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Abstract

Background: Chronic alcohol use changes the brain’s inflammatory state. However, there is little work examining
the progression of the cytokine response during alcohol withdrawal, a period of profound autonomic and
emotional upset. This study examines the inflammatory response in the central nucleus of the amygdala (CeA) and
dorsal vagal complex (DVC), brain regions neuroanatomically associated with affective and cardiorespiratory
regulation in an in vivo rat model of withdrawal following a single chronic exposure.

Methods: For qRT-PCR studies, we measured the expression of TNF-α, NOS-2, Ccl2 (MCP-1), MHC II invariant chain
CD74, and the TNF receptor Tnfrsf1a in CeA and DVC samples from adult male rats exposed to a liquid alcohol diet
for thirty-five days and in similarly treated animals at four hours and forty-eight hours following alcohol withdrawal.
ANOVA was used to identify statistically significant treatment effects. Immunohistochemistry (IHC) and confocal
microscopy were performed in a second set of animals during chronic alcohol exposure and subsequent 48-hour
withdrawal.

Results: Following a chronic alcohol exposure, withdrawal resulted in a statistically significant increase in the
expression of mRNAs specific for innate immune markers Ccl2, TNF-α, NOS-2, Tnfrsf1a, and CD74. This response was
present in both the CeA and DVC and most prominent at 48 hours. Confocal IHC of samples taken 48 hours into
withdrawal demonstrate the presence of TNF-α staining surrounding cells expressing the neural marker NeuN and
endothelial cells colabeled with ICAM-1 (CD54) and RECA-1, markers associated with an inflammatory response.
Again, findings were consistent in both brain regions.

Conclusions: This study demonstrates the rapid induction of Ccl2, TNF-α, NOS-2, Tnfrsf1a and CD74 expression
during alcohol withdrawal in both the CeA and DVC. IHC dual labeling showed an increase in TNF-α surrounding
neurons and ICAM-1 on vascular endothelial cells 48 hours into withdrawal, confirming the inflammatory response
at the protein level. These findings suggest that an abrupt cessation of alcohol intake leads to an acute central
nervous system (CNS) inflammatory response in these regions that regulate autonomic and emotional state.
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Background
The relationship between alcohol use, withdrawal and brain
inflammation is complex and of considerable interest in
light of the high incidence of alcohol use and misuse and
the potential impact of alcohol-mediated brain inflamma-
tion on neurologic and emotional health [1]. Recent evi-
dence suggests that chronic alcohol exposure alters
neuroimmune function, creating a proinflammatory state
[2]. For example, astrocytes isolated from the cerebral cor-
tex of alcohol-exposed rats show increased inductible nitric
oxide synthase (NOS-2), cyclooxygenase-2, (COX-2) and
IL-1β levels in culture [3]. Moreover, 10-day intragastic al-
cohol exposure amplifies and prolongs the brain’s produc-
tion of TNF-α, monocyte chemotactic protein-1 (MCP-1)
and IL-1β in response to a peripheral lipopolysaccharide
(LPS) injection in rats [4]. The possibility that alcohol could
have direct effects on central nervous system (CNS)-resi-
dent cells is raised by the finding that alcohol causes a dose-
and time-dependent induction of TNF-α and Il-1β in cul-
tured microglia [5]. Studies of postmortem brain samples
suggest that these findings are relevant to human neuro-
pathology. Histologic changes in microglia, increases in
MCP-1 mRNA levels [6], and altered transcriptional regula-
tion of NF-kB [7] have been identified in brain tissue from
alcoholics.
Together, these studies suggest that alcohol exposure

affects innate immune system function. Normally, the
innate immune system protects vertebrates from infec-
tion by reacting to nonspecific signals of infection, cellu-
lar stress and injury. If such signals, like abnormal lipids,
reactive oxygen or nitrogen species, nucleic acids or
other cellular debris are encountered, cells of the innate
immune system activate various toll-like receptors,
downstream JAK-Stat and MAPK signaling pathways [8],
biosynthetic processes [9] and gene expression [10,11],
that promote a proinflammatory state. This response
activates within minutes to hours and involves the pro-
duction of various chemokines, cytokines and angiogenic
factors like TNF-α and interleukins as well as nonprotein
signals, such as nitric oxide, that are synthesized by resi-
dent and recruitable cells [8]. In the central nervous sys-
tem, innate immune functions are principally carried out
by microglia [12,13], although astrocytes [14], endothe-
lial cells [15], neurons [16,17] and in pathological condi-
tions, infiltrating peripheral white blood cells [18,19]
may all contribute. As a result of this intercellular cyto-
kine-mediated paracrine and autocrine signaling, the in-
nate response is activated, propagated and amplified,
providing both immune defense and tissue repair [2].
There is accumulating evidence that innate neuroin-

