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Meta-analysis of mouse transcriptomic

studies supports a context-dependent
astrocyte reaction in acute CNS injury
versus neurodegeneration
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Abstract

Background: Neuronal damage in acute CNS injuries and chronic neurodegenerative diseases is invariably
accompanied by an astrocyte reaction in both mice and humans. However, whether and how the nature of the
CNS insult—acute versus chronic—influences the astrocyte response, and whether astrocyte transcriptomic
changes in these mouse models faithfully recapitulate the astrocyte reaction in human diseases remains to be
elucidated. We hypothesized that astrocytes set off different transcriptomic programs in response to acute versus
chronic insults, besides a shared “pan-injury” signature common to both types of conditions, and investigated the
presence of these mouse astrocyte signatures in transcriptomic studies from human neurodegenerative diseases.

Methods: We performed a meta-analysis of 15 published astrocyte transcriptomic datasets from mouse models of
acute injury (n = 6) and chronic neurodegeneration (n = 9) and identified pan-injury, acute, and chronic signatures,
with both upregulated (UP) and downregulated (DOWN) genes. Next, we investigated these signatures in 7
transcriptomic datasets from various human neurodegenerative diseases.

Results: In mouse models, the number of UP/DOWN genes per signature was 64/21 for pan-injury and 109/79 for
acute injury, whereas only 13/27 for chronic neurodegeneration. The pan-injury-UP signature was represented by
the classic cytoskeletal hallmarks of astrocyte reaction (Gfap and Vim), plus extracellular matrix (i.e., Cd44, Lgals1,
Lgals3, Timp1), and immune response (i.e., C3, Serping1, Fas, Stat1, Stat2, Stat3). The acute injury-UP signature was
enriched in protein synthesis and degradation (both ubiquitin-proteasome and autophagy systems), intracellular
trafficking, and anti-oxidant defense genes, whereas the acute injury-DOWN signature included genes that regulate
chromatin structure and transcriptional activity, many of which are transcriptional repressors. The chronic
neurodegeneration-UP signature was further enriched in astrocyte-secreted extracellular matrix proteins (Lama4,
Cyr61, Thbs4), while the DOWN signature included relevant genes such as Agl (glycogenolysis), S1pr1 (immune
modulation), and Sod2 (anti-oxidant). Only the pan-injury-UP mouse signature was clearly present in some human
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neurodegenerative transcriptomic datasets.

Conclusions: Acute and chronic CNS injuries lead to distinct astrocyte gene expression programs beyond their
common astrocyte reaction signature. However, caution should be taken when extrapolating astrocyte
transcriptomic findings from mouse models to human diseases.

Keywords: Acute CNS injury, Astrocyte reaction, Meta-analysis, Neurodegenerative diseases, Transcriptomics
Background
Neuronal loss in central nervous system (CNS) acute in-
juries and chronic neurodegenerative diseases is invari-
ably accompanied by an astrocyte reaction, which has
been traditionally depicted by an increased glial fibrillary
acidic protein (GFAP) immunoreactivity. However,
thanks to the improvement of cell purification protocols
and the development of transcriptomic methodologies
(microarray and RNA-seq), the complexity and hetero-
geneity of this astrocyte reaction is emerging above and
beyond this increased GFAP immunoreactivity. One area
of uncertainty is whether there is any disease-specificity
in astrocyte reaction or, conversely, this is just a non-
specific response of astrocytes to any kind of neuronal
injury. More specifically, whether reactive astrocytes
could be neurotoxic in certain pathological conditions
and neuroprotective in others is an area of active re-
search. For example, it has been proposed that reactive
astrocytes are neurotoxic (so called A1 astrocytes) in the
lipopolysaccharide (LPS)-induced sepsis mouse model,
but neuroprotective (termed A2 astrocytes) in the mid-
dle cerebral artery occlusion (MCAO) stroke mouse
model [1, 2]. Another controversial question is whether
astrocyte proliferation is a universal feature of astrocyte
reaction. For example, astrocyte proliferation has been
demonstrated in acute injury conditions such as trau-
matic brain injury (TBI) and stroke [3–5] but appears
more limited in the context of chronic neurodegenera-
tive diseases [5–9].
We hypothesized that astrocytes set off different tran-

scriptomic programs in response to acute versus chronic
disease, but that a common pan-injury signature under-
lies both types of conditions. To test this hypothesis, we
took advantage of publicly available microarray and
RNA-seq mouse astrocyte transcriptomic datasets from
acute lesions [LPS-induced sepsis, MCAO stroke, spinal
cord injury (SCI), and 1-methyl-4-phenyl-1,2,3,6-tetrahy-
dropyridine (MPTP)] and chronic neurodegenerative
disease models [amyotrophic lateral sclerosis (ALS) and
Alzheimer’s disease (AD)], and applied bioinformatics
tools [gene set enrichment analysis (GSEA) and meta-
analysis]. Specifically, we asked whether (1) the previ-
ously reported A1, A2, and pan-reactive signatures can
be extrapolated to conditions beyond LPS-induced sepsis
and MCAO stroke; (2) distinct acute, chronic, and pan-
injury (common to acute and chronic conditions) signa-
tures can be identified; (3) reactive astrocytes in these
conditions activate proliferative pathways as much as in-
flammatory cascades; and (4) astrocyte transcriptomic
signatures obtained from mouse models correlate with
changes in astrocyte gene expression levels in the corre-
sponding human diseases.

Methods
All analyses were conducted using R version 3.5.1 [10]

Mouse gene expression analysis
Publicly available transcriptomic datasets of mouse as-
trocytes were identified either by using search terms in
Gene Expression Omnibus (GEO) [11] or from relevant
literature (Table 1). Microarray data were processed and
normalized using RMA package in R. For RNA-seq data-
sets, we used fragments per kilobase of transcript per
million mapped reads (FPKM) values whenever available;
when only the raw sequencing fastq files were available,
we used the salmon package to process and estimate
transcript abundance [24]. Differentially expressed genes
(DEGs) were identified using limma [25] and voom+
limma [26] as genes with a statistically significant differ-
ence in expression level (p < 0.05) between the diseased
(i.e., transgenic) and control (i.e., wild-type) mice.

