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Abstract

Spinal cord injury (SCI) is a devastating event that results in significant physical disabilities for affected individuals. Apart
from local injury within the spinal cord, SCI patients develop a variety of complications characterized by multiple organ
dysfunction or failure. These disorders, such as neurogenic pain, depression, lung injury, cardiovascular disease, liver
damage, kidney dysfunction, urinary tract infection, and increased susceptibility to pathogen infection, are common in
injured patients, hinder functional recovery, and can even be life threatening. Multiple lines of evidence point to
pathological connections emanating from the injured spinal cord, post-injury systemic inflammation, and immune
suppression as important multifactorial mechanisms underlying post-SCI complications. SCI triggers systemic
inflammatory responses marked by increased circulation of immune cells and pro-inflammatory mediators, which result
in the infiltration of inflammatory cells into secondary organs and persistence of an inflammatory microenvironment
that contributes to organ dysfunction. SCI also induces immune deficiency through immune organ dysfunction,
resulting in impaired responsiveness to pathogen infection. In this review, we summarize current evidence
demonstrating the relevance of inflammatory conditions and immune suppression in several complications frequently
seen following SCI. In addition, we highlight the potential pathways by which inflammatory and immune cues
contribute to multiple organ failure and dysfunction and discuss current anti-inflammatory approaches used to
alleviate post-SCI complications. A comprehensive review of this literature may provide new insights into therapeutic
strategies against complications after SCI by targeting systemic inflammation.
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Background
Spinal cord injury (SCI) causes disastrous damage to pa-
tients. While intraspinal infections, ischemia, and tu-
mors can give rise to non-traumatic SCI, the majority of
SCI is caused by physical trauma to the spine from
sports injuries, car accidents, falls, and gunshots. Trau-
matic SCI induced by contusion of the spinal cord has a
two-phase pathology characterized by primary and sec-
ondary injuries [1]. Primary injury can result from phys-
ical compression of the spinal cord, stretching of the

nervous tissue, or disruption of local blood supply. This
trauma causes the spine to deform and narrows the
spinal canal, leading to dramatic changes in spinal cord
volume. Mechanical damage may also impact blood ves-
sels, immediately inducing intraspinal hemorrhage or re-
ducing blood supply. Pathologically, primary injury
occurs in a short window of time and within a limited
area; represents direct damage of neurons, glial, or endo-
thelial cells due to mechanical insults; and is character-
ized by hemorrhage, edema, and ischemia.
Secondary injury is a compilation of complex events

subsequent to the initial trauma that develops minutes
to weeks after SCI. Several mechanisms underlie the
pathogenesis of secondary injury, including neurodegen-
eration, gliosis, and inflammation. Progressive enlarge-
ment of the affected regions exacerbates dysfunction by
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inducing apoptosis in nearby intact neural tissues. Prolif-
eration or hypertrophy of activated glial cells, such as
microglia and astrocytes, leads to the formation of glial
scars. The inflammatory microenvironment following
SCI is mediated by activated microglia and astrocytes,
and infiltrating macrophages greatly contribute to the
progression of secondary injury [2–6]. Angiogenic re-
sponses and remodeling of vascular structure also con-
tribute to the development of secondary injury. It is
well-acknowledged that effective restraint of secondary
injury plays a fundamental role in minimizing neurode-
generation and significantly improves functional recov-
ery after SCI. As such, much effort has been devoted to
developing strategies that ameliorate secondary injury
and facilitate neuroregeneration, such as inhibiting in-
flammation, blocking endogenous axon growth inhibi-
tors (Nogo and CSPG), and reducing glial scars.
The functional consequences of SCI are largely deter-