flammatory processes with pathological properties are
activated by chronic alcohol exposure [2,20-22]. Yet,
how these processes are engaged during withdrawal and

their relationship to the resultant anxiety and cardiore-
spiratory disturbance are poorly understood. The hall-
marks of alcohol withdrawal are potentially life-
threatening emotional and autonomic instability charac-
terized by anxiety, agitation, delirium, and sympathetic
signs of elevated heart rate and blood pressure [23-27].
These disturbances are anatomically associated with the
central nucleus of the amygdala (CeA) and the dorsal
vagal complex (DVC), two key viscerosensory nuclei.
The former is part of the limbic system and known to be
altered in alcohol exposure and withdrawal [28-30]; The
latter is a brainstem nucleus that receives afferent from
the viscera and moderates vagal influence on cardiac
and respiratory functions, also profoundly affected by
withdrawal [31]. The CeA receives direct autonomic in-
put from the DVC [32,33], and together they act as part
of a viscerosensory and motor circuit to integrate and
modulate physical and emotional aspects of autonomic
outflow, motivation, affect and emotional learning. Here,
we examine the CeA and DVC, specific neural structures
associated with the primary symptoms of withdrawal, for
evidence of an altered inflammatory state following ces-
sation of the chronic alcohol diet.
It may be expected that removal of alcohol should pro-

mote resolution of any proinflammatory state resulting
from chronic exposure, leading to recovery. However,
there is evidence to suggest that the opposite may occur;
repeated cycles of alcohol exposure and withdrawal may
exacerbate cellular level oxidative stress and inflammation
[34,35]. Abrupt changes in the extracellular CNS environ-
ment as alcohol levels decrease may directly stress cells,
particularly after prolonged exposures leading to molecu-
lar adaptation and dependence. By surveying important
features of innate immunity during the first 48 hours of al-
cohol withdrawal in rats following a single period of
chronic exposure, here we differentiate between these two
possible outcomes. In the CeA, changes consistent with
an increased proinflammatory response were identified.
Additionally, we identified similar changes in the DVC,
suggesting that inflammatory signals are present in these
regions anatomically associated with emotional and auto-
nomic instability during early withdrawal.

Methods
Animals
Male Sprague Dawley rats (>120 g, Harlan, Indianapolis,
IN, USA) were housed individually in the Thomas Jefferson
University (TJU) Alcohol Research Center Animal Core Fa-
cility. Facilities were maintained at constant temperature
and humidity with 12/12 hour light cycles. For quantitative
reverse transcription polymerase chain reaction (qRT-PCR)
studies, animals were assigned to four treatment groups:
control, chronic alcohol exposure, four-hour withdrawal or
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forty-eight-hour withdrawal following a thirty-five-day
chronic exposure. In immunohistochemistry studies, ani-
mals were assigned to three treatment groups: control,
chronic alcohol exposure, or 48-hour withdrawal following
chronic exposure. In this set of experiments, for technical
reasons, animals were used that had received eight months
of ethanol or control diet. As in previously published stud-
ies from this facility [31] and elsewhere [25], chronic and
withdrawal animals were fed the Lieber-DeCarli liquid al-
cohol diet (36 % of calories as alcohol) ad libitum through-
out the exposure period [36,37]. Control rats were fed a
liquid diet where alcohol was isocalorically replaced with
carbohydrate and diet volume equaled the average con-
sumption of alcohol-fed littermates. No additional water or
chow was provided to any of the animals during the study
period, ensuring that the animals’ entire nutrient and fluid
intake came from the alcohol diet. To initiate withdrawal,
the alcohol diet was removed at the appropriate time to en-
sure that all animals would be sacrificed five hours into the
light cycle, to account for potential differences due to diur-
nal factors. All protocols were approved by the TJU Institu-
tional Animal Care and Use Committee.
In the Lieber-DeCarli protocol, blood alcohol levels are

not externally controlled during the experiment. Rather,
each animal is allowed to self-regulate its oral alcohol in-
take. Studies using the Lieber-DeCarli method in this facil-
ity and elsewhere have shown peak blood alcohol
concentrations of 20 to 30 mM with an average daily alco-
hol intake of 12 to 16 g/kg in rats following long-term ex-
posure (>3 weeks) [38-40]. Rats on the full-strength
liquid alcohol diet in our facility have comparable intake,
as previously published [31]. There were no differences in
average intake between the chronic alcohol-exposed and
withdrawn animals.
To initiate withdrawal, the alcohol diet was replaced with

the control diet. Matched chronically exposed rats were
given free access to the alcohol diet until sacrifice. Previous
studies and our experience show that symptomatic alcohol
withdrawal in rats following a long-term liquid alcohol diet
begins within hours and resolves over a two- to three-day
period [41-44], though withdrawal symptomatology was
not systematically assessed during this study. Studies of al-
cohol clearance following the cessation of the liquid alcohol
diet have shown that clearance rate is approximately linear,
and is reduced to less than 25 % of original levels seven
hours after removal of the alcohol diet [39]. Similarly, liquid
ethanol diet exposures longer than 10 days generate physio-
logic and behavioral dependence, as evidenced by auto-
nomic and somatic dysfunction upon withdrawal. Within
withdrawal’s first four hours, these animals show an
increased susceptibility to audiogenic convulsions, fragmen-
ted sleep, piloerection, tail stiffening, reduced grooming, ab-
normal gait, reduced motor activity, exaggerated startle,
vocalizations and tremors [40,42] that resolve over the first