Meta-analysis of mouse transcriptomic studies
Meta-analyses were conducted using the sumz function
in the metap package in R, which first converts the P
values into Z scores, and then computes the composite
Z score [27]. Square root of the sample sizes was used as
weights in the sumz procedure to control for the num-
ber of samples in each study. The p values were cor-
rected for multiple comparisons using a false discovery
rate (FDR) < 5%. We conducted meta-analyses within
acute injury and neurodegenerative mouse studies separ-
ately. We identified the pan-injury signature as those
genes that met two criteria: (1) had a statistically signifi-
cant multiple-comparison-corrected meta p value (meta
p < 0.05) and (2) had a statistically significant (p < 0.05)
differential expression in at least 33% of both acute in-
jury and neurodegenerative mouse datasets. The chronic
neurodegeneration-specific signature was defined as
those genes with a statistically significant adjusted meta



Table 1 Summary of publicly available mouse astrocyte transcriptomic datasets used in this study
Label Injury type Comparison N Sex

(n M/F)
Age CNS region Astrocyte

isolation
method

RNA
method

Accession # Ref.

LPS Acute LPS vs placebo 5/4 5M/4M 30–35 days ctx+cc FACS of
Aldh1L1-
eGFP+ cells

Microarray GSE35338 [1]

MCAO-1 Acute MCAO vs sham
surgery

3/3 3M/3M 30–35 days ctx+cc+
hipp+str

FACS of
Aldh1L1-
eGFP+ cells

Microarray GSE35338 [1]

MCAO-2 Acute Transient MCAO
ipsi- vs contra and
control (no TMX)

3/3 NA 3–5 months Hemibrain Cx43-Cre-ERT/
RiboTag

RNA-seq GSE103783 [12]

SCI-1 Acute SCI at T10 vs
non-injured

4/4 4F/4F 2–4 months Spinal cord mGFAP-Cre-
RiboTag

RNA-seq GSE76097 [13]

SCI-2 Acute SCI at T9 (hemi-
and full transection
vs non-injured)

9/3 9M/3M 12 weeks Spinal cord FACS of
Aldh1L1-
eGFP+ cells

RNA-seq GSE96054 [14]

MPTP-24 h Acute MPTP vs vehicle
(sac 24 h post-
single i.p. inj.)

3/3 3F/3F 4–7 months str TRAP of Aldh1L1-
eGFP-L10a

Microarray https://doi.org/10.
17632/ktgcp4mtk2.1

[15]

SOD1-G93A-1 Chronic G93A SOD1 vs wt 4/3 NA 90 days Spinal cord FACS Aldh1L1-
eGFP/G93A SOD1

Microarray GSE111031 [16]

SOD1-G93A-2 Chronic G93A SOD1 vs wt 3/3 3M/3M 120 days Spinal cord LCM of Aldh1L1+
cells

Microarray GSE69166 [17]

SOD1-G37R Chronic G37R SOD1 vs wt 4/6 4M/6M 8months Spinal cord TRAP of Aldh1L1-
eGFP-L10a

RNA-seq GSE74724 [18]

APPPS1-1 Chronic APPswePS1dE9 vs wt 4/4 NA 15–18 months Whole ctx FACS with
Glt-1 Ab

Microarray GSE74615 [19]

APPPS1-2 Chronic APPswePS1dE9 vs wt 4/4 NA 15–18 months Whole ctx FACS of GFAP-
GFP cells

Microarray GSE74614 [20]

APPPS1-3 Chronic APPswePS1dE9-GFP
vs wt-GFP

4/7 4M/7M 9months CA1 hipp FACS of eGFP+
cells

RNA-seq GSE108520 [21]

PS2APP-1 Chronic PS2APP vs wt 4/5 2M2F/1M4F 13 months Whole brain FACS with
GFAP Ab

RNA-seq GSE75431 [22]

PS2APP-2 Chronic PS2APP vs wt 5/5 NA 11.5 months Whole brain FACS with
GFAP Ab

RNA-seq GSE129770 [23]

P301S-tau Chronic hMAPT-P301S
tau vs wt

5/6 5M/6M 6months Whole ctx FACS with
GFAP Ab

RNA-seq GSE129797 [23]

Abbreviations: Ab antibody, Aldh1L1 aldehyde dehydrogenase 1 L1, APP amyloid-β precursor protein, CA1 cornus ammonis 1, cc corpus callosum, CNS central
nervous system, ctx cortex, Cx43 connexin-43, eGFP enhanced green fluorescent protein, FACS fluorescence-activated cell sorting, GFAP glial fibrillary acidic protein,
Glt1 glutamate transporter 1, i.p. intra-peritoneal, LCM laser capture microdissection, LPS lipopolysaccharide, MAPT microtubule-associated protein tau, MCAO
middle cerebral artery occlusion, MPTP 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, PS1/2 presenilin 1/2, sac sacrifice, SCI spinal cord injury, SOD1 superoxide
dismutase 1, TRAP translating ribosome affinity purification
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p value (meta p < 0.05) in the neurodegenerative meta-
analysis, which had a statistically significant differential
expression (p < 0.05) in 33% or more neurodegenerative
studies but none of the acute injury datasets. Similarly,
the acute injury-specific signature was defined as those
genes with a statistically significant adjusted meta p
value (meta p < 0.05) in the acute injury meta-analysis,
which had a statistically significant differential expres-
sion (p < 0.05) in 33% or more acute injury studies but
none of the chronic neurodegeneration datasets. DEGs
were considered upregulated (UP) if the logarithm of the
fold change (logFC) was > 0 and downregulated
(DOWN) if the logFC was < 0. Although some of the
datasets analyzed had some contamination from micro-
glial genes [17, 18, 21], this analytic approach minimized
the probability of including these microglial genes from
a single dataset in the final meta-analytic signatures.
Moreover, we confirmed the expression of the resulting
genes by astrocytes in a previously published RNA-seq
study of cell subpopulations isolated from the mouse
brain [28].