mined by the level and completeness of the injury. First,
the effect of SCI on loss of motor and non-motor func-
tion depends on the site of the injury. Nerves controlled
by spinal cord segments below the injury site often lose
their connections, and thus, the body-brain communica-
tion through descending motor pathways and ascending
sensory pathways is disrupted in SCI. Due to the ana-
tomical organization of the spinal cord, more rostral in-
juries are associated with greater levels of functional
impairment. Injuries to cervical segments of the spinal
cord result in the loss of motor and/or sensory function in
the upper and lower limbs and often the trunk (tetraplegia
or quadriplegia), whereas injuries to thoracic, lumbar, or
sacral segments generally spare upper limb function and
involve the lower limbs and trunk to varying degrees
(paraplegia) [7]. Second, the extent or completeness of the
injury is another determinant of SCI-elicited dysfunction.
At the most basic level, SCIs can be classified as either
complete or incomplete. Complete SCI represents an ab-
sence of motor and sensory function in S4–S5 segments
(i.e., no sacral sparing), whereas in incomplete SCI there is
preservation of some motor and/or sensory function
below the level of injury. The incompleteness of SCI can
be further divided according to the American Spinal In-
jury Association Impairment Scale, which grades injuries
based on the amount of function preserved in patients [7].

Multiple organ dysfunction after SCI
Beyond impairments to sensation and voluntary move-
ment, SCI disturbs the autonomic nervous system and in-
duces dysfunction or failure in multiple organs because of
the critical role of the spinal cord in coordinating bodily
functions [8]. Short- and long-term complications follow-
ing SCI can occur in the nervous system (such as neuro-
genic pain and depression), lungs (such as pulmonary
edema and respiratory failure), cardiovascular system

(such as orthostatic hypotension and autonomic dysre-
flexia), spleen (such as splenic atrophy and leukopenia),
urinary system (such as neurogenic bladder, kidney dam-
age, and urinary tract infection), skeletal muscle (such as
muscle spasticity and atrophy), bone and soft tissue (such
as osteoporosis and heterotopic ossification), and skin
(pressure sores) and include sexual dysfunction, hepatic
pathology, neurogenic bowel dysfunction, syringomyelia,
and increased susceptibility to infection. Some complica-
tions are high risk factors of mortality in SCI patients, e.g.,
liver, lung, and kidney damage, and therefore, therapeutic
interventions that ameliorate post-SCI complications may
be as important for prolonging life expectancy and im-
proving life quality as those interventions that promote
neuroregeneration and motor function recovery.
Multiple organ dysfunction after SCI is under complex

regulation by multiple components. Cranial nerves eman-
ating from brainstem areas (such as the pons and medulla)
control the functions of multiple organs, and brainstem
reflexes were reported to be changed in human patients
with SCI [9]. This suggests a complex relationship be-
tween multiple organ dysfunction, the injured spinal cord,
and altered brainstem activity. While much consideration
should be given to the brainstem’s role in multiple organ
dysfunction following SCI, this review focuses on the con-
tributive roles of inflammation and immunity in these sys-
temic complications.

Systemic inflammation following SCI
The local inflammatory microenvironment within the in-
jured spinal cord is a collection of degenerating neurons,
degraded myelin sheath, damaged endothelial cells, and
activated glial and infiltrating cells, and this microenvir-
onment produces various kinds of pro-inflammatory
mediators [10]. In addition to this intraspinal inflamma-
tion, SCI can trigger systemic inflammatory response
syndrome (SIRS), a life-threatening condition which can
affect distal organs [11–15]. Epidemiological analyses
have revealed a functional link between systemic inflam-
mation and pathogeneses of post-injury complications:
SIRS-positive SCI patients have higher injury severity
and a higher incidence of complications than do SIRS-
negative patients [16]. Many other factors, such as dys-
regulation of the neuroendocrine system and altered
neuroimmune regulation, are important determinants of
the onset and progression of post-SCI systemic inflam-
mation. For instance, SCI activates the hypothalamic-
pituitary-adrenal axis, leading to increased macrophage
migration inhibitory factor production by the pituitary
gland [17]. Macrophage migration inhibitory factor is
extensively involved in systemic inflammation, suggest-
ing that SCI-elicited neuroendocrine changes contribute
to the progression of systemic inflammation. Chronic
activation of microglia, the neuroimmune cells of the
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central nervous system, occurs in the hippocampus and
cerebral cortex after SCI, indicating neuroimmune dys-
regulation is involved in systemic inflammation follow-
ing SCI [18].

