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Prenatal stress causes alterations in the
morphology of microglia and the inflammatory
response of the hippocampus of adult female
mice
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Abstract

Background: Stress during fetal life increases the risk of affective and immune disorders later in life. The altered
peripheral immune response caused by prenatal stress may impact on brain function by the modification of local
inflammation. In this study we have explored whether prenatal stress results in alterations in the immune response
in the hippocampus of female mice during adult life.

Methods: Pregnant C57BL/6 mice were subjected three times/day during 45 minutes to restraint stress from
gestational Day 12 to delivery. Control non-stressed pregnant mice remained undisturbed. At four months of age,
non-stressed and prenatally stressed females were ovariectomized. Fifteen days after surgery, mice received an i.p.
injection of vehicle or of 5 mg/kg of lipopolysaccharide (LPS). Mice were sacrificed 20 hours later by decapitation
and the brains were removed. Levels of interleukin-1β (IL1β), interleukin-6 (IL-6), tumor necrosis factor α (TNF-α),
interferon γ-inducible protein 10 (IP10), and toll-like receptor 4 mRNA were assessed in the hippocampus by
quantitative real-time polymerase chain reaction. Iba1 immunoreactivity was assessed by immunocytochemistry.
Statistical significance was determined by one-way or two-way analysis of variance.

Results: Prenatal stress, per se, increased IL1β mRNA levels in the hippocampus, increased the total number of
Iba1-immunoreactive microglial cells and increased the proportion of microglial cells with large somas and
retracted cellular processes. In addition, prenatally stressed and non-stressed animals showed different responses to
peripheral inflammation induced by systemic administration of LPS. LPS induced a significant increase in mRNA
levels of IL-6, TNF-α and IP10 in the hippocampus of prenatally stressed mice but not of non-stressed animals. In
addition, after LPS treatment, prenatally stressed animals showed a higher proportion of Iba1-immunoreactive cells
in the hippocampus with morphological characteristics of activated microglia compared to non-stressed animals. In
contrast, LPS induced similar increases in expression of IL1β and toll-like receptor 4 in both prenatally stressed and
non-stressed animals.

Conclusion: These findings indicate that prenatal stress induces long-lasting modifications in the inflammatory
status of the hippocampus of female mice under basal conditions and alters the immune response of the
hippocampus to peripheral inflammation.
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Background
Epidemiological studies in man have shown that impaired
intrauterine growth is associated with an increased inci-
dence of cardiovascular, metabolic and other diseases in
adult life [1-3]. In addition, prenatal stress may also in-
crease the susceptibility to disease later in life [3-6]. Ma-
ternal stress or infection increases the inflammatory
response in their offspring and this is thought to increase
the risk of depression, schizophrenia and autism [7]. In
this regard, there is a recent appreciation for a direct im-
pact of the immune system on the stress axis and its po-
tential involvement in stress-induced affective disorder
onset and progression [7]. Furthermore, maternal hor-
mones and neuromediators released during maternal
stress can reach fetal organs and directly influence the on-
togeny of immune cells. This may be the case for gluco-
corticoids, which play a major role in fetal ontogeny and
tissue maturation before birth [8,9].
Increased levels of IL-6 and TNF-α have been detected

in pregnant women reporting high stress and these
proinflammatory cytokines are implicated in the devel-
opment of preeclampsia and premature labor and deliv-
ery [10-12]. Stress during pregnancy seems to alter the
immune function of the mother [11] and the immune
responses in mononuclear cells from cord blood [13],
but whether this has any consequences for the immune
system and future risk of infectious diseases in the off-
spring is unknown. However, in a nationwide cohort of
all Danish children born from 1977 to 2004, children
exposed prenatally to stress had a 25 % and a 31 %
increased risk of severe infectious disease and less severe
infectious disease hospitalization in childhood, respect-
ively, compared to unexposed children. The susceptibil-
ity to infectious diseases in the offspring was highest
within the first year of life [14]. In addition, maternal
stress has been proposed to have implications for the de-
velopment of atopic diseases [8]. In fact, pregnant
women experiencing stress display alterations in mater-
nal circulating cytokine levels during pregnancy and
these increased levels are suspected to be a cause for a
higher risk of allergy for the infant later in life [8,15].
Prenatal stress in rats causes long-lasting neurobio-