Gene set enrichment analysis (GSEA)
To identify signaling pathways, we searched for the
terms “KAPPA”, “NFAT”, “MAPK”, “JAK/STAT”,
“WNT/BETA-CATENIN”, and “SONIC HEDGEHOG”
within the KEGG, REACTOME, BIOCARTA, PID, and
GO pathways compiled in the MSigDB version 6.2 [29]
and obtained a total of 86 gene sets. Next, we performed
gene set enrichment analysis (GSEA) [30, 31] to deter-
mine the enrichment of each of these gene sets in each
of the 15 mouse astrocyte transcriptomic datasets and

https://doi.org/10.17632/ktgcp4mtk2.1
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generated a heatmap with the normalized enrichment
scores (NES) and another heatmap with the − log10 of
the p values. Next, we conducted a meta-analysis of the
resulting GSEA p values and ranked the gene sets in de-
scending adjusted meta p value, representing the relative
relevance of these signaling pathways in the astrocytes
from each of the mouse models.

Validation of mouse astrocyte signatures in human
transcriptomic datasets
To validate the meta-analytic mouse transcriptomic sig-
natures, we investigated the differential expression of
each of the signature genes in human microarray and
RNA-seq bulk tissue and astrocyte-specific datasets from
AD, Parkinson’s disease (PD), and ALS. Table 2 depicts
the human datasets used in these analyses, with sample
size, CNS region of interest, transcriptomic method, ac-
cession number, and reference. The AD datasets were
analyzed by comparing individuals with Braak NFT V/VI
(AD) versus Braak NFT 0/I/II (controls), as described
previously [37]. The differential expression of diseased
versus control individuals for the PD and ALS datasets
was analyzed using limma. Violin plots were generated
using ggplot2 version 3.2.1 [38] to represent the logFC
of each signature gene in diseased versus control
individuals.

Results
Compilation of acute injury and neurodegenerative
astrocyte transcriptomic datasets
A total of 15 transcriptomic datasets from astrocytes iso-
lated from mouse models were obtained from GEO. Data-
set category (acute injury versus neurodegeneration),
mouse model, mouse age and sex, CNS region, method of
astrocyte isolation, GEO accession number, and literature
Table 2 Summary of publicly available human neurodegenerative tr

Label Comparison N Sample type R

AD-DLPC AD (Braak V/VI) vs
CTRL (Braak 0/I/II)

140/112 Bulk tissue R

AD-PHG AD (Braak V/VI) vs
CTRL (Braak 0/I/II)

62/79 Bulk tissue R

AD-astro1 AD (Braak V/VI) vs
CTRL (Braak 0/I/II)

6/6 LCM of GFAP+
astrocytes

M

AD-astro2 AD (Braak V/VI) vs
CTRL (Braak 0/I/II)

7/12 FACS with
GFAP Ab

R

PD-SN PD vs CTRL 3/3 Bulk tissue M

PD-Str PD vs CTRL 6/6 Bulk tissue M

ALS-SC SALS vs CTRL 5/4 Bulk tissue M

Abbreviations: Ab antibody, AD Alzheimer’s disease, ALS amyotrophic lateral scleros
cortex, FACS fluorescence-activated cell sorting, GFAP glial fibrillary acidic protein, L
parahippocampal gyrus, SALS sporadic ALS, SC spinal cord, SN substantia nigra, Str s
reference for these datasets can be found in Table 1.
Mouse acute injury datasets (n = 6) included LPS-induced
sepsis (n = 1) [1], MCAO stroke (n = 2) [1, 12], SCI (n =
2) [13, 14], and acute toxic parkinsonism (MPTP, n = 1)
[15]. For one of the stroke studies [1], only the dataset
from 3 days after MCAO was analyzed, because gene ex-
pression changes were maximum 3 days and attenuated
by 7 days after MCAO surgery. The MPTP dataset [15]
was classified as acute injury rather than chronic neurode-
generation because the authors examined the changes in
astrocyte transcriptome after an acute neurotoxic injury to
the substantia nigra dopaminergic neurons (i.e., 12 h, 24 h,
and 48 h after a single MPTP intra-peritoneal injection),
rather than after chronic MPTP administration through a
subcutaneous osmotic pump [39]. Since the three acute
MPTP time points are not independent datasets, only the
24 h dataset was used for the meta-analysis [15]. Mouse
neurodegenerative datasets (n = 9) included ALS (various
SOD1 mutants, n = 3) [16–18] and AD models of both
brain β-amyloidosis (n = 5) (APPswe/PSEN1deltaE9 n = 3
and PS2APP n = 2) [19–23], and tauopathy (P301S-
MAPT, n = 1) [23]. Whenever more than one age group
was available, only the older age group was analyzed.

A1 and A2 astrocyte transcriptomic signatures are not
CNS disease-specific
Recently, an A1 neurotoxic signature and an A2 neuro-
protective signature have been defined based on the
DEGs from two acute injury mouse models: LPS-
induced sepsis and MCAO stroke, respectively, with a
third “pan-reactive” signature representing the common
overlap between sepsis- and stroke-induced transcrip-
tomic changes [1, 2]. Moreover, it has been suggested
that, in neurodegenerative diseases, astrocytes also up-
regulate the A1 neurotoxic signature and downregulate
anscriptomic datasets used in this study

NA method CNS region Accession # Ref.