Immune suppression induced by SCI
Another consequence of post-injury spinal cord-immune
system interplay is SCI-induced immune depression syn-
drome (SCI-IDS) which is due, at least in part, to dys-
regulation of the sympathetic nervous system and
immune organ dysfunction [19–21]. SCI can lead to
sympathetic nervous system dysfunction directly by sev-
ering thoracolumbar spinal cord projections to sympa-
thetic ganglion or indirectly by disrupting supraspinal
control through the hypothalamic-pituitary-adrenal axis.
SCI-IDS, indicated by the loss of splenocytes and
leukopenia, is a putative self-defense mechanism that
lowers potential autoimmunity to self-antigens produced
by damage in the central nervous system [22, 23]. In
contrast to this protective effect, accumulating evidence
has shown that SCI-IDS worsens neurological conditions
and impairs the functional recovery of SCI patients.
Riegger et al. reported significant decreases in the num-
ber of circulating cells involved in both innate and adap-
tive immunity in the acute phase following rat SCI [24].
Similar observations were made in a pilot study involving
16 SCI patients and ten healthy controls: decreased mono-
cytes, T lymphocytes, and B lymphocytes, but not granu-
locytes, were observed in peripheral blood within 24 h
after SCI [25]. SCI-IDS has important clinical relevance,
as SCI patients display increased susceptibility to various
infections (e.g., pneumonia and wound infections) [26]
and poor functional recovery [27]. Autonomic dysreflexia
and the expansion of myeloid-derived suppressor cells fol-
lowing SCI may play causal roles in SCI-IDS [28, 29],
though the underlying mechanisms of SCI-IDS are still
largely unknown.

Role of inflammation and immunity in post-SCI
complications
Nervous system
Hyperesthesia, i.e., increased sensitivity to somatosen-
sory stimuli, frequently occurs after SCI. Many brain re-
gions that participate in nociception, e.g., the thalamus
and nucleus accumbens, undergo neuronal changes fol-
lowing SCI [30]. For example, spinal cord contusion re-
sults in increased responsiveness of thalamic neurons to
somatosensory stimuli [31], and this effect is partially
mediated by upregulation of sodium channel Nav1.3
[32]. In addition, the inflammatory response plays an im-
portant role in chronic pain after SCI [33]. Progressively
activated microglia have been observed in the thalamus
not only in the acute phase (several days after SCI) but
also in the chronic phase (several weeks after SCI) [34].

Chemokines CCL2 and CCL3, key players in neuro-
pathic pain, were detected in the thalamus and hippo-
campus in the chronic phase after severe SCI [35, 36].
Chemokine CCL21, induced in lumbar dorsal horn neu-
rons after SCI, may mediate remote activation of cere-
bral microglia. Neutralization of CCL21 suppressed
microglia activation and subsequent hyperexcitability of
thalamic neurons [37, 38]. Meanwhile, upregulation of
proteins involved in the cell cycle (e.g., cyclin D1) has
been associated with microglia activation, and thus, abla-
tion of cell cycle signaling could significantly reduce
neuroinflammation and ameliorate motor dysfunction and
post-traumatic hyperesthesia [34, 39]. Decreased expres-
sion of pro-inflammatory cytokines by progesterone, a neu-
roactive steroid, also alleviated chronic pain after SCI [40].
Cognitive impairment is associated with extensive cere-

bral inflammation after SCI [41]. Mice undergoing trau-
matic SCI exhibited impaired learning and memory
associated with elevated neuroinflammation in the hippo-
campus and cortex, whereas interventions that attenuated
inflammatory responses facilitated cognitive function re-
covery [18, 42, 43]. Nonetheless, a better understanding of
the methods and consequences of efficient inhibition of
inflammation is necessary to yield significant improve-
ments in human cognitive function following SCI.
Depression is another common complication in SCI