48 to 72 hours [40,43]. While the behavioral and electro-
graphic abnormalities associated with withdrawal from the
Lieber-DeCarli diet over time are well characterized, there
is little information available about molecular changes in
the inflammatory state of the brain during this period. To
examine these changes in the central nervous system in-
flammatory response during this period, we sampled fol-
lowing chronic exposure and at four and forty-eight hours
after alcohol removal. Figure 1 shows a schematic of the ex-
perimental design.

CeA and DVC microdissection and qRT-PCR
At the assigned time of sacrifice (four or forty-eight
hours after removal of the alcohol diet for withdrawal
animals), withdrawn, chronically alcohol-exposed, and
match-fed control animals were sacrificed by rapid de-
capitation and brainstems were excised, placed into ice-
cold artificial cerebral spinal fluid (ACSF: 10 mM
HEPES, pH 7.4; 140 mM NaCl; 5 mM KCl; 1 mM
MgCl2; 1 mM CaCl2; 24 mM D-glucose) and secured
with agarose for sectioning (4 % UltraPure™ low melting
point agarose (Invitrogen, Carlsbad, CA, USA) in ACSF).
Transverse sections were made with a McIlwain tissue
chopper (McIlwain, Gamshall, England) for CeA
(625 μm) and DVC (275 μm) microdissection with size-
matched micropunches (≤1.25 mm; Stoelting, Wood
Dale, IL, USA), as previously reported [45]. Bilateral re-
gion punches from one animal were treated as a single
sample. Total sample numbers were as follows: CeA
Control N = 10, chronic ethanol exposure N = 5, 4-hour
withdrawal N = 5, 48-hour withdrawal N = 3; NTS Con-
trol =11, chronic N = 5, 4-hour withdrawal N = 7, 48-
hour withdrawal N = 5.
Total RNA was extracted with either the RNeasy or the

AllPrep DNA/RNA extraction kit (Qiagen, Valencia, CA,
USA), DNAase treated (DNA-free RNA kit, Zymo Re-
search, Orange, CA, USA), and stored at −80°C. Concentra-
tion and integrity were assessed with an ND-1000
(NanoDrop, Wilmington, DE, USA) and RNA Nano 6000
chips on an Agilent 2100 Bioanalyzer. cDNA was reverse
transcribed with SuperScript II (Invitrogen) from 100 ng
total RNA and stored at −20°C.
Intron-spanning PCR primers and probes were designed

using the Roche Universal Probe Library Assay Design
Center (http://www.universalprobelibrary.com) as indi-
cated: TNF-α forward gtagcccacgtcgtagcaa reverse
ggttgtctttgagatccatgc and UPL Probe #79, Ccl2 (MCP-1)
forward agcatccacgtgctgtctc reverse gatcatcttgccagtgaatgag
and UPL Probe #62, NOS-2 forward ggtctttgaaatccctcctga
reverse agctcctggaaccactcgta and UPL Probe #67, the TNF
receptor Tnfrsf1a forward aatgggggagtgagagagg reverse
acccctgatgggtgtatcc and UPL Probe #21, and the MHC II
invariant chain CD74 forward cttccatgtccagtggctct reverse
gctgttgtttgaaatgagcaag and UPL Probe #65. The standard
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BioMark™ protocol was used to preamplify cDNA samples
for 16 cycles using TaqMan PreAmp Master Mix per the
manufacturer’s protocol (Applied Biosystems, Foster City,
CA, USA). qPCR reactions were performed using Bio-
Mark™ 96.96 Dynamic Arrays (Fluidigm, South San Fran-
cisco, CA, USA) enabling quantitative measurement of
multiple mRNAs and samples under identical reaction
conditions [46,47]. Runs were forty cycles (fifteen seconds
at 95°C, five seconds at 70°C, sixty seconds at 60°C). CT

values were calculated by the Real-Time PCR Analysis
software (Fluidigm) and software-designated failed reac-
tions were discarded from the analysis.