NA-seq Dorsolateral
prefrontal cortex

syn3505720 [32]

NA-seq Parahippocampal
gyrus

syn5898488 [33]

icroarray Lateral temporal
cortex

GDS4135 [34]

NA-seq Superior frontal
gyrus

GSE125050 Friedman,
Hansen
(unpublished)

icroarray Substantia
nigra

GSE54282 [35]

icroarray Striatum GSE54282 [35]

icroarray Spinal cord gray
matter

GSE833 [36]

is, CNS central nervous system, CTRL control, DLPC dorsolateral prefrontal
CM laser capture microdissection, PD Parkinson’s disease, PHG
triatum
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the A2-neuroprotective signature [2]. To test the hy-
pothesis that these A1, A2, and pan-reactive signatures
can be extrapolated to other acute injuries as well as
neurodegenerative diseases, we examined the differential
expression of the genes comprising these signatures in
the 15 mouse datasets described above. The heatmaps in
Fig. 1 show the fold change of the expression of the
genes comprising these three signatures and the p values
of these comparisons. Surprisingly, overall the A1, A2,
and pan-reactive genes were upregulated in astrocytes
across most acute injury and neurodegeneration mouse
models. Only MPTP appeared to induce a differential re-
sponse, with an upregulation of the A2 and pan-reactive
signatures and a downregulation of the A1 signature. Of
note, astrocytes from acute injury mouse models tended
to exhibit higher level of expression of all three gene
cassettes than those from neurodegeneration mouse
models. Overall, these analyses demonstrate that the
Fig. 1 Purported neurotoxic, neuroprotective, and pan-reactive astrocyte tr
mouse models. Heatmaps illustrate the log2(fold-change) (a) and − log10(p
reactive (PAN) gene cassettes as defined by Liddelow et al. [2]. Dark gray in
detected at extremely low levels. Light gray transcripts in (b) were not stat
upregulated in astrocytes from chronic neurodegeneration (ND) and, speci
previously described A1 and A2 signatures do not dis-
cern between CNS conditions and, in fact, are not mutu-
ally exclusive, but part of a broader pan-injury program
that is common to both acute injury and chronic neuro-
degenerative responses.

Meta-analysis of mouse astrocyte transcriptomic studies
reveals distinct signatures of astrocyte reaction in acute
CNS injuries versus chronic neurodegenerative diseases
Since the previously defined A1 and A2 signatures did
not discriminate between injuries of very different na-
ture, we next sought to describe new acute, chronic, and
pan-injury astrocyte transcriptomic signatures. To this
end, we conducted a meta-analysis of the DEGs, both
upregulated (UP) and downregulated (DOWN), from
the mouse acute and chronic datasets separately (Fig. 2a).
We defined the pan-injury signature as genes with a
statistically significant multiple-comparison-corrected
anscriptomic signatures in acute injury and chronic neurodegenerative
values) (b) of the neurotoxic (A1), neuroprotective (A2), and pan-
(a) and (b) means that the transcript was not detected or was

istically significant. Note that all three signatures are significantly
ally, acute injury (AI) mouse models



Fig. 2 Meta-analysis shows distinct acute injury and chronic neurodegeneration signatures, and a common pan-injury signature. a Flow-chart
shows the criteria used to develop acute injury (AI), chronic neurodegenerative diseases (ND), and pan-injury (PAN) signatures. b Venn diagrams
show the number of upregulated (UP) and downregulated (DOWN) genes for each of the signatures. c Heatmaps depict log2(fold change) of
upregulated (UP) and downregulated (DOWN) genes comprising the three signatures
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meta-analysis p value (p < 0.05) in both acute and
chronic datasets and which, as an additional filter, also
reached statistical significance in at least 33% of both
acute and chronic datasets (see the meta p value of each
signature gene and the number of acute and chronic
datasets in which it was significant in Supplemental
Table 1). The chronic neurodegeneration-specific signa-
ture was defined as DEGs that had an adjusted meta
p value < 0.05 in the meta-analysis of chronic neurode-
generation datasets, were present in 33% or more of the
neurodegeneration datasets, and absent in all acute injury
datasets. Similarly, the acute injury-specific signature was
defined by DEGs that had an adjusted meta p value < 0.05
in the meta-analysis of acute injury datasets, were present
in 33% or more of all the acute injury datasets, and absent
in all chronic neurodegeneration datasets.
Using these criteria, we obtained an acute injury-specific

signature with 109 upregulated and 79 downregulated
genes; a chronic neurodegeneration-specific signature with
13 upregulated and 27 downregulated genes, and a pan-
injury signature with 64 upregulated genes and 21 down-
regulated genes. The Venn diagrams in Fig. 2b and the
heatmaps in Fig. 2c and Supplemental Figure 1 depict the
results of the meta-analysis for the UP and DOWN signa-
tures, respectively. To characterize these signatures, we next
interrogated curated databases such as Gene Ontology (GO
biological processes, cellular components, and molecular
functions) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) and generated heatmaps of relevant gene cassettes.

Pan-injury astrocyte transcriptomic signature
The pan-injury-UP signature corresponded to biological
processes such as cytokine receptor and interferon signaling
and to cellular components such as secretory vesicles, cell
surface, and extracellular matrix. Specifically, this signature
was represented by genes related to the cytoskeleton (Actb,
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Dst, Gfap, Vim), extracellular matrix (Cd44, Lgals1, Lgals3,
Lgals3bp, Timp1), and immune response (C3, Csf1, Fas,
Fcer1g, Havcr2, Ifi44, Ifih1, Ifit3, Irf9, Osmr, Serping1, Stat1,
Stat2, Stat3), whereas the pan-injury-DOWN signature was
comprised of genes with very diverse functions, although a
lipid metabolism gene cassette (Acss2, Bbox1, Elovl2, Fzd2,
Hmgcs1, Sqle) could be identified (Fig. 3).