logical and behavioral alterations, including impaired feed-
back mechanisms of the hypothalamic-pituitary-adrenal
(HPA) axis, disruption of circadian rhythms and altered
neuroplasticity [4-6]. However, few studies have examined
the consequences of maternal stress on the immune sys-
tem of the offspring. Nevertheless, it is known that the be-
havioral response to lipopolysaccharide (LPS) is altered in
animal models of maternal stress [8]. For instance, pre-
natally stressed animals have an enhancement of certain
aspects of immune function, including elevated concentra-
tions of pro-inflammatory IL-1β both in the spleen and
brain frontal cortex [16] and exhibit augmented fever or

high levels of corticosterone [17,18] in response to LPS. In
addition, prenatally stressed male rats display an increased
pro-inflammatory status when they reach full maturity.
Thus, compared to control animals, seven-week-old pre-
natally stressed rats show increased basal expression of
IL-5 that is associated with a slight decrease of IL-2 ex-
pression in peripheral blood mononuclear cells, suggesting
the existence of a silent pro-inflammatory orientation of
the young immune system [19].
Microglia participate in the local inflammatory re-

sponse of the CNS, releasing a variety of inflammatory
mediators, including cytokines such as TNF-α, IL1β and
IL6, and chemokines such as interferon γ-inducible pro-
tein 10 (IP10; CXCL10) [20-22] that will ultimately cause
chronic local inflammation and progressive neurodegen-
eration [23,24]. In addition, microglia are involved in the
regulation of hippocamal neurogenesis [25] and micro-
glial activation and pro-inflammatory cytokines secretion
have a detrimental influence on hippocampal neurogen-
esis [26].
The hippocampus expresses the highest level of gluco-

corticoid receptors (GRs) within the brain [27,28] and is
particularly vulnerable to the effects of stressful experi-
ences [10,29]. Hippocampal GRs regulate the HPA axis
by binding glucocorticoids and through negative feed-
back mechanisms that turn off the HPA response to
stressors [30]. In this regard, it has been described that
prenatal stress induces structural abnormalities in the
hippocampal formation from adolescence until aging, in-
cluding reduction of neurogenesis in the dentate gyrus
across lifespan, which are associated with impairment in
hippocampal related spatial tasks [31,32]. Furthermore,
prenatal stress alters synaptic communication by chan-
ging dendritic morphology and neuronal volume in CA1
of developing rat offspring [33].
In this study, we have assessed whether prenatal stress

regulates the number and morphology of microglial cells
and the expression of TNF-α, IL1β, IL6 and IP10 in the
hippocampus, since this brain region is highly sensitive
to the inflammatory response and stress [10,26,29,31-
33]. The effect of prenatal stress was assessed, under
basal conditions and after an immune challenge caused
by the systemic administration of LPS, in female mice
that were ovariectomized to eliminate the neuroprotec-
tive and anti-inflammatory action of ovarian hormones
[34-36]. Since toll-like receptor 4 (TLR4) plays a key role
in LPS signaling, we also measured its mRNA levels in
the hippocampus of prenatally stressed and non-stressed
mice.

Methods
Animals
Animals were handled in accordance with the guidelines
presented in the UFAW Handbook on the Care and
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Management of Laboratory Animals and following the
European Union guidelines (Council Directives 86/609/
EEC and 2010/63/UE). Experimental procedures were
approved by our institutional animal use and care com-
mittee. Special care was taken to minimize suffering and
to reduce the number of animals used to the minimum
required for statistical accuracy. Animals were main-
tained in a temperature controlled room, with 12:12 h
light/dark schedule and received food and water ad libi-
tum. Animals used in our experiments were derived
from three different reproductions performed at sepa-
rated seasonal periods throughout the year. Adult virgin
C57BL/6 female mice (two months of age) from the
Complutense University animal colony were group-
housed (six per cage) to coordinate their estrous cycle.
Females were then individually housed in the presence
of a sexually experienced male C57BL/6 mouse. Preg-
nant females were then randomly assigned to stress
(n = 10) or non-stress (n = 10) groups and individually
housed in plastic breeding cages. Stress was started from
the gestational Day 12 to parturition. Pregnant females
were individually placed in plastic transparent cylinders
(3.5 cm diameter, 10 cm long) and exposed to bright
light for 45 minutes. Animals were daily submitted to
three stress sessions starting at 09:00, 12:00 and 16:00 h,
whereas non-stress pregnant females were left undis-
turbed in their home cages as previously described [37].
Male and female offspring were weaned 21 days after
birth, and only offspring from litters containing five to
nine pups with similar numbers of males and females
were used in the experiments. A maximum of two fe-
male pups were taken from each litter to remove any lit-
ter effects.
At four months of age, 10 non-stressed and 15 prenatally