qRT-PCR data normalization and analysis
Normalization (ΔCT) to the average expression of the
housekeeping genes Actb and Rpl13a was performed using
the R statistical computing package [48-50]. Two-way ana-
lysis of variance (ANOVA) performed on ΔCT values was
used to identify genes with a significant region or treat-
ment effect. ANOVA identifies the variability in data that
is associated with and potentially attributable to each ex-
perimental factor (treatment and region). Post hoc signifi-
cance testing was performed using a Tukey’s honestly
significant difference (HSD) test to identify pair-wise differ-
ences between treatment times. Here, a region ANOVA P

value of less than 0.05 indicates a significant difference in
mRNA levels in the CeA and DVC, while a treatment
ANOVA P value of less than 0.05 indicates a significant cu-
mulative effect on mRNA levels over the four treatment
conditions: control, chronic alcohol exposure and four-
hour and forty-eight-hour withdrawal. Tukey’s HSD values
of less than 0.05 identify pair-wise differences between in-
dividual treatment conditions. Mean differences in mRNA
expression between treatment groups are expressed as
ΔΔCT values by calculating the average ΔCT values of each
gene at a given treatment time and subtracting this value
from the mean ΔCT of all controls [51]. In this way, a
ΔΔCT=1 corresponds to a 2‐fold increase in expression.
All statistical tests were conducted at a 95 % confidence
level (P ≤ 0.05).

Intracardiac perfusion, immunohistochemistry and
confocal microscopy
For immunohistochemistry (IHC), on the assigned day
of sacrifice, animals were anesthetized by placing the rat
in an induction chamber preloaded with isoflurane (5 %
in oxygen). After induction, 2 % isoflurane was used for
maintenance during PBS intracardiac perfusion with
50 mL of phosphate buffered saline (PBS, pH 7.2) The
rats were then sacrificed by rapid decapitation, the

Figure 1 Experimental Design. (A) For the gene expression qRT-PCR study, triplet rats were assigned to control, chronic exposure, and four- or
forty-eight-hour withdrawal. Following a 35-day liquid alcohol exposure, animals were sacrificed and the RNA extracted from their CeA and DVC.
(B) For IHC study, four pairs of animals were assigned to either the chronic exposure or 48 hours of alcohol withdrawal following eight months
on the alcohol diet. Forty-eight hours prior to the time of sacrifice, the withdrawal animals had their diets removed to initiate withdrawal.
Following intracardiac perfusion, both rats were sacrificed and their CeA and DVC collected for immunohistochemistry and confocal microscopy.
CeA, central nucleus of the amygdala; DVC, dorsal vagal complex; qRT-PCR, quantitative reverse transcription polymerase chain reaction; IHC,
immunohistochemistry.
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brains quickly extracted and placed in ice cold ACSF.
The brain-stem and forebrain were dissected and frozen
separately in optimal cutting temperature (OCT) and
stored at −80°C until cryostat slicing.
The embedded forebrain and brainstem blocks were

sectioned in a cryostat at 10 μm thickness, and thaw
mounted on glass slides. Slides containing the neuroana-
tomically identified DVC and CeA regions were first
fixed in 100 % cold methanol for five minutes, then
briefly rinsed in PBS three times, five minutes each. Sec-
tions were then blocked and permeabilized with PBS
containing 2 % bovine serum albumin (BSA) and 0.1 %
Triton X-100 (Sigma-Aldrich, St. Louis, MO, USA) for
one hour. Afterwards, brain sections were incubated
with the primary antibody (see below) overnight at 4°C.
Then slides were washed and incubated for two hours at
room temperature in the dark with the secondary anti-
body (see below). Finally, slides were washed, mounted
with Fluorsave™ (Calbiochem, San Diego, CA, USA) and
stored at 4°C in the dark. Staining controls were per-
formed by incubating with PBS instead of the primary
antibody or both antibodies (data not shown).
In order to visualize neurons, mouse monoclonal

anti-NeuN (Millipore, Billerica, MA, USA; dilution
1:1000 in PBS-BSA) was used. Alexa-555 goat anti-
mouse immunoglobulin G (IgG) (Jackson ImmunoR-
esearch Laboratories, West Grove, PA, USA; dilution
1:1000 in PBS-BSA) was used as the secondary anti-
body to detect anti-NeuN staining. TNF-α protein
was visualized with polyclonal rabbit anti-TNF-α
(eBioscience, Glostrup, Denmark; dilution 1:100 in
PBS-BSA) and Alexa-488 goat anti-rabbit IgG (Jack-
son; dilution 1: 1000 in PBS-BSA). Mouse monoclo-
nal anti-rat endothelial cell antigen-1 (RECA-1)
(Genway Biotechnology, San Diego, CA, USA diluted
1:10 in PBS-BSA) was used as the primary antibody
to localize blood vessels [52]. RECA-1 staining iden-
tifies terminal arterioles, arterial capillaries and ven-
ous capillaries, postcapillary-sized venules, and
collecting venuoles [53,54]. In the hippocampus, ar-
terial microvessels and capillaries were shown to
stain more strongly then venous vessels. While there
are differences at the anatomic and molecular levels
between microvessels [55], they were not subclassi-
fied in this study. Alexa-555 donkey anti-mouse IgG
(Invitrogen; dilution 1:1000 in PBS-BSA) or Alexa-
633 donkey anti-mouse (Invitrogen; dilution 1:1000
in PBS-BSA) was used as the secondary antibody to
detect anti-RECA-1 staining. To detect the presence
of intercellular adhesion molecule 1 (ICAM-1),
rabbit anti-rat CD54 monoclonal antibody (Millipore;
dilution 1:100 in PBS-BSA) was used with Alexa-488
donkey anti-rabbit IgG (Invitrogen; 1:1000 in PBS-
BSA). Finally, for nuclei staining, the slides were