Acute injury-specific astrocyte transcriptomic signature
The acute injury-UP signature corresponded to biological
processes related to protein synthesis and degradation (pro-
teasome and autophagy), response to cytokine and extracel-
lular stimulus, and innate immune system, and to cell
components such as endoplasmic reticulum, Golgi appar-
atus, and secretory granules and vesicles. Specifically, this
signature includes gene cassettes related to protein synthe-
sis (Calu, Cars, Dph2, Dph5, Eef1e1, Eif2b2, Eif2b3, Farsb,
Fig. 3 Pan-injury astrocyte gene expression signature. Heatmaps depict log
both acute injury (AI) and chronic neurodegeneration (ND). The pan-injury
Vim) (a), extracellular matrix (i.e., Cd44, Timp1) (b), and immune response (i.
lipid metabolism (i.e., Hmgcs1, Sqle) among other genes (d)
Iars, Kars), ER-Golgi trafficking (Ipo5, Lsg1, Nipsnap3a,
Ralb, Rer1, Scamp4, Snap23, Snx10, Snx33, Ssr3, Ykt6), the
ubiquitin-proteasome system (Cct2, Cct4, Dnajc14, Otud6b,
Otud7b, Psmd2, Psmd9, Psmd11, Ube2f, Usp14), autophagy
(Chmp7, Cpd, Ctsa, Cd63, Gba, Lamp2, Lap3), immune re-
sponse (Bcl10, Fyn, Rela, Lgals8, Ppp6c), and anti-oxidant
defense (Cybrd1, Enox2, Gss, Nfe2l2, Pex12) (Fig. 4). By
contrast, the acute injury-DOWN signature was related to
transcription and chromatin remodeling processes, local-
ized to chromatin and cell nucleus, and was mainly com-
prised of genes that regulate chromatin structure and
transcriptional activity (Arntl, Asf1a, Baz2a, Cbx7, Cnbp,
Cpsf6, Ep300, Hivep1, Ncor1, Nipbl, Nr2c2, Nr2f2, Prdm2,
Pspc1, Pygo1, Rnf44, Rora, Rpa3, Smarca2, Ssbp3, Stag2,
Tsc22d1, Xpa, and Zbtb24) (Fig. 5). Of note, many of these
transcripts encode transcriptional repressors (i.e., Baz2a,
Cbx7, Cnbp, Ncor1, Zbtb24), therefore their downregulation
2(fold change) of upregulated (a–c) and downregulated (d) genes in
(PAN) signature consists of upregulation of cytoskeleton (i.e., Gfap,
e., C3, interferon signaling, STAT pathway) (c), and downregulation of



Fig. 4 Astrocyte gene expression signature upregulated in acute injury. Heatmaps depict log2(fold change) of acute injury-specific upregulated
genes. The upregulated acute injury signature consists of protein translation (i.e., elongation machinery and aminoacyl tRNA synthetases) (a),
ubiquitin-proteasome system (i.e., proteasome subunits and chaperones) (b), autophagy system (i.e., lysosomal enzymes such as cathepsin A and
glucocerebrosidase, and lysosomal associated membrane protein 2) (c), intracellular trafficking (i.e., ER-Golgi) (d), immune response (i.e., Rela, Il33)
(e), and anti-oxidant defenses (i.e., Nfe2l2, Gss)
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would lead to an enhanced transcriptional activity in the as-
trocytes. Other downregulated gene cassettes of interest in
this signature included immune response (Igsf1, Irf2,
Mapk9, Rcan2) and trophic factors (Acvr2b, Ntrk3, Pdgf3rb,
Vegfb).
Chronic neurodegeneration-specific astrocyte
transcriptomic signature
The chronic neurodegeneration-specific signature was
notably the smallest in number of genes, and these
turned out to be functionally very heterogeneous. The
chronic neurodegeneration-UP signature (n = 13) in-
cluded three genes encoding extracellular matrix pro-
teins that are known to be secreted by astrocytes (Cyr61,
Lama4, and Thbs4). Other chronic neurodegeneration-
UP genes were App, Capn3, Cobl, Esyt1, Gatad2b, Klc1,
Nr4a3, Pex5l, Rusc1, and Tsc22d1 (Fig. 6a). The chronic
neurodegeneration-DOWN signature (n = 27) included
a metabolic gene cassette (Acot6, Agl, Arsk, Naa30,
Stt3b) and a transcription/chromatin remodeling gene
cassette (Dr1, Nfyc, Patz1, Prrx1) together with relevant
genes such as Cd164, Heatr3, S1pr1, and Sod2 (Fig. 6b).
Astrocyte reaction involves upregulation of NFκB, MAPK,
JAK-STAT, and CaN-NFAT signaling pathways, but not Wnt/
β-Catenin and Sonic hedgehog proliferative pathways
We next investigated which molecular signaling path-
ways are involved in astrocyte reaction in each condition
and whether astrocyte proliferation is part of astrocyte re-
action. Specifically, we hypothesized that acute CNS injur-
ies would trigger astrocyte proliferation to create a scar
and limit neuronal damage, whereas this proliferative po-
tential of astrocytes could be exhausted in chronic neuro-
degenerative diseases. A literature review revealed four
main signaling pathways involved in astrocyte reaction:
nuclear factor kappa B (NFκB) [40], calcineurin-nuclear
factor activating of T-cells (CaN-NFAT) [41–44], Janus
Kinases/Signal Transducer and Activator of Transcription
(JAK/STAT) [21, 45–47], and mitogen-activated protein
kinase (MAPK) [34, 48–51], and two main pathways in-
volved in astrocyte proliferation: Wnt/β-catenin [52, 53]
and Sonic hedgehog [5, 54].
To investigate whether these pathways are upregulated

in reactive astrocytes in a context-dependent fashion, we
performed GSEA [30] with the gene sets comprising
these six pathways (see the “Methods” section) on the 6



Fig. 5 Astrocyte gene expression signature downregulated in acute injury. Downregulated genes in acute injury were mainly related to
chromatin remodeling and organization and transcription, including many transcriptional repressors
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acute injury and 9 chronic neurodegeneration astrocyte
transcriptomic datasets, followed by a meta-analysis of
the resulting GSEA p values. We identified a total of 86
gene sets related to one of these six signaling pathways
with the following distribution: Wnt/β-catenin n = 28,
MAPK n = 21, NFκB n = 19, JAK/STAT n = 9, NFAT n
= 6, and Sonic hedgehog n = 3. Figure 7 shows a heat-
map with the NES resulting from the GSEA ranked by
descending adjusted meta-analytic p value, whereas Sup-
plemental Figure 2 heatmap depicts the − log10(p values)
from this GSEA. The NFκB, JAK/STAT, and MAPK sig-
naling pathways encompassed the top gene sets and
were upregulated in most datasets from both acute in-
jury and chronic neurodegeneration categories. By con-
trast, the Wnt/β-catenin and Sonic hedgehog gene sets
were predominantly downregulated and did not reach
the meta-analytic statistical significance in most in-
stances. Of note, the astrocyte pan-injury signature de-
scribed above included Stat1, Stat2, and Stat3, whereas
the acute injury-UP signature included Rela, which en-
codes for the effector subunit of NFκB p65, and the
acute injury-DOWN signature included Rcan2, which is
the main repressor of Ca-N/NFAT signaling, suggesting
that the JAK/STAT signaling pathway is active in all
astrocyte reactions, whereas NFκB and NFAT signaling
pathways are primarily turned on in response to acute
injuries.

