of stroke [53], peripheral inflam-
mation [97], Alzheimer’s disease (AD) [98,99] and EAE
[67,74,100,101] are all dependent on CCR2/CCL2 signal-
ing (Figure 1). In the context of viral encephalitis, the
CCL2/CCR2 axis is also very important. The major produ-
cers of CCL2 appear to be different depending on the
infectious agent, with microglia serving as important
sources during HSV infection [16,102], neurons in the
case of WNV infection [11] and astrocytes in HIV ence-
phalitis [103]. No matter the source of CCL2, the inhib-
ition of CCL2 can significantly reduce the infiltration of
inflammatory monocyte-derived macrophages and micro-
glia into the infected brain [11-13,69,88,102,104-108].

Monocyte recruitment into the infected brain is
dependent on integrin/adhesion molecule interactions
The focus in the last decade has been heavily on the
chemokines involved in monocyte trafficking, however,
cellular adhesion molecules and their integrin ligands
are obviously also important. In most models of viral in-
fection, very late antigen-4 (VLA-4) and leukocyte
function-associated antigen-1 (LFA-1) are expressed by
Ly6Chi monocytes. In addition, their respective binding
partner’s vascular cell adhesion molecule-1 (VCAM-1)
and inter-cellular adhesion molecule-1 (ICAM-1) are
usually upregulated on endothelium and other cell types
in the inflamed brain [109-115].
The importance of VLA-4 and VCAM-1 and LFA-1

and ICAM-1 in the recruitment of Ly6Chi monocytes to
sites of inflammation is evident in experiments using
gene knockout animals or specific blockade of these
molecules. VLA-4 and VCAM-1 interactions are critical
for monocyte migration to the heart in models of ath-
erosclerosis and arterial injury [116-118] and the
inflamed peritoneum [119]. VLA-4 is also critical for
Ly6Chi monocyte infiltration of the CNS in several mod-
els of inflammation, including EAE and spinal cord in-
jury [97,109,120]. During viral infection of the brain, we
have found that recruitment of monocytes to the CNS is
also VLA-4-dependent. VLA-4 antibody neutralization
significantly impairs the recruitment of Ly6Chi mono-
cytes to the infected brain, in both WNV and JEV infec-
tion ([30], CvV et al., unpublished observations). LFA-1
and ICAM-1 interactions are also important for
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monocyte recruitment to atherosclerotic plaques
[121,122] and to the CNS during EAE [110]. We have
shown that LFA-1 is also important for recruitment of
monocytes to the WNV-infected brain, however block-
ade resulted in a smaller reduction in monocytes infiltra-
tion compared to VLA-4 neutralization, which suggests
the differential use of adhesion molecules by Ly6Chi

monocyte subsets which enter the WNV-infected brain
[30].

Monocytes differentiate into macrophages and dendritic
cells in the infected brain
In models of CNS diseases, such as EAE and stroke,
Ly6Chi monocytes have been shown to primarily differ-
entiate into macrophage and DC populations exhibiting
a M1 pro-inflammatory phenotype, which in-vitro effec-
tively stimulates Th1 and Th17 responses in T cells
[53,66,67,74]. Similarly, in models of viral encephalitis,
Ly6Chi monocytes have been shown to give rise to M1
pro-inflammatory CD45hi macrophages and CD11c+ DC
populations, which express high levels of nitric oxide
(NO) and TNF during HSV, WNV, MHV, TMEV and
JEV ([11-14,30,69], CvV et al., unpublished observa-
tions). We have shown that these CD45hi macrophages
are highly effective at processing and presenting antigen
and effectively stimulate T cell proliferation [30].

Resident microglia originate from a myeloid lineage
distinct to that of infiltrating monocytes
Microglia are the resident macrophage population of the
brain. Similar to other tissue resident cells such as Kupffer
cells of the liver and Langerhans cells of the epidermis,
microglia originate from the yolk sac during embryoge-
nesis, from a myeloid lineage that is independent of BM
HSC and therefore distinct from that of BM-derived
monocytes [123-125]. Microglia can be distinguished from
infiltrating monocyte-derived macrophages and DC by
their low to intermediate expression of CD45 and lack of
Ly6C expression [11,126]. In most infections, resident
microglia play functionally distinct roles from that of
monocyte-derived cells. For example, during acute WNV
encephalitis, resident microglia express lower levels of pro-
inflammatory mediators such as NO, express lower levels
of MHC-II, and show a significantly reduced capacity to
process antigen and stimulate T cell proliferation compared
to the highly activated infiltrating macrophages [30]. In
comparison, in acute TMEV infection, resident microglia
and infiltrating macrophages express similar levels of pro-
inflammatory cytokines and show similar antigen proces-
sing and presentation capacity; however, in chronic stages
of disease, macrophages are more efficient at stimulating T
cell responses [127].