washed with PBS, and then incubated with 5 μg/ml
4′-6-diamidino-2-phenylindole (DAPI) (Sigma-
Aldrich) at room temperature for five minutes.

Confocal microscopy
Confocal microscopy (Zeiss 510 Meta, Göttingen, Ger-
many) was performed with an x63 objective lens (oil, nu-
meric opening 1.4). We used an argon laser (excitation 488,
emission 505 to 530 nm) for Alexa-488, a helium laser (ex-
citation 543, emission 585 to 615 nm) for Texas Red and a
krypton-argon laser (excitation 647 nm, emission 660 to
700 nm) for Alexa-647. Images were collected sequentially
to avoid cross-contamination between fluorochromes. A
series of 15 optical sections was projected onto a single
image plane and scanned at 1024 × 1024 pixel resolution.
Images are pseudocolored for visualization.

Results
Ccl2, NOS-2, TNF-α, Tnfrsf1a and CD74 gene expression
during alcohol withdrawal
The objective of this study was to identify changes in
innate immunity in the CNS during the first 48 hours
of alcohol withdrawal following a single long-term
exposure in two regions anatomically associated with
the emotional and autonomic instability associated
with alcohol withdrawal. We examined the gene
expression of Ccl2, NOS-2, TNF-α, Tnfrsf1a and CD74
as surrogate markers of inflammation in the CeA of
adult male rats exposed to a liquid alcohol diet for
thirty-five days and in similarly treated animals four
hours and forty-eight hours into alcohol withdrawal.
The CeA is an alcohol-responsive part of the limbic sys-
tem, thought to play a major role in drug addiction and the
coordination of autonomic and emotional behaviors [28].
We took additional confirmatory measures in a second dir-
ectly connected brain region [33], the alcohol responsive
DVC, also relevant to physiologic sympathetic response
during alcohol withdrawal [31].
TNF-α (P = 2.85 x10-4), NOS-2 (P = 0.005), Ccl2 (MCP-

1, P = 0.041), MHC II invariant chain CD74 (P = 0.007),
and the TNF receptor Tnfrsf1a (P = 0.041) all showed sta-
tistically significant cumulative treatment effects identified
by analysis of variance (ANOVA), as shown in Figure 2.
While we also noted significant regional expression differ-
ences in TNF-α (P = 7.32 × 10-4) and Ccl2 (P = 1.73 × 10-5),
there were no significant region-treatment interactions.
Figure 2A shows the increase in CeA mRNA levels of TNF-
α, NOS-2, Ccl2 and CD74 during withdrawal. Further
examination shows that these changes are largely attribut-
able to increases measured at 48 hours, reaching a near
doubling (ΔΔCT = 1) of control levels, while chronic alco-
hol exposure resulted in relatively small increases in expres-
sion. Follow-up pair-wise post hoc Tukey’s HSD testing to
identify differences between individual time points was then
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performed to compare individual treatment conditions to
one another. Time-point-specific testing showed that at 48
hours changes in both TNF-α and CD74 mRNA were sig-
nificantly different from control values by post hoc Tukey’s
testing (P ≤0.05). Tnfrsf1a expression in the CeA was also
affected by alcohol exposure and withdrawal, though its
pattern was distinct from the other transcripts. The TNF-α
receptor mRNA was strongly upregulated during chronic
alcohol exposure, with a nonsignificant trend toward an
additional increase during withdrawal.
Figure 2B shows the analogous gene expression in the

DVC. Again for Ccl2, NOS-2, TNF-α, Tnfrsf1a and CD74,
we saw a significant mRNA induction over the first 48
hours of withdrawal reaching an approximate doubling of
control mRNA levels. As in the CeA, Tukey’s testing iden-
tified a significant difference between 48-hour TNF-α
levels in comparison to control (P< 0.01). Additionally, a

statistically significant difference was found in the DVC
expression levels of CD74 between four and forty-eight
hours of withdrawal (P ≤0.05). Similar to the chronic
changes seen in the CeA, DVC samples taken during pro-
longed exposure also showed relatively small changes in
mRNA levels of Ccl2, NOS-2, TNF-α and CD74. However,
DVC levels of these transcripts were mildly reduced rather
than upregulated in chronically exposed animals, though
these effects were nonsignificant by post hoc testing.
Again, Tnfrs1a showed a unique expression pattern, with
a large average decrease during chronic exposure.