Validation of mouse astrocyte signatures in human
neurodegenerative diseases
Lastly, we sought to validate the acute injury, chronic
neurodegeneration, and pan-injury mouse astrocyte sig-
natures in human brain transcriptomic (microarray and
RNA-seq) datasets from neurodegenerative disease-
relevant CNS regions. These included two large AD
datasets, the Religious Orders Study and Memory and
Aging Project (ROSMAP, dorsolateral prefrontal cortex)
[32] and the Mount Sinai Brain Bank (MSBB, parahippo-
campal gyrus) [33], two PD datasets (substantia nigra
and striatum) [35], and one sporadic ALS dataset (spinal
cord gray matter) [36]. In addition to these bulk tissue
transcriptomic datasets, we analyzed two astrocyte-
specific AD datasets: one in which GFAP+ astrocytes
were laser capture microdissected from lateral temporal
cortex frozen sections [34], and another in which super-
ior frontal gyrus astrocytes were labeled with a GFAP
antibody and sorted from other cell types in the suspen-
sion through fluorescence-activated cell sorting (FACS)



Fig. 6 Astrocyte gene expression signature in chronic neurodegeneration. The chronic neurodegeneration signature is characterized by
upregulation (a) of amyloid precursor protein, calpain-3, and secreted matricellular proteins (i.e., Cyr61, Lama4, Thbs4), and downregulation (b) of
metabolic processes (i.e., Acot6, Agl, Naa30)
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(Friedman and Hansen, unpublished). Statistically sig-
nificant DEGs (p < 0.05) between diseased and control
individuals are illustrated with violin plots in Fig. 8,
whereas violin plots with all the mouse signature genes
are shown in Supplemental Figure 3. Inspection of these
violin plots indicates that most genes from the pan-
injury-UP signature are also upregulated in the two AD
bulk tissue RNA-seq datasets from ROSMAP and MSBB.
In contrast, the mouse chronic neurodegenerative-UP
and all the DOWN signatures were not reflected in these
large AD datasets. Similarly, none of the three mouse
astrocyte signatures was clearly present in the two
astrocyte-specific AD datasets, nor could they be vali-
dated in the two human PD and the ALS datasets.

Discussion
The main finding of this study is that, while sharing a
common (pan-injury) astrocyte gene expression signa-
ture, mouse models of acute CNS injuries and neurode-
generative diseases are associated with very distinct
astrocyte transcriptomic responses. On the one hand,
astrocyte response to acute injury is remarkably charac-
terized by an increased protein synthesis and
degradation. Protein synthesis is unleashed by both up-
regulating the translational machinery of elongation fac-
tors (Eef1e1, Eif2b2, Eif2b3) and aminoacyl tRNA
synthetases (Cars, Iars, Kars) and downregulating tran-
scriptional repressors. Proteins involved in trafficking
between the ER and the Golgi apparatus are also upreg-
ulated, likely reflecting the increasing demand for the
folding, maturation, and intracellular transport of newly
synthetized proteins. This massive protein synthesis is
paralleled by an increased activity of protein degradation
systems including the ubiquitin-proteasome system (i.e.,
upregulation of chaperones, ubiquitin ligases, and prote-
asome subunits) and autophagy (i.e., upregulation of
lysosomal membrane proteins and enzymes), which
probably serves the elimination of phagocytosed apop-
totic and necrotic neurons from the injury area. In
addition, the acute injury astrocyte signature consists of
an immune response involving the upregulation of Rela
(encoding for the NFκB effector subunit p65) and Il33
(encoding for interleukin-33) and the downregulation of
Rcan2 (encoding for the regulator of calcineurin 2),
among other genes. Of note, interleukin-33 is a nuclear
alarmin expressed by astrocytes that induces microglial



Fig. 7 Inflammatory but not proliferation signaling pathways are upregulated in acute injury and chronic neurodegeneration. Heatmap shows the
normalized enrichment score (NES) of pro-inflammatory (NFκB, calcineurin/NFAT, MAPK, and JAK/STAT) and proliferative (Wnt/β-catenin and sonic
hedgehog) gene sets in the astrocyte transcriptomic datasets analyzed. The gene sets are color-coded by pathway and ordered by descending
meta-analytic p value [− log10(Meta adj. p)]. Note that NFκB, MAPK, and JAK/STAT gene sets are more significantly upregulated than Wnt/β-
catenin and sonic hedgehog
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engulfment of synapses during development [55, 56],
and is neuroprotective in multiple models of acute CNS
injury by shifting microglial phenotype towards a phago-
cytic one [57–62]. Lastly, the acute injury signature
included an upregulation of anti-oxidant defenses exem-
plified by both Nfe2l2 (encoding the nuclear factor
erythroid-derived 2-like 2 or NRF2), which is a major
regulator of cellular anti-oxidant defenses and confers
neuroprotection in acute CNS injuries [63–66] and neu-
rodegenerative disease models [67, 68], and Gss, an
NRF2 target gene encoding for the anti-oxidant enzyme
glutathione synthetase.
In sharp contrast, the chronic reaction signature seen

in neurodegenerative disease mouse models was much
smaller, with the downregulated genes exceeding the
number of upregulated ones. This could be partially ex-
plained by the fact that the median number of DEGs
contributing to the meta-analysis was smaller for the
chronic neurodegeneration datasets compared to acute
injury datasets (UP, 823 vs 1402; DOWN, 775 vs 1468).
An alternative explanation could be that our meta-
analysis combined datasets obtained from very different
models, CNS regions, and age groups, with disparate
methodologies of astrocyte isolation or astrocyte RNA
purification, and different transcriptomic methods
(microarray versus RNA-seq). There are regional differ-
ences in mouse astrocyte transcriptome, and aging has
been associated with region-specific transcriptomic