stressed female mice were bilaterally ovariectomized under
halothane anesthesia (Fluothane, AstraZeneca Farmaceu-
tica, Madrid, Spain). Fifteen days after surgery, non-stressed
and prenatally stressed female mice received an i.p. injec-
tion of vehicle (phosphate-buffered saline, PBS) or an i. p.
injection of 5 mg/kg of LPS (from Escherichia coli 0111:B4,
L2630 Sigma–Aldrich St Louis, MO, USA) dissolved in
PBS. Therefore, four groups of animals were generated:
non-stressed injected with vehicle (NS-VEH=5), non-
stressed injected with LPS (NS-LPS=5), prenatally stressed
injected with vehicle (PS-VEH=5) and prenatally stressed
injected with LPS (PS-LPS=10). The dosage of LPS used
(5 mg/kg, i.p.) was based on a previous study [38]. Mice
were sacrificed 24 hours later by decapitation and the
brains were removed. The left hemispheres were immersed
in 4 % paraformaldehyde (Sigma-Aldrich) in 0.1 M phos-
phate buffer, pH 7.4 during 72 hours and then rinsed with
phosphate buffer and stored at −20°C in a cryoprotective
solution. The hippocampi were dissected from the other
halves of the brains and stored at −80°C.

Real time (RT)-PCR analysis
Interleukin 1β (IL1β), interleukin 6 (IL6), tumor necrosis
factor-α (TNF-α), interferon-inducible protein-10 (IP-
10) and toll-like receptor 4 (TLR4) mRNA levels were
assessed in the hippocampus by quantitative real-time
polymerase chain reaction. Tissue was homogenized and
RNA was extracted using an illustra RNAspin Mini
RNA Isolation Kit (GE Healthcare, Buckinghamshire,
UK). First strand cDNA was prepared from RNA using a
RevertAidTM H Minus First Strand cDNA Synthesis Kit
(MBI Fermentas, Bath, UK) following the manufacturer’s
instructions. After reverse transcription (RT), the cDNA
was diluted 1:4 (for IL6, IP10 and TLR4) or 1:8 (for
TNF-α and IL1β) and 5 μl were amplified by real-time
PCR in 15 μl using SYBR Green master mix or TaqMan
Universal PCR Master Mix (Applied Biosystems, AB,
Foster City, CA, USA) in a ABI Prism 7500 Sequence
Detector (AB), with conventional AB cycling parameters
(40 cycles of 95°C, 15 s; 60°C, 1 minute). Primer
sequences were designed using Primer Express (AB) Pri-
mer sequences were designed using Primer Express (AB)
and were as follows: for IL1β, forward, 5′-CGACAAAA
TACCTGTGGCCT-3′ and reverse, 5′-TTCTTTGGG
TATTGCTTGGG −3′; for IL6, forward, 5′-GAAAC
CGCTATGAAGTTCCTCTCTG-3′and reverse, 5′-TG
TTGGGAGTGGTATCCTCTGTGA-3′; for TNFα, for-
ward, 5′-GAAAAGCAAGCAGCCAACCA-3′ and re-
verse, 5′-CGGATCATGCTTTCTGTGCTC-3′; for IP10,
forward, 5′-CAGTGAGAATGAGGGCCATAGG-3′ and
reverse, 5′-CGGATTCAGACATCTCTGTCTAT-3′; and
for TLR4, forward, 5′-GGCTCCTGGCTAGGACTCTG
A −3′ and reverse, 5′-TCTGATCCATGCATTGGTAG
GT-3′Glyceraldehyde-phosphate dehydrogenase (GAPDH)
was selected as control housekeeping gene. GADPH Taq-
Man probes and primers were the Assay-on-Demand gene
expression products (AB). After amplification, a denaturing
curve was performed to ensure the presence of unique
amplification products. All reactions were performed in du-
plicate. IL6, IL1β IP10, TNF-α, and TLR4, gene expressions
were normalized to GAPDH.