patients, especially those with an early onset [44, 45]. To
date, the relationship between depression and neuroin-
flammation after SCI remains elusive. It has been noted
that the serum concentration of corticosterone, an in-
ducer of depressive-like phenotypes in animal models,
was elevated shortly after SCI and remained so for at
least 1 month after experimental SCI in rats [11]. Wu et
al. also reported depressive-like behaviors in mice with
spinal cord contusion [18]. In a rat model of SCI, high
levels of pro-inflammatory cytokines were associated with
comorbidity of depression and anxiety, and there was no
correlation between these comorbidities and trauma se-
verity [46]. These results help to explain how activation of
microglia and astrocytes may contribute to psychiatric
complications; furthermore, they underscore the thera-
peutic potential of targeting these cells. Recently, a ran-
domized clinical trial revealed the effectiveness of
targeting inflammation to improve mood in SCI patients
by reducing IL-1β and increasing the levels of a neuroac-
tive compound involved in the kynurenine pathway [47].
Taken together, brain dysfunction and neurodegeneration,
common complications of SCI, may be closely related to
cerebral inflammation, characterized by elevated pro-
inflammatory cytokines and activation of microglia and
astrocytes. Although a better understanding of this rela-
tionship is needed, targeting inflammation in the brain
may serve as an important therapeutic approach to im-
prove the overall quality of life for SCI patients.

Sun et al. Journal of Neuroinflammation  (2016) 13:260 Page 3 of 11



Lung
Pulmonary complications, such as respiratory failure and
pulmonary infection, are quite common in SCI patients
and largely contribute to morbidity and mortality in
these affected individuals [48, 49]. SCI patients have an
increased likelihood of developing pulmonary dysfunc-
tion, including acute respiratory distress syndrome and
acute lung injury [50]. While impaired vascular and
muscular functions could explain, at least in part, the
development of pulmonary complications, the fact that
patients with lower thoracic SCI still develop pneumonia
and respiratory dysfunction suggests that the mecha-
nisms involved in respiratory complications induced by
SCI are complex [51]. Insights into lung inflammation
after SCI may inspire the development and adoption of
novel strategies to treat pulmonary complications.
The lungs are a major target of SCI-induced acute in-

flammation. Using a rat model of spinal cord compres-
sion, Gris et al. reported significant neutrophil activation
and lung tissue invasion several hours after SCI, and
substantial macrophage infiltration was also found in the
lungs 3 days post injury [52]. Notably, the early onset of
pulmonary inflammation is consistent with the develop-
ment of lung dysfunction in the early stage of SCI [51].
Two cross-sectional studies involving chronic SCI pa-
tients unveiled a correlation between pulmonary inflam-
mation and dysfunction: SCI patients with higher levels
of inflammation markers IL-6 and C-reactive protein
had reduced lung volume measurements [53, 54]. Con-
sequently, pharmaceutical interventions that decrease
systemic inflammation in the lungs may alleviate pul-
monary dysfunction [55–57]. Resveratrol, an anti-
inflammatory agent [58] which exhibits neuroprotective
effects in spinal cord injuries [59–61], successfully re-
duced pulmonary infiltration of neutrophils and the
production of pro-inflammatory mediators, suppressed
NF-κB activation, and ameliorated pulmonary edema
[62]. This suggests that antagonizing inflammation in
the lungs promotes recovery of impaired pulmonary
functions after SCI. Indeed, a small-molecule agonist of
dopamine D1 receptor [63] effectively attenuated pul-
monary edema and lung damage following SCI [64] via
inhibition of NLRP3 inflammasome activation.

Cardiovascular system
Patients with spinal cord damage often suffer from cardio-
vascular disease, a leading cause of death for these individ-
uals [65]. Following SCI, autonomic nervous system
impairment results in blood pressure and heart rate dysreg-
ulation [66]. Autonomic dysreflexia, characterized by acute
hypertension after afferent stimulation, is frequently seen in
SCI patients, especially those with high-level injuries [67].
The development of autonomic dysreflexia in SCI mice has
also been demonstrated [68]. Blockade of inflammation-

related receptors, e.g., CD11d, CXCR1, and CXCR2, at-
tenuated the development of autonomic dysreflexia
after SCI [69–71], highlighting anti-inflammatory treat-
ments as potential therapeutics against cardiovascular
dysfunction post injury.