Localization of TNF-α, RECA-1 and ICAM-1 expression
As TNF-α is known to be a central provocateur of in-
flammation, we sought to confirm the presence of the
TNF-α protein in alcohol-withdrawn animals as a mar-
ker of active early inflammation, and to compare IHC

Figure 2 qRT-PCR analysis of expression of Ccl2, NOS-2, TNF-α, Tnfrsf1a and CD74 during the first 48 hours of alcohol withdrawal.
Alcohol-treated rats were fed the Lieber-DeCarli liquid alcohol diet for 35 days prior to forced withdrawal. qRT-PCR was performed on CeA and
DVC samples. All transcripts were found to have a significant treatment effect by two-factor ANOVA, and to change significantly as a result of
alcohol treatment and withdrawal. (A) CeA mean ΔΔCT values for the transcripts Ccl2, NOS-2, TNF-α and Tnfrsf1a and CD74 in control (C; N = 10),
chronically alcohol exposed (E; N = 5), and 4 hours (4 h W; N = 5) and 48 hours (48 h W, N = 3) withdrawn rats. (B) DVC mean ΔΔ CT values (C N =
11; E = 5, 4 h W n = 7, 48 h N = 5). A ΔΔCT = 1 is a doubling of control mRNA levels. Error bars represent the +/−SEM. *Significant treatment effect
identified via two-way ANOVA (P≤ 0.05); **Significant treatment effect identified via two-way ANOVA (P ≤ 0.01); ***Significant treatment effect
identified via two-way ANOVA (P≤ 0.005); † Significant post hoc Tukey’s test versus control, (P ≤ 0.01.) ANOVA, two-way analysis of variance; Ccl2,
chemokine (C-C motif) ligand 12; CeA, central nucleus of the amygdala; DVC, dorsal vagal complex; NOS-2, inducible nitric oxide synthase; qRT-
PCR, quantitative reverse transcription polymerase chain reaction.
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staining of CeA in the control condition, and in similarly
treated animals with an eight-month chronic alcohol ex-
posure and forty-eight-hour withdrawal. In this way, the
IHC images serve as a qualitative confirmation of the
presence of an innate immune response during alcohol
withdrawal as suggested by our quantitative PCR mea-
sures. Representative images of the staining in these
three conditions are shown in Figure 3A to C. Consist-
ent with the normal noninflamed state of the brain, the
control CeA samples showed only sparse TNF-α stain-
ing. Samples taken during chronic alcohol exposure
showed more pronounced TNF-α staining, demonstrat-
ing persistent elevations after an eight-month exposure,
consistent with our qPCR measures. CeA 48-hour with-
drawal samples showed increased TNF-α staining in
comparison to both control and chronic samples, con-
firming the presence of a protein-level inflammatory re-
sponse. Additionally, CeA withdrawal samples showed
dual labeling of TNF-α and NeuN, suggesting neuronal
production of the cytokine. This differs from the control
and chronic conditions where CeA TNF-α staining
appears to be localized to discrete areas surrounding
cells expressing the neural marker NeuN, as shown in
Figure 3B to C. Similar, but less pronounced findings
were observed in the DVC, with increased TNF-α stain-
ing in the chronic and withdrawal conditions. However,
no localization differences were observed in the DVC
(Figure 3D to F), and intracellular TNF-α staining can
be seen in all treatments, including in the control DVC
neuron in Figure 3D.
To determine if neurovascular endothelial cells undergo a

response consistent with inflammatory activation, we per-
formed IHC for ICAM-1 (CD54), a cellular adhesion mol-
ecule upregulated by TNF-α [56-58]. Control CeA samples
showed limited RECA-1 endothelial staining with no
ICAM-1 colabeling, consistent with normal vascular endo-
thelia (Figure 3G). However, following the eight-month al-
cohol exposure, RECA-1 and ICAM-1 colabeling became
apparent (Figure 3H). This colabeling was also present in
the 48-hour withdrawal condition, confirming the presence
of endothelial cells expressing cellular adhesion molecules
during withdrawal. Again, these findings were confirmed in
the DVC as shown in Figure 3K to L. Finally, during expos-
ure and withdrawal there is considerable ICAM-1 expres-
sion in the cells surrounding the vasculature in both the
CeA and DVC (Figure 3H to I, K to L).