Immunohistochemistry
Sagittal sections of the hippocampus, 50 μm thick, were
obtained using a Vibratome (VT 1000 S, Leica Microsys-
tems, Wetzlar, Germany). Immunohistochemistry was car-
ried out in free-floating sections under moderate shaking.
Endogenous peroxidase activity was quenched for 10
minutes at room temperature in a solution of 3 %
hydrogen peroxide in 30 % methanol. After several
washes in 0.1 M phosphate buffer (pH 7.4), containing
0.3 % BSA, 0.3 % TritonX-100 and 0.9 % NaCl (washing
buffer), sections were incubated overnight at 4°C with a
rabbit polyclonal antibody for Iba1 (Ionized calcium bind-
ing adaptor molecule 1) corresponding to the C-terminus
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(Wako Chemical Industries, Japan; diluted 1:2000). Pri-
mary antibody was diluted in washing buffer containing
3 % normal goat serum. After incubation with the primary
antibody, sections were rinsed in buffer and incubated for
2 h at room temperature with biotinylated goat anti-rabbit
immunoglobulin G (Pierce Antibody; Rockford, IL, USA;
diluted 1:300 in washing buffer). After several washes in
buffer, sections were incubated for 90 minutes at room
temperature with avidin–biotin peroxidase complex
(ImmunoPure ABC peroxidase staining kit, Pierce). The
reaction product was revealed by incubating the sections
with 2 μg/ml 3,3′-diaminobenzidine (Sigma-Aldrich) and
0.01 % hydrogen peroxide in 0.1 M phosphate buffer.
Then, sections were dehydrated, mounted on gelatinized
slides and examined with a Leitz Laborlux microscope
(Leica Microsystems, Wetzlar, Germany).

Morphometric analysis
Morphometric analysis was performed by an investigator
that was unaware of the identity of the experimental
groups. The number of Iba1-immunoreactive cells was
estimated with the optical disector method in the hilus of
the dentate gyrus of the hippocampus, using total section
thickness for disector height at 40× [39,40] and a counting
frame of 220× 220 μm. Section thickness was measured
using a digital length gauge device (Heidenhain-Metro
MT 12/ND221; Traunreut, Germany) attached to the
stage of a Leitz microscope. A total of 28 counting frames
were assessed per animal. In addition, the percentage of
Iba1 immunoreactive cells with different morphologies
was also assessed. Cells were classified in five morpho-
logical types: Type I, cells with few cellular processes (two
or less); Type II, cells showing three to five short branches;
Type III, cells with numerous (>5) and longer cell pro-
cesses and a small cell body; Type IV, cells with large
somas and retracted and thicker processes and Type V,
cells with amoeboid cell body, numerous short processes
and intense Iba1 immunostaining. For each animal, 120
cells were analyzed in the hilus of the dentate gyrus of the
hippocampus.

Statistical analysis
Data are presented as mean± SEM. Statistical analyses
were performed using GrapdPad Prism5 software (Graph-
Pad Software, San Diego, CA, USA). Main and interactive
effects were analyzed by two-way analysis of variance
(ANOVA) for repeated or factorial measures or by using
the Student’s t-test for one-to-one comparisons when ap-
propriate. When justified by the ANOVA analysis, differ-
ences between individual group means were analyzed by
the post hoc test: Newman-Keuls Multiple Comparison
test for one way ANOVA and Bonferroni post-test for
two-way ANOVA. Differences were considered statisti-
cally significant at P ≤0.05.

Results
Effects of prenatal stress on Iba1 immunoreactivity in the
hippocampus under basal conditions
Under basal conditions the number of Iba1-immunore
active cells in the hilus of the dentate gyrus was signifi-
cantly higher in prenatally stressed animals than in non-
stressed animals (one way ANOVA, P= 0.02; Newman-
Keuls multiple comparison test, P <0.05; Figure 1). In
non-stressed mice treated with vehicle, the predominant
morphology of Iba1-immunoreactive cells was that of a
small cell body with three to five cell processes, corre-
sponding to type II cells (61 %; Figure 2). These cells
were significantly reduced in prenatally stressed animals
treated with vehicle compared to non-stressed mice
(two-way ANOVA: There was a significant effect of cell
type, F(4,105) = 31.89; P <0.0001; no significant group ef-
fect, F(3,105) = 0.0003; P >0.05 but a significant inter-
action effect F(12,105) = 23.16; P <0.0001. Bonferroni
post-test: NS-VEH vs PS-VEH, P <0.001). In these ani-
mals the predominant morphology of Iba1-immunoreactive
cells was type III (58 %). The percentage of type III cells in
this group was significantly increased compared to non-
stressed mice. (Bonferroni post-test: NS-VEH vs PS-VEH,
P <0.001)