Monocytes may serve as microglial precursors during
brain infection
There is evidence to suggest that infiltrating monocytes
have the capacity to give rise to microglial cells in some
models of CNS inflammation, including AD, Parkinson’s
disease, EAE, as well as in infectious models such as
scrapie and bacterial meningitis [128-134]. These immi-
grant microglial cells appear to play distinct functional
roles compared to their resident counterparts during
disease. For example, immigrant microglia are more effi-
cient at clearing amyloid plaques than resident microglia
during AD [128,135]. However, a caveat of these studies
has been in the use of irradiation to generate BM chi-
meras to distinguish resident microglial from BM-
derived cells. There are currently no immunophenotypic
markers that can definitively separate these two popula-
tions. As a result, the generation of chimeras can be
used distinguish tissue resident and BM-derived popula-
tions. However, irradiation can disrupt the blood–brain
barrier (BBB) and promote CCL2 production, resulting
in the recruitment of monocytes to the CNS [136].
Therefore, it is difficult to conclude whether monocyte
engraftment is a normal feature of disease in unper-
turbed animals or whether it is primarily the result of
brain preconditioning by irradiation. A recent study
using the parabiosis model in place of irradiated BM chi-
meras has shown that engraftment of monocyte-derived
microglia during EAE is only a transient response [137].
The parabiosis models have also been employed to show
that there is no significant engraftment of monocyte-
derived microglia in facial nerve axonomy or amyo-
trophic lateral sclerosis [138]. Also, another recent study
has compared the recruitment of monocyte-derived
microglia into brain during AD, using chimeric mice
generated with or without head protection during irradi-
ation. They found that these cells do not engraft the
brain of protected animals [99]. However, one major
caveat of the head-protection model is the existence of
BM in the skull that may be capable of reconstituting
the animal. Further studies are required to definitively
determine whether monocyte-derived cells can give rise
to microglia and if these cells truly engraft the paren-
chyma and remain there if/when disease is resolved.
There are few studies that examine the recruitment of

monocyte-derived microglia during viral infection of the
CNS. We have shown that in WNV encephalitis, inflam-
matory monocytes not only give rise to CD45hi macro-
phages in the brain, but also to a CD45int subset, which is
phenotypically analogous to activated resident microglia,
apart from the expression of Ly6C [11,30]. Although chi-
meras were initially utilized to investigate this
phenomenon, we further confirmed that the recruitment
of these monocyte-derived cells was not the result of BBB
breakdown, using methods that do not use any irradiation
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including bone marrow adoptive transfer studies and
microparticle-based systems which track these cells with
minimal perturbation of the disease system [11]. Further-
more, these cells were found to contribute to the immu-
nopathogenesis of WNV encephalitis, as CCL2 blockade
significantly reduced recruitment into the CNS and pro-
longed survival of lethally-infected animals [11]. Current
studies in our laboratory aim to determine whether
monocyte-derived microglia truly engraft the brain paren-
chyma during WNV encephalitis, the functional role of
these cells throughout infection, and whether these cells
remain in the CNS after disease is resolved.

Monocytes contribute to viral clearance or viral burden in
different models of infection
Ly6Chi monocytes appear to play a paradoxical role in
many disease models. For example, higher mortality
rates and increased pathogen loads are seen in Toxo-
plasma [139,140], Listeria [83,141], Cryptococcus
[142,143], Yersinia infections [144], HSV-2, [145] and
coronavirus [146], as well as MHV [88] when these cells
are depleted. On the other hand, Ly6Chi monocytes are
direct targets for pathogens such as HIV, TMEV, Listeria
and Toxoplasma [12,69,147-152]. Infected monocytes
can be directly responsible for the dissemination of in-
fection in a “Trojan horse” fashion into the CNS thereby
potentiating disease and increasing potential mortality
[153-156].

Monocytes significantly contribute to immunopathology
during brain infection
An arguable role of monocytes during brain infection is
their potential contribution to immune-mediated path-
ology. In several models of CNS disease, Ly6Chi inflamma-
tory monocytes cause significant damage and destruction
in the brain, directly contributing to morbidity and
mortality. Ly6Chi monocytes contribute significantly to the
pathogenesis of disease during stroke [53]. Mice with
CCL2−/− and CCR2−/− deficiency show smaller infarcts
and enhanced functional outcomes relative to wild-type
controls following transient cerebral ischemia [157,158].
Similarly, in models of traumatic brain injury, CCL2−/−

mice showed reductions in macrophage infiltration and le-
sion volume compared to wild-type mice, corresponding
with improved functional recovery after injury [159]. In
addition, CCR2−/− and CCL2−/− mice exhibit milder symp-
toms and, in some models, are completely resistant to the
development of EAE [100,136,160,161]. Furthermore, a re-
cent study has shown that Ly6Chi monocyte recruitment
to the CNS is detrimental in amyotrophic lateral sclerosis
[68]. In the case of encephalitic disease, studies in our la-
boratory using WNV as well as others using TMEV have
shown that Ly6Chi monocytes are recruited into the
infected brain where they contribute significantly to the

immunopathogenesis of disease. Inhibition of inflamma-
tory monocyte migration into the WNV or TMEV-
infected brain can significantly reduce morbidity and mor-
tality [11,12,69,108]. Furthermore, abrogation of monocyte
migration into the CNS during MHV encephalitis results
in the delayed onset of demyelinating disease [105]. The
precise pathways through which inflammatory mono-
vcytes contribute to pathology are still under intense in-
vestigation. However, it is clear that differentiation into
effector cells such as macrophages and DC plays a
substantial role. Once differentiated, these cells are signifi-
cant producers of NO, matrix metalloproteinases (MMP)
and other factors known to culminate in tissue destruc-
tion, breakdown of the BBB, as well as neuronal damage
(Table 1). While in many organs such toxicity is not a
major concern due to regenerative capabilities, the brain is
largely comprised of many irreplaceable cellular subsets.
As such not only is mortality a concern, in patients that
survive serious CNS inflammatory insults will often suffer
long-term sequelae and neurological imbalance [6-9].

Conclusions
Although Ly6Chi monocyte infiltration is a hallmark of
viral encephalitis, the role of these cells in viral clearance
and immunopathology is not well defined. While it is
clear that these cells are critical for the control and
clearance of some viruses, they are directly responsible
for recruiting others into CNS, or cause significant
immunopathology. Future studies which target mono-
cyte development and migration to the CNS in a thera-
peutic manner will not only provide significant insight
into pathways by which monocytes are recruited to the
CNS, but will identify new targets for intervention du-
ring viral encephalitis.
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