Discussion
This study demonstrates in vivo that alcohol withdrawal
following a single long-term alcohol exposure is associated
with increased inflammation. We confirmed this observa-
tion in two brain regions neuroanatomically associated with
emotional and autonomic regulation that are notably dis-
rupted during withdrawal: the central nucleus of the

amygdala (CeA) and the dorsal vagal complex (DVC). Our
study demonstrates the increased expression of mRNAs
specific for several inflammatory markers in these regions
including the inflammatory cytokine TNF-α and its recep-
tor Tnfrsf1a, monocyte chemoattractant Ccl2, inducible
nitric oxide synthase NOS-2, and the major histocompat-
ability complex class II antigen (MHC II) invariant chain
CD74 over a 48-hour withdrawal. By demonstrating IHC
staining for TNF-α surrounding NeuN-positive neurons
and ICAM-1 in RECA-1-expressing endothelia, we also
verified the presence of an inflammatory response at the
protein level. Additionally, consistent with other previ-
ously reported studies, we observed a mild inflammatory
state associated with chronic intake. These qRT-PCR and
IHC studies indicate that the first 48 hours of alcohol
withdrawal are characterized by an exacerbation of alco-
hol-induced proinflammatory changes in brain regions
anatomically associated with the maintenance of emo-
tional and cardiorespiratory homeostasis which are known
to be disrupted during withdrawal in humans [24,59] and
animal models [27,31] over the same time frame.
The protein products of the TNF-α and Tnfrsf1a genes

act together to activate and amplify the inflammatory re-
sponse, and increased expression during alcohol with-
drawal suggests that these processes are activated. NOS-
2 encodes inducible nitric oxide synthase, suggestive of
concurrent oxidative stress. The concomitant increases
in CD74 and Ccl2 may indicate that changes in immune
cell composition are occurring, potentially altering the
number, activation state or type of antigen-presenting
cells in these nuclei during withdrawal. These findings
may have important consequences on emotional and
cardiorespiratory regulation, as CNS inflammation has
been shown to alter physiology and behavior. For ex-
ample, injection of TNF-α into the ventricles causes ele-
vations in mean arterial pressure [60] and repeated
microinjections of TNF-α and Ccl2 into the amygdala
prior to prolonged alcohol exposure have been asso-
ciated with an exaggerated anxiety-like response during
withdrawal [22,61]. Similarly, peripheral lipopolysacchar-
ide (LPS) injection in rats has also been shown to amp-
lify anxiety-like withdrawal behavior [22]. Conversely,
TLR4 −/− knockout mice that fail to express a receptor
critical to the innate immune response have been shown
to be resistant to behavioral and cognitive changes asso-
ciated with alcohol exposure. Specifically, TLR4 −/−
knockout mice show neither the decreased exploratory
activity eight hours into withdrawal following a five-month
alcohol exposure nor the impaired cognitive testing follow-
ing a fifteen-day withdrawal that is typical in the wild-type
[62]. This suggests that these changes are dependent on an
intact innate inflammatory response. Our studies support
this conclusion by directly measuring increases in several
innate immune signals within the first 48 hours of
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withdrawal, demonstrating an innate immune response as
a primary element of withdrawal pathology. Consequently,
repeated cycles of inflammation induced by CeA TNF-α
microinjection as in the Knapp Study [22], or synthesized
endogenously as a consequence of repeated episodes of ex-
posure and withdrawal, may worsen withdrawal symptoms
by amplifying this innate immune response.
Notably, inflammation in the CeA and DVC, brain

regions that act to regulate emotional and physiologic

homeostasis, could form a considerable barrier to
abstinence and contribute to the cycle of negative
reinforcement that sustains dependent drinking beha-
viors [63]. The therapeutic implications of this finding
are important, suggesting that immunomodulators
may be effective in treating emotional and autonomic
dysregulation during withdrawal. Additionally, the
involvement of embryologically, neuroanatomically
and functionally diverse DVC and CeA brain regions