Effects of LPS on Iba1-immunoreactivity in the
hippocampus
The administration of LPS increased the number of Iba1-
immunoreactive cells in non-stressed animals compared
to vehicle-injected animals (one way ANOVA, P = 0.02;
Newman-Keuls multiple comparison test, P <0.05;
Figure 1). In contrast, LPS administration did not affect
the number of Iba1-immunoreactive cells in prenatally
stressed animals. However, LPS increased the proportion of
Iba1-immunoreactive cells with large somas and retracted
and thicker processes (type IV cells) in non-stressed (33 %)
and prenatally stressed (57 %) mice compared to vehicle-
injected mice (Bonferroni post-test: NS-VEH vs NS-LPS,
P <0.001; PS-VEH vs PS-LPS, P <0.001; Figure 2). Further-
more, LPS increased the proportion of cells with amoeboid
cell bodies, numerous short processes and intense Iba1
immunostaining (type V cells) in prenatally stressed animals
(21 %) compared to vehicle injected groups (PS-VEH, 1 %
and NS-VEH, 0 %) and to non-stressed animals injected
with LPS (11 %; Bonferroni posttest: NS-VEH vs PS-LPS, P
<0.01; PS-VEH vs PS-LPS, P <0.01).

Effects of prenatal stress on IL1β, IL6, TNF-α, IP10 and
TLR4 mRNA levels in the hippocampus under basal
conditions
Prenatal stress, per se, increased the levels of IL1β mRNA
compared to non-stressed mice (T-test, P=0.015; Figure 3).
In contrast, prenatal stress per se did not affect the mRNA
levels for IL6, TNF-α, IP10 (Figure 3) and TLR4 (Figure 4).
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Effects of LPS on IL1β, IL6, TNF-α, IP10 and TLR4 mRNA
levels in the hippocampus
The administration of LPS induced a significant increase in
the expression of IL1β in both prenatally stressed and non-
stressed animals (one way ANOVA, P=0.0002; Newman-
Keuls multiple comparison test, P <0.01; Figure 3). In non-
stressed animals, LPS induced a moderate increase in the
mRNA levels for IL6, TNF-α and IP10 that did not reach
statistical significance. In contrast, LPS induced a significant
increase in the mRNA levels for IL6, TNF-α and IP10 in
prenatally stressed mice (IL6, one way ANOVA, P=0.002;
Newman-Keuls multiple comparison test, P <0.01; TNF-α,

one way ANOVA, P=0.0007; Newman-Keuls multiple
comparison test, P <0.01; IP10, one way ANOVA, P=0.03;
Newman-Keuls multiple comparison test, P <0.05
Figure 3).
Treatment with LPS significantly increased TLR4

mRNA levels in the hippocampus of both stressed and
non-stressed animals compared to mice treated with ve-
hicle (t-test, P <0.05; Figure 4).

Discussion
Our results, showing that prenatal stress increases IL1β
mRNA levels in the hippocampi of ovariectomized female

Figure 1 A) Representative images of the dentate gyrus of hippocampus showing immunoreactivity for Iba1. A) Non-stressed female
treated with vehicle; B) Prenatally stressed female treated with vehicle; C) Non-stressed female treated with LPS and D) Prenatally stressed female
treated with LPS. Inserts show details of the morphology of Iba1-immunoreactive cells at high magnification. Scale bar, 50 μm. In the inserts, the
scale bar represents 7.5 μm. B) Number of Iba1-immunoreactive cells/mm3 in the hilus of dentate gyrus of hippocampus. NS, non-stressed female
mice; PS, prenatally stressed females. Filled bars, animals treated with vehicle (VEH). Empty bars, animals treated with LPS. Data are mean± SEM. *,
Significant differences (P <0.05) versus NS-VEH. aSignificant difference (P <0.05) versus NS-VEH and PS-VEH mice. bbSignificant difference
(P <0.01) versus NS-VEH and PS-LPS.
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mice, are in agreement with previous findings for adoles-
cent female rats, which show that prenatal stress increases
pro-inflammatory status [19] and elevates splenic and brain
IL1β levels [16]. However, a previous study did not detect
changes in IL1β levels in hippocampi of prenatally stressed
female mice [18]. This discrepancy may be due to the fact
that females were ovariectomized in our experiment, there-
fore, preventing the antiinflammatory effects of ovarian
hormones [20,21,34,35].
The increased mRNA levels for IL1β in the hippo-