Fig. 8 Validation of mouse astrocyte transcriptomic signatures in human neurodegenerative transcriptomic datasets. Violin plots represent the
logFC of statistically significant DEGs (p < 0.05) from the acute injury (AI), chronic neurodegenerative (ND), and pan-injury (PAN) mouse astrocyte
signatures in diseased versus control human subjects. Note that only the two AD bulk tissue datasets (AD-DLPC and AD-PHG) showed some
concordance with the pan-injury-UP mouse astrocyte signatures, but not with any of the others. Abbreviations: AD-DLPC, AD dorsolateral
prefrontal cortex from ROSMAP; AD-PHG, AD parahippocampal gyrus from MSBB; AD-astro1, GFAP+ astrocytes laser capture microdissected from
lateral temporal cortex; AD-astro2, GFAP+ astrocytes sorted from superior frontal cortex; ALS-SC, amyotrophic lateral sclerosis spinal cord gray
matter; PD-SN, Parkinson’s disease substantia nigra; PD-Str, Parkinson’s disease striatum
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changes in mouse astrocytes [69–72]. Moreover, techno-
logical heterogeneity could be another contributor: for
example, RNA-seq has several advantages over microar-
rays such as improved sensitivity, wider dynamic range,
and the ability to detect novel and non-coding tran-
scripts. This heterogeneity could have limited our ability
to identify a common signature across disease mouse
models and may have had a greater impact in the meta-
analysis of chronic neurodegeneration datasets than in
the meta-analysis of acute injury datasets. However, in-
spection of Table 1 reveals a similar degree of hetero-
geneity across acute injury and chronic
neurodegeneration mouse studies, which did not pre-
clude obtaining a sizable acute injury signature after
meta-analysis. Thus, the findings of fewer DEGs in the
chronic neurodegeneration datasets and a smaller
chronic neurodegeneration signature compared to the
acute injury datasets and signature, respectively, support
the idea that mouse reactive astrocytes mount a less vig-
orous response in chronic relative to acute injuries.
A closer inspection of the list of chronic

neurodegeneration-UP genes revealed that three of these
genes are secreted extracellular matrix proteins: Cyr61
(CCN1 or cellular communication network factor 1),
Lama4 (laminin α4), and Thbs4 (thrombospondin 4).
Cyr61/CCN1 is a secreted matricellular protein that has
been involved in cell-cell adhesion, angiogenesis, and
arborization of dendrites of hippocampal neurons [73–76].
Immunohistochemical studies have revealed an upregula-
tion of several laminins in reactive astrocytes in AD,
Down’s syndrome, and ALS [77–79]. Thrombospondins
are astrocyte-secreted matricellular proteins involved in
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synaptogenesis [80, 81]. Since Aβ peptide can lead to syn-
apse loss by inhibiting the secretion of thrombospondin 1
(TSP-1) by astrocytes [82, 83], and the P301S tauopathy
mouse model exhibits decreased levels of TSP-1 in the
brain [84], this upregulation of Thbs4 in neurodegenerative
disease models could be compensatory to a decrease in
TSP-1 levels. Three other transcripts upregulated in
chronic neurodegeneration models encode for transcription
factors: Gatad2b, Nr4a3, and Tsc22d1. Remarkably, GATA
zinc finger domain containing 2B (GATAD2B) is a tran-
scriptional repressor whose loss of function mutations have
been associated with intellectual disability and synapse loss
[85]. Nuclear receptor subfamily 4 group A member 3 has
been involved in Lewy body disease and multiple system at-
rophy [86]. TSC22D1 is a pro-apoptotic tumor suppressor
transcription factor induced by transforming growth factor
β (TGFβ), that was found as putatively involved in AD
pathophysiology in an unbiased network analysis of tran-
scription factors and their targets [87] and was also present
in our acute injury-DOWN signature. The presence of App
(encoding the amyloid β precursor protein or AβPP) in the
neurodegeneration-UP signature is intriguing and cannot
just be explained by a leakage of the APP transgene expres-
sion to astrocytes in AβPP-overexpressing AD mouse
models [88], because it was also notably upregulated in
other mouse models such as SOD1-G93A ALS mice. In-
creased AβPP expression has been reported in reactive as-
trocytes under certain conditions, both in vitro [89] and
in vivo [90–92].
Among the chronic neurodegeneration-DOWN genes,

Agl, S1pr1, and Sod2 stand out. α-Glycosidase (also
called α-amylase), encoded by Agl, is the rate-limiting
enzyme of glycogenolysis and its downregulation in neu-
rodegenerative mouse models implies an impairment of
the energy supply to neurons through the astrocyte-
neuron lactate shuttle. However, while Agl mRNA levels
were found to be reduced in the hippocampal formation
of AD patients compared to non-demented controls, an
increased AGL immunoreactivity has been reported in
AD reactive astrocytes [93, 94]. The sphingosine phos-
phate receptors 1 and 3 (S1PR1 and S1PR3) are upregu-
lated by astrocytes in MS lesions [95–97], and their
modulation by the FDA-approved MS drug and sphingo-
sine analog fingolimod has beneficial anti-inflammatory
and neurotrophic effects not only in MS but also in AD
mouse models [98–101]. Deficiency of the anti-oxidant
enzyme superoxide dismutase 2 (SOD2) in astrocytes
leads to astrocyte oxidative stress [102], and a recent sin-
gle nuclei RNA-seq study has found a downregulation of
Sod2 in astrocytes from human AD brains [103]. On the
other hand, post-mortem neuropathological studies have
reported an enhanced SOD2 immunoreactivity in astro-
cytes in several neurodegenerative diseases such as ALS
[104, 105] and FTLD-tau and TDP-43 [106], suggesting
the existence of a mismatch either between mRNA and
protein levels or between human disease and mouse
models.
Besides these acute and chronic injury-specific signa-