Liver
While few investigations have examined the effect of SCI
on liver function, Sipski and colleagues have reported hep-
atic abnormalities in chronic SCI patients [72]. It is reason-
able to suspect that liver dysfunction can be associated
with spinal cord trauma, as the liver plays an essential role
in the metabolic dysfunction commonly observed after SCI.
Indeed, animal studies have revealed that traumatic injury
to the spinal cord triggers neutrophil infiltration, macro-
phage activation, and the expression of pro-inflammatory
cytokines and chemokines in the liver [73, 74]. This inflam-
mation appears as early as 30 min after injury [75], and its
severity is correlated with lesion level [76]. Of note, consid-
erable lipid accumulation has been detected in rodent livers
after SCI [77]. Given the pro-inflammatory and cytotoxic
effects of myelin-laden macrophages associated with
lipid accumulation in the injured spinal cord [2–4, 78],
macrophage-mediated inflammation may substantially
contribute to hepatic dysfunction after SCI.

Spleen
The spleen—innervated by the autonomic nervous sys-
tem and controlled by the high thoracic spinal cord—is
an important lymphoid organ and source of infiltrating
monocytes in the injured spinal cord. In a mouse SCI
model, significant dysfunction of the spleen was ob-
served following high thoracic SCI (T3 section), whereas
lower thoracic SCI (T9 section) preserved the majority
of splenic function. Spleen dysfunction after T3 SCI was
indicated by splenic atrophy with reduced spleen size,
decreased splenic leukocyte numbers, and increased
splenic norepinephrine [21, 28]. SCI mice challenged
with viral infection show impaired protective immune
responses and decreased survival, and these outcomes
were associated with deficient CD4+ and CD8+ T cell
functions, suppressed activation of macrophages, and
deficient primary antibody response [79–81]. This sug-
gests that splenic dysfunction may largely contribute to
immune suppression in SCI patients. Notably, post-SCI
mRNA levels of pro-inflammatory cytokines IL-17 and
IL-23 were upregulated in rat splenic tissue through
STAT3 signaling [82], and thus, crosstalk between the
peripheral spleen and injured spinal cord may be medi-
ated by neuroinflammation.

Gastrointestinal tract
Gastrointestinal dysfunction, e.g., severe constipation, dif-
ficulty with evacuation, painful defecation or incontinence,
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is a common complication following SCI and is quite re-
strictive for patients, limiting their diet and outdoor activ-
ity [83]. Although the function of the gastrointestinal tract
is primarily determined by its own intrinsic nervous sys-
tem and autonomic control from the brainstem, spinal
cord trauma may damage the neuronal control of gastro-
intestinal sensory and motor functions, resulting in neuro-
genic bowel dysfunction (NBD). As approximately half of
SCI patients suffer from moderate to severe NBD [84], it
seems that abnormal bowel function exerts a highly nega-
tive impact on life quality for SCI patients [85, 86]. The
clinical manifestations of NBD with SCI include decreased
colonic motility, prolonged bowel transit time, and ano-
rectal dysfunction [87]. Although inflammation has been
observed in colonic lesions of SCI patients [88], the rela-
tionship between systemic inflammation and NBD largely
remains unclear. Utilizing a rat model of NBD after SCI,
Guo et al. reported that upregulation of neuronal nitric
oxide synthase contributed to colonic dysfunction [89],
thus establishing inflammation as a potential target for al-
leviating post-SCI NBD.

Urinary system
SCI may impair supraspinal control of the bladder and
result in neurogenic bladder, characterized by dysfunc-
tion in bladder storage and emptying [90–92]. Accord-
ingly, SCI patients have an increased risk of developing
urinary tract infections and renal damage, both of which
can be life-threatening [93–96]. Besides the direct loss of
neuronal input after injury, inflammation has been
implicated in the pathogenesis of urinary system
dysfunction in SCI patients. Such inflammation may
include infiltration of immune cells, production of pro-
inflammatory cytokines (IL-1β, IL-6, and TNF-α), upreg-
ulation of myeloperoxidase, inducible nitric oxide
synthase and cyclooxygenase-2, and activation of NF-κB
[52, 94, 97–100]. Many potential therapeutic approaches
have been investigated to alleviate bladder dysfunction
and kidney damage. Blockade of pro-inflammatory integ-
rin signaling by antibodies targeting CD11d or CD49d
has been shown to reduce kidney inflammation induced
by SCI [55, 57]. Application of antioxidant vitamin C
and activation of adrenoreceptors protected rat kidneys
from SCI-induced damage by suppressing NF-κB signal-
ing and pro-inflammatory cytokine expression [94, 97].
Oral administration of anti-inflammatory small-molecule
S-nitrosoglutathione can promote recovery of neuro-
genic bladder via inhibition of inflammatory responses
[98]. Oxidants such as dantrolene and quercetin are able
to ameliorate urinary bladder lesions after SCI by
decreasing bladder hemorrhage and immune cell infiltra-
tion [101, 102]. The aforementioned results are a prom-
ising sign for the treatment of SCI-induced urinary
system dysfunction.