campi of prenatally stressed animals detected in the
present study may contribute to the increased activity of
HPA axis observed in adulthood in these animals [41],
since IL1β is known to decrease the affinity of cortico-
steroid receptors in the hippocampus [42]. In addition,
the hyper-secretion of pro-inflammatory cytokines, such
as IL1β, is an index of stress and psychopathology [43].
Therefore, the increased expression of IL1β in the
hippocampi of prenatally stressed animals may also be
related to the depressive-like behaviors observed in these

animals [4]. In accordance with these data, it has been
described that external stress-induced depression-like
behaviors are associated with increased levels of certain
cytokines, such as IL1β [44].
In addition, prenatal stress produces an inhibition of

neurogenesis in the dentate gyrus of the hippocampi in
rats [31,32] and monkeys [45]. In turn, decreased hippo-
campal neurogenesis related to stress-induced increases
in plasma glucocorticoids may be involved in mediating
depressive affect [46,47]. Since it has been described that
elevation of hippocampal IL1β can markedly suppress
hippocampal neurogenesis and since IL1β is induced by
stress, it is probable that IL1β mediates the anti-
neurogenic effect of stress [26,48-50].
The increase in mRNA levels for IL1β in hippocampi

of prenatally stressed animals was accompanied by a sig-
nificant increase in the number of cells immunoreactive
for Iba1, a marker of both resting and reactive microglia.
In addition, prenatal stress caused a decrease in the num-
ber of Iba1-immunoreactive cells showing three to five

II IV VI III

Figure 2 Morphological changes of Iba1-immunoreactive cells in the hilus of dentate gyrus of hippocampus. The upper panels show
examples of the five morphological types in which Iba1-immunoreactive cells were classified: Type I, cells with few cellular processes (two or less);
Type II, cells showing four short branches; Type III, cells with numerous cell processes and a small cell body; Type IV, cells with large somas and
retracted and thicker processes and Type V, cells with amoeboid cell body, numerous short processes and intense Iba1 immunostaining. The
graph shows the proportion of each morphological type in non-stressed (NS) and prenatally stressed (PS) animals treated with vehicle (VEH) or
LPS. aaa, Significant difference (P <0.001) of II type cells versus PS-VEH, NS-LPS and PS-LPS mice. bbb, Significant difference (P <0.001) of III type
cells between NS-VEH, NS-LPS and PS-LPS mice. ccc, Significant difference (P <0.001) of type IV cells between NS-VEH mice. ddd, Significant
difference (P <0.001) of type IV cells versus PS-LPS mice. eee, Significant difference (P <0.01) of type IV cells versus PS-VEH mice. ff, Significant
difference versus NS-VEH and PS-VEH mice.
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short branches (type II) and an increase in the proportion
of Iba1-immunoreactive cells with numerous cell pro-
cesses (type III). This observation is in agreement with
accelerated microglial differentiation into a ramified form
in prenatally stressed pups of 10 days of age [51]. The sig-
nificance of these morphological changes in microglia is

unknown, but they may reflect a transition of resting
microglia towards a pre-activated phenotype. In addition,
in prenatally stressed animals there was a higher propor-
tion of Iba1-immunoreactive cells with large somas and
retracted and thicker processes (type IV); morphology that
is characteristic of activated microglia.
Systemic LPS administration induces peripheral inflam-

mation and central neuroinflammation involving microglial
activation, resulting in chronically elevated inflammatory,
oxidative and nitrosative stress pathways [38,44]. Induction
of the proinflammatory cytokines IL-1β, IL-6 and TNF-α
within the CNS leads to a variety of behavioral, physio-
logical and neurological alterations, including fever, dimin-
ished feeding behavior, decreased social behavior and
decreased exploration (collectively termed “sickness behav-
ior”) [52]. In agreement with this, LPS administration
induces fever response in prenatally stressed animals
[17,18]. LPS administration also causes deficits in perform-
ance and spatial learning and increased corticosterone and
IL-1β levels. [18].
Our findings indicate that prenatal stress not only

affects mRNA levels for IL1β and Iba1 immunoreactivity
in the hippocampus under basal conditions, but also
modifies the inflammatory response after the administra-
tion of LPS. LPS induced significantly greater increases
in the mRNA for IL6, TNF-α and IP10 in hippocampus
of prenatally stressed mice compared to non-stressed