Figure 3 Immunohistochemical evaluation of the alcohol-induced inflammatory response. (A to F). TNF-α reactivity in the neural
compartment in the CeA (A to C) and DVC (D to F) in control animals (A,D;N = 4) and following chronic alcohol exposure (B, E;N = 2) and 48
hours into withdrawal (C, F;N = 2). Neurons are stained red with neuronal nuclear antigen (NeuN) and nuclei with DAPI shown in blue. The
arrows in panels C., E. and F. show the expression of TNF-α (green) surrounding cells expressing the neural marker NeuN. Dual labeling of a cell
for both NeuN and TNF is shown in yellow. (G to L). ICAM-1 reactivity (green) in the endothelial compartment in the CeA (G to I) and DVC (J to
L), following chronic alcohol exposure (H, K) and 48 hours into withdrawal (I, L). Endothelia are stained red with RECA-1 and nuclei with DAPI
shown in blue. The arrow in panel H shows the expression of ICAM-1 by cells also expressing the endothelial cell marker RECA-1. Panels I and L
have arrows showing small cells with a high degree of ICAM-1 staining found commonly in the chronic and withdrawal tissue that are absent in
the control condition. Dual labeling of a cell for both RECA-1 and ICAM-1 is shown in yellow. CeA, central nucleus of the amygdale; DAPI, 5 μg/
ml 4′-6-diamidino-2-phenylindole; DVC, dorsal vagal complex; ICAM‐1, intercellular adhesion molecule 1;NeuN, neuronal nuclear antigen; RECA‐1,
rat endothelial cell antigen‐1.
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raises questions of the generalizability of this active
innate immune response in other brain regions. Fur-
ther, the demonstration of a short-term innate im-
mune response during withdrawal raises questions
about the relationship between alcohol-related neuro-
degeneration and withdrawal rather than consumption
in isolation. However, studies that confirm the pres-
ence of a sustained inflammatory response in these
and other brain regions classically associated with
alcohol-related neurodegeneration including the cere-
bellum, hippocampus, entorhinal and perirhinal corti-
ces [34,35,64-66] along with direct assessments of
neural injury comparing prolonged exposure with and
without withdrawal periods are necessary, to further
explore this hypothesis.
Earlier work has focused on the inflammatory conse-

quences of long-term alcohol exposure, yet few studies
have characterized these processes in withdrawal directly.
Studies of neurons and glia exposed to alcohol in culture
have shown a variable response, including increases in
the generation of reactive oxygen species, prostaglandins
[14], and NFkB DNA-binding [21] that has been pur-
ported to be both injurious to and protective of central
nervous system cells [67]. In vivo studies have worked to
clarify these seemingly contradictory findings, and suggest
that these consequences are largely proinflammatory and
injurious; following long-term alcohol exposure, murine
frontal cortex samples have increased expression of
NOS-2, ionized calcium binding adaptor molecule 1
(Iba1), and 3-nitrotyrosine protein adduct levels consist-
ent with tissue injury [68], and demonstrate sustained
increases in the production of TNF-α, MCP-1 and Il-1β
in the brain following intraperitoneal LPS injection with-
out direct CNS injury, confirming a proinflammatory
state [4]. While direct studies of withdrawal are limited,
Brown and colleagues showed that in hippocampal-
entorhinal cortical slice cultures, repeated cycles of
exposure and withdrawal led to increased neural damage
that could be partially inhibited by treatment with the
PLA2-inhibitor mepacrine and the anti-inflammatory lipid
docosahexaenoic acid [35]. In contrast, a single four-day
exposure of alcohol and twenty-four-hour withdrawal
period was not associated with increased TNF-α, IFN-Y,
Il-1b, Il-4, Il-5, Il-13 or Cxcl1 protein levels in the brain of
rats [69]. Here, our measures suggest that a single long-
term alcohol exposure followed by a 48-hour withdrawal
is sufficient to induce a significant central nervous system
inflammatory response, larger in magnitude than that
associated with chronic exposure. Other work from our
laboratory examining early withdrawal transcription
dynamics in the DVC [31] and CeA (in review) showed
surprisingly large and extensive transcriptional responses
suggestive of profound changes in intracellular signaling,
potentially consistent with active inflammation. Thus, this

study aims to follow up these results with the focus on
neuroimmune processes. Its results, most notably the
increases in TNF-α, strengthened by concomitant
increases in the mRNA expression of Ccl2, NOS-2,
Tnfrsf1a and CD74, provide more direct evidence of a
neuroimmune response in these nuclei anatomically
related to withdrawal’s emotional and homeostatic
imbalance.

Conclusion
In summary, the current findings show that alcohol with-
drawal induces an acute exacerbation of the limited proin-
flammatory response seen during long-term chronic
alcohol exposure at both the mRNA and protein level at 48
hours. Our in vivo measurement of increases in TNF-α,
Tnfrsf1a, Ccl2, NOS-2 and CD74 during withdrawal sug-
gests that the period can be viewed as an acute-on-chronic
inflammatory process, where proinflammatory changes that
occur during chronic alcohol exposure are worsened imme-
diately following the removal of alcohol from the cellular
environment. As a consequence of the roles of these
regions in emotional and physiologic regulation, these find-
ings may have important implications for the treatment of
withdrawal-related autonomic and emotional dysfunction.
Targeted investigations aimed at characterizing cell-specific
interactions in neurons and glia, as well as studies aimed at
pharmacologic manipulation of these central inflammatory
pathways in these homeostatic brain regions may increase
our understanding of withdrawal and its associated affective
and cardiorespiratory effects.
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