Skeletal muscle
Skeletal muscles controlled by the spinal cord below the
injured area become paralyzed and develop atrophy after
SCI [103, 104]. Physiological tests have revealed numerous
changes in the properties of disabled muscles from SCI
patients, including decreased muscle cross-sectional area,
reduced muscle mass, increased susceptibility to fatigue,
and an increased proportion of fast glycolytic muscular fi-
bers [105–107]. While it is well-known that paralysis-
induced disuse is the primary cause of muscular atrophy,
emerging evidence suggests that the involvement of in-
flammation in post-SCI muscle dysfunction may not be
trivial. Muscular inflammation can be observed in the
acute phase of SCI even before obvious muscle atrophy is
seen [108]. In long-term SCI, muscle atrophy is associated
with a significant elevation of inflammatory mediators
(e.g., IL-1β, IL-6, and TNF-α) and activation of NF-κB sig-
naling [109, 110], a key regulator of the inflammatory state
in muscle atrophy [111]. In a mouse transection SCI
model, administration of glutamine—which is extensively
used to improve clinical outcomes—has been shown to
decrease pro-inflammatory cytokine expressions (IL-6 and
TNF-α), attenuate loss of myofibrillar proteins in muscle,
and mitigate muscular fatigability [112]. Therefore, admin-
istration of anti-inflammatory agents may serve as a
promising therapeutic approach to accelerate muscular
function recovery after SCI.

Bone
Osteoporosis, characterized by the loss of bone mineral
density (BMD), is a well-defined consequence of SCI
[113, 114]. The distal femur, proximal tibia, and distal
boney sites at sublesional levels are the most susceptible
to BMD loss [115, 116]. The decrease in BMD is pro-
gressive after SCI and increases patients’ risk of fracture
[117], and many factors contribute to the pathogenesis
of osteoporosis following SCI. In addition to deficiencies
in neuronal control, hormonal regulation, and vascular
function [118–120], the inflammatory microenvironment
in bone also mediates osteoclast differentiation and bone
loss [121–123]. Elevated levels of IL-6 have been de-
tected in conditioned medium from bone marrow cul-
tures of SCI patients [124]. Similarly, significant
increases in serum IL-6 (approximately 2.5-fold com-
pared to sham) and IL-6 mRNA (approximately sixfold
compared to sham) were observed in the femurs of rats
post-SCI [125]. IL-6 signaling stimulates osteoclast pro-
genitors to differentiate into osteoclasts [126–129] and
suppresses osteoblast differentiation [130, 131], resulting
in bone resorption. Blockade of IL-6 by its neutralizing
antibody inhibited osteoclast-like cell formation in SCI
patient-derived bone marrow cultures [124]. In addition,
resveratrol significantly suppressed IL-6 expression in fe-
murs and reduced osteoclastogenesis in SCI rats [125].
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Hence, inflammatory mediators are active players in
osteoporosis after SCI and may be important anti-
osteoporotic targets.

Soft tissue
Neurogenic heterotopic ossification (HO), a process by
which new bone formation occurs outside of the skel-
eton and preferentially around soft tissues, is an irrevers-
ible complication of SCI more frequently seen in young
patients [132–135]. Cervical and thoracic SCIs induce
more HO than do lumbar injuries, and the hip joint is
the major ossified area. Regulation of HO development
is multifactorial [136–138], and the inflammatory re-
sponse is an important contributing factor in the early
stage of HO. Among the multiple therapeutic choices,
non-steroidal anti-inflammatory drugs are effective
prophylactic treatments against HO when administered
soon after SCI [134, 139–143]. Estrores and colleagues
reported that increased levels of C-reactive protein, a
commonly used marker of acute inflammation in SCI
[144–146], were associated with early occurrence of HO
and the concentration of C-reactive protein declined
when HO symptoms were alleviated in later stages [147].
The lack of animal models that reproduce the clinical
features of HO observed in SCI patients has long hin-
dered the study of underlying HO mechanisms; however,
in 2015 a well-characterized mouse HO model showed
that phagocytic macrophages play a critical role in driv-
ing the development of HO [148]. This study highlighted

the impact of the inflammatory microenvironment on HO
and may benefit the discovery of novel anti-inflammatory
treatments against HO.