tures, our meta-analysis rendered a pan-injury signature
with genes upregulated and downregulated in both types
of CNS conditions. Our pan-injury-UP signature in-
cluded 5 of the 13 genes proposed by Liddelow et al. as
pan-reactive: Cd44, Gfap, Osmr, Timp1, and Vim. In
addition, the putative A1 (neurotoxic) genes C3 and
Serping1 were part of our pan-injury-UP signature [2].
Other pan-injury upregulated genes were Lgals1, Lgals3,
and Lgals3bp encoding galectins 1 and 3 and galectin 3
binding protein, respectively. Astrocyte galectin-1 has
been associated with worsening neurodegeneration of
motor neurons in an ALS mouse model [107], but with
neurotrophic and anti-inflammatory effects in models of
MS [108] and brain ischemia [109, 110]. The pan-injury-
DOWN signature included genes involved in lipid me-
tabolism (Acss2, Bbox1, Elovl2, Fzd2, Hmgcs1, Sqle), and
other relevant genes such as Apln, Insig1, Ppargc1a, and
Ttpa. Apln encodes for apelin, a secreted peptide that
has been shown to be neuroprotective in multiple acute
injury and chronic neurodegenerative models [111–115].
Insig1 encodes for insulin induced gene 1 and its down-
regulation suggests a globally reduced insulin signaling
[116]. Ppargc1a encodes for the peroxisome proliferator
activator receptor γ coactivator 1α, and it is noteworthy
that PPARγ agonists have been proposed as anti-
inflammatory drugs for many CNS conditions [117].
Ttpa encodes for α-tocopherol (vitamin E) transfer pro-
tein and, thus, has an anti-oxidant function; indeed, its
deficiency leads to oxidative stress and enhanced Aβ de-
position in transgenic AD mice [118, 119].
While BrDU incorporation experiments and immuno-

histochemistry for proliferative markers (i.e., Ki67) are
better suited to examine astrocyte proliferation in mouse
models of CNS injury, our GSEA of relevant gene sets
suggests that pro-inflammatory signaling pathways (JAK/
STAT, MAPK, NFκB, calcineurin/NFAT) are preponder-
ant over proliferative signaling pathways (Wnt/β-catenin
and Sonic hedgehog) in both acute and chronic condi-
tions, supporting the idea that astrocyte reaction repre-
sents mainly a phenotypic change of existing astrocytes
rather than proliferation of glial progenitors [8, 120].
Finally, our exploratory validation of these mouse

astrocyte signatures in human neurodegenerative tran-
scriptomic datasets revealed little concordance, arguing
for caution when extrapolating the findings of astrocyte
mouse transcriptomic studies to the human disease sce-
nario. These mouse versus human discrepancies can be
explained by a combination of reasons: (1) there are in-
herent genomic, transcriptomic, and lifespan/aging dif-
ferences between mice and humans [121]; (2) mouse
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models are unlikely to recapitulate the high degree of
heterogeneity and complexity of human diseases; (3)
most human transcriptomic datasets available were ob-
tained from bulk tissue, which by definition dilutes the
astrocyte transcripts among those from all the other cell
types and reduces the sensitivity to detect astrocyte-
specific changes; (4) the isolation of astrocytes in the
two human astrocyte-specific AD datasets was based on
their GFAP immunoreactivity, likely biasing the astro-
cyte population towards a reactive phenotype in both
AD and control individuals, and thus limiting the ability
to find differences between both groups; and (5) there is
a notable overlap in transcriptome between astrocytes
and other cell types, singularly microglia. While recent
single nuclei RNA-seq in AD and control human brains
have produced quantitatively limited astrocyte datasets
[103, 122, 123], future astrocyte-enriched single nuclei
RNA-seq studies from various human diseases will war-
rant a similar methodological approach and allow a
more definite validation of the present findings from
mouse models.

Conclusions
In summary, our meta-analysis of publicly available
astrocyte transcriptomic datasets from multiple acute
and chronic CNS injury mouse models highlights the
heterogeneous nature of astrocyte reaction and provides
important clues about its context dependence.
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Additional file 1: Figure S1. Meta-analysis shows distinct acute injury
and chronic neurodegeneration signatures, and a common pan-injury
signature. Heatmaps depict − log10(p value) of up-regulated (UP) and
down-regulated (DOWN) genes comprising the acute injury (AI), chronic
neurodegeneration (ND) and pan-injury (PAN) signatures.

Additional file 2: Figure S2. Inflammatory but not proliferation
signaling pathways are up-regulated in acute injury and chronic neurode-
generation. Heatmap shows the –log10(p value) of pro-inflammatory
(NFκB, calcineurin/NFAT, MAPK, and JAK/STAT) and proliferative (Wnt/β-
catenin and sonic hedgehog) gene sets in the astrocyte transcriptomic
datasets analyzed, corresponding to the GSEA in Figure 7. The gene sets
are color-coded by pathway and ordered by descending meta-analytic p
value [− log10(Meta adj. p)]. Note that NFκB, MAPK and JAK/STAT gene
sets are statistically more significant than Wnt/β-catenin and sonic
hedgehog.

Additional file 3: Figure S3. Validation of mouse astrocyte
transcriptomic signatures in human neurodegenerative transcriptomic
datasets. Violin plots represent the logFC of all genes (both statistically
significant and non-significant) from the acute injury (AI), chronic
neurodegenerative (ND) and pan-injury (PAN) mouse astrocyte signatures
in diseased versus control human subjects. Abbreviations: AD-DLPC = AD
dorsolateral prefrontal cortex from ROSMAP; AD-PHG = AD parahippo-
campal gyrus from MSBB; AD-astro1 = GFAP+ astrocytes laser capture mi-
crodissected from lateral temporal cortex; AD-astro2 = GFAP+ astrocytes
sorted from superior frontal cortex; ALS-SC = amyotrophic lateral sclerosis
spinal cord gray matter; PD-SN = Parkinson’s disease substantia nigra; PD-
Str = Parkinson’s disease striatum.
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