Figure 4 Toll-like receptor 4 (TLR4) mRNA levels in the
hippocampus. NS, non-stressed female mice; PS, prenatally stressed
females. Filled bars, animals treated with vehicle (VEH). Empty bars,
animals treated with LPS. Data are mean± SEM. *, Significant
differences (P <0.05) of LPS groups versus their respective VEH
groups.

Figure 3 mRNA levels of inflammatory markers in the hippocampus. A) Interleukin-1β (IL1β); B) Interleukin-6 (IL6); C) Tumor necrosis factor
α (TNF-α) and D) IFN-inducible protein 10 (IP10). NS, non-stressed female mice; PS, prenatally stressed females. Filled bars, animals treated with
vehicle (VEH). Empty bars, animals treated with LPS. Data are mean± SEM. *,**,** Significant differences (*P <0.05, **P <0.01; ***P <0.001) of LPS
groups versus their respective VEH groups. a, significant differences (P <0.05) versus NS-LPS values. #, Significant difference (P <0.05) versus NS-
VEH group.
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animals. The enhanced LPS-induced expression of IL6
and TNFα in prenatally stressed animals may increase
inflammatory damage [53] and dysfunction of the
blood–brain barrier [54]. Furthermore, increased expres-
sion of IP10 after LPS could result in differences in the
recruitment of T lymphocytes, natural killer cells and
monocytes into the central nervous system [55,56]. The
expression of these proinflammatory molecules is also
associated with increased microglia reactivity [57] and
may, therefore, be involved in the higher proportion of
Iba1-immunoreactive cells with morphological charac-
teristics of activated microglia (types IV and V) induced
by LPS in prenatally stressed animals compared to non-
stressed animals. In this regard, although under quies-
cent condition, microglia may be involved in facilitation
of neurogenesis [58]; inflammation-induced microglial
activation has been implicated in neurogenesis suppres-
sion [59,60]. In addition, the number of activated micro-
glial cells shows a direct correlation with impairment of
neurogenesis [61]. Therefore, the increased number of
Iba1-immunoreactive cells in the prenatally stressed
group could be involved in decreased neurogenesis and
in behavioral alterations observed in this animal model
[4,31]. Also, the exacerbated increase of IL6 and TNFα
observed in prenatally stressed mice after LPS adminis-
tration could directly affect neurogenesis, since IL-6 and
TNFα are known to inhibit neurogenesis [26,62,63].
The inflammatory response to LPS is mediated by

TLR4, a member of the IL1 receptor/TLR superfamily
that is expressed by astrocytes [64-67] and microglia
[68]. In agreement with our results, previous studies
have shown that expression of TLR4 is increased in
hippocampus of mice after systemic administration of
LPS [69,70]. The significance of an increased central ex-
pression of TLR4 during systemic inflammation remains
to be determined. However, our data show that pre-
natally stressed and non-stressed mice showed similar
changes in the expression of TLR4 in hippocampus after
LPS administration. This indicates that the different
responses of hippocampus of these animals to LPS are
not mediated by differences in TLR4 expression. The
different responses of the hippocampi of prenatally
stressed and non-stressed animals to LPS may be an in-
direct effect of deregulation of the HPA axis by prenatal
stress [71]. This deregulation of the HPA axis may affect
the release of ACTH and glucocorticoids in response to
LPS [72-74] and the regulation of the immune response
by these molecules [75,76].

Conclusion
Our findings indicate that the hippocampi of prenatally
stressed female mice display a proinflammatory status
and display an exaggerated response to an inflammatory
challenge in comparison to the hippocampus of female

mice that were not submitted to prenatal stress. The dif-
ferent response of the hippocampi of prenatally stressed
mice to an inflammatory challenge may predispose these
animals to the development of cognitive dysfunction,
affective disorders and neurodegenerative diseases.
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