Syringomyelia
Syringomyelia is a relatively rare sequela defined by cavity
formation in the injured spinal cord via enlargement of
the central canal [149]. Syringomyelia induces devastating
symptoms including muscle weakness, loss of sensitivity,
stiffness, and pain. In SCI rats, induced inflammatory
conditions exacerbated syrinx formation, indicating a
potential role of inflammation in the pathogenesis of
syringomyelia [150].

Conclusions
Post-SCI multiple organ dysfunction is influenced by
multifactorial mechanisms, and the extent to which sys-
temic inflammation and immune depression contribute to
SCI-associated complications is still an open question.
Nevertheless, a growing body of evidence demonstrates the
involvement of inflammatory conditions in the damage or
dysfunction of multiple organ systems secondary to SCI.
Systemic inflammatory responses following SCI induce
infiltration of inflammatory cells into secondary tissues, ac-
tivation of resident immune cells, and stimulation of pro-
inflammatory cytokine production, all of which contribute
to the pathogenesis of multiple organ dysfunction after
SCI. Meanwhile, immune suppression subsequent to SCI
significantly increases susceptibility to post-injury infection

Fig. 1 Schematic diagram of systemic inflammation- and immune depression-associated multiple organ dysfunction following SCI. SCI triggers an
acute increase of inflammatory cells (such as neutrophils and macrophages) in the circulation and elevates serum concentrations of pro-inflammatory
mediators. Subsequent infiltration of inflammatory cells from the blood into secondary organs initiates a series of events that mediate inflammatory
responses in these organs. Activation of resident immune cells (microglia) in the brain is also found after SCI. SCI itself interrupts innervation of immune
organs by the sympathetic nervous system, causing immune depression syndrome. Suppressed immunity leads to an increased susceptibility of the
whole body to post-injury pathogen infections through decreased immune cell quantities (such as monocytes, T cells, and B cells)
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due to impaired innate and adaptive immunity in SCI pa-
tients, leading to worsened multiple organ damage and
mortality. Therefore, inflammation and immunity not only
contribute to the progression of intraspinal injury but also
are important determinants of multiple organ dysfunction
after SCI (Fig. 1).
Many anti-inflammatory strategies that attempt to

ameliorate local intraspinal inflammation and promote
neural tissue repair may find their true value in alleviat-
ing dysfunction in multiple organs secondary to the
injured spinal cord. Such therapeutics may include im-
munomodulators of inflammation-associated pathways,
e.g., estrogen, IL-33, IL-37, and adiponectin signaling
pathways [151–154]. Small-molecule agonists or antago-
nists and blocking antibodies that specifically recognize
and deactivate a variety of receptors involved in transduc-
tion of inflammatory signals—e.g., interleukin receptors,
toll-like receptors, integrins, and estrogen receptors—are
promising tools to mitigate complications after SCI
[55–57, 92, 155–158]. Intracellular components of in-
flammatory machinery, including enzymes and tran-
scription factors, may also serve as therapeutic targets
to resolve inflammation in multiple organs following
SCI [159–164].
Co-application of anti-inflammatory strategies with

other treatment approaches after SCI may provide a
therapeutic benefit for patients, though there is a lack of
human clinical trials employing such strategies. In the
future, well-designed experimental studies utilizing reli-
able animal models are needed to better understand the
detailed mechanisms of how post-SCI complications
develop with systemic inflammation and suppressed
immunity and to suggest effective immunoregulatory
approaches to mitigate SCI-induced multiple organ dys-
function. Such studies should be taken into consider-
ation with the ultimate goal of developing therapies to
improve the total body health of SCI patients.
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