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Abstract 

Neuroinflammation is a pathological hallmark of Alzheimer’s disease (AD), characterized by the stimulation of resident 
immune cells of the brain and the penetration of peripheral immune cells. These inflammatory processes facilitate 
the deposition of amyloid-beta (Aβ) plaques and the abnormal hyperphosphorylation of tau protein. Managing 
neuroinflammation to restore immune homeostasis and decrease neuronal damage is a therapeutic approach for AD. 
One way to achieve this is through exercise, which can improve brain function and protect against neuroinflamma-
tion, oxidative stress, and synaptic dysfunction in AD models. The neuroprotective impact of exercise is regulated 
by various molecular factors that can be activated in the same way as exercise by the administration of their mimet-
ics. Recent evidence has proven some exercise mimetics effective in alleviating neuroinflammation and AD, and, 
additionally, they are a helpful alternative option for patients who are unable to perform regular physical exercise 
to manage neurodegenerative disorders. This review focuses on the current state of knowledge on exercise mimet-
ics, including their efficacy, regulatory mechanisms, progress, challenges, limitations, and future guidance for their 
application in AD therapy.

Introduction
As our society continues to age, we face more challenges 
from diseases and healthcare costs, especially neurode-
generative disease [1, 2]; for example, Alzheimer’s dis-
ease (AD) has affected millions of people worldwide and 
caused a tremendous burden to patients and society [3, 
4]. AD seriously impacts brain health and quality of life 
[3, 5], but effective treatment for the disease is currently 
lacking. Fortunately, growing evidence has revealed that 
a physically active lifestyle confers exercise partners with 
multi-organ benefits [6, 7], particularly improving brain 
plasticity and function [8, 9]. For example, several stud-
ies have shown that exercise can enhance various aspects 

of brain function such as cognitive function, memory, 
and learning [10–12], providing therapeutic protocols 
for neurodegeneration and cognitive impairment in 
AD. Exercise can bring many benefits for AD pathology 
including decreasing amyloid-beta (Aβ) formation, aggre-
gation, and clearance and inhibiting tau hyperphospho-
rylation [13–15]. The amelioration of those pathological 
profiles is associated with several modifications in the 
brain, such as neuroinflammation, oxidative stress, and 
synaptic dysfunction [15–17]. By improving pathological 
conditions, exercise restores impaired hippocampal neu-
rogenesis, synaptic degradation, and neurotransmission 
and enhances cognitive function and mood [11, 16, 18].

The beneficial effects of exercise on AD pathology are 
believed in part through its capacity to generate a range 
of molecules such as brain-derived neurotrophic fac-
tor (BDNF), clusterin (CLU), and irisin that can modify 
microglial activation, suppress oxidative stress, and 
reduce neuroinflammation [17, 19–21]. Recent studies 
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have revealed that exercise stimulates peripheral organs 
generating various factors that can enter the bloodstream 
and pass through the blood–brain barrier (BBB) where 
they affect neurogenesis, synaptic plasticity, neuronal 
networks, and various neurogenic factors [14, 21–24]. 
Accordingly, several lines of evidence have suggested that 
muscle is not only an exercising organ, but an endocrine 
tissue producing numerous cytokines that target remote 
organ function [25–27]. For example, exercise promotes 
muscle to secret fibronectin type III domain-containing 
protein 5 (FNDC5)/irisin, a peroxisome proliferator-
activated receptor gamma coactivator 1-alpha (PGC-1α) 
dependent myokine, which promotes synaptic plasticity, 
reduces oxidative stress and ameliorates neuroinflamma-
tion in AD rodent models [16, 19, 28], proposing a con-
nection between muscle and brain. Additionally, the liver 
generates a large number of factors such as glycosylphos-
phatidylinositol (GPI)-specific phospholipase D1 (Gpld1) 
and S-adenosylmethionine (SAM) that are important for 
metabolism and neuroinflammation and can cross BBB 
affecting brain function in transgenic murine AD mod-
els, revealing a liver–brain axis [22, 29–31]. Those find-
ings suggest that there exists a close communication 
between exercise–peripheral tissue–brain and highlight 
the regulatory role of exercise molecules in mediating 
the function of the central nervous system (CNS). Those 
molecules not only regulate exercise effects, but also 
affect various aspects of brain function. Therefore, they 
have the potential to provide novel approaches for brain 
disorders like AD. Recently, several studies have explored 
the potential of the administration of those exercise fac-
tors to mimic the exercise effects on brain function. 
One study transferred the “runner plasma” derived from 
exercising rodents to sedentary controls finding that it 
brought many benefits for AD brains including neuro-
genesis, synaptic plasticity, and memory [22]. Subsequent 
analysis confirmed Gpld1 accounting for this effect [22]. 
Similarly, another study revealed that 28  days of volun-
tary running significantly enhanced clusterin levels, 
and “runner plasma” containing high levels of clusterin 
showed significant effects on brain function in AD rodent 
models [21]. Currently, a lot of exercise molecules have 
been tested in different animal models and they trans-
fer, to different extent, the exercise effects seen in exer-
cise interventions [32–34]. It is suggested that exercise 
mimetics could be a promising approach for brain health 
in various brain disorders. In addition, despite the obvi-
ous benefits induced by exercise, participation in physi-
cal exercise is extremely low, either due to the difficulty 
in performing regular exercise or lack the interest. There-
fore, pharmacological intervention, such as exercise 
mimetics, could be a potential alternative strategy. Exer-
cise mimetics are pharmacologic compounds that play a 

key role in exercise-induced beneficial effects. Although 
a range of molecules has been tested and proven effective 
in improving brain health, there are still a large number 
of questions required to be addressed, for instance, the 
underlying mechanism, optimal dose, treatment dura-
tion, and side effects. Moreover, there are also some com-
pounds that did not show favorable effects as expected, 
for instance, the use of some anti-inflammation agents 
to treat AD [35]. Therefore, this review focuses on the 
current state of knowledge regarding the challenges and 
opportunities of exercise mimetics, including their effi-
cacy, regulatory mechanisms, progress, challenges, limi-
tations, and future guidance for their application in AD 
therapy.

Neuroinflammation is a new hallmark of AD 
pathology
Aβ and tau are two critical proteins that aggregate abnor-
mally in the brain of AD patients or individuals with mild 
cognitive impairment (MCI), leading to neurodegenera-
tion and cognitive impairment. Under the pathological 
conditions of AD, the amyloid precursor protein (APP) 
is first cleaved by the beta site APP cleaving enzyme 1 
(BACE1) and subsequently primed by γ-secretase, releas-
ing Aβ and stimulating the amyloidogenic pathway [36]. 
When the production of Aβ exceeds the capacity of clear-
ance (such as transportation into the blood vessels and 
local degradation by microglia), Aβ monomers begin to 
aggregate by combining with each other to form different 
complexes, such as oligomers, polymers, and insoluble 
fibrils, which are regarded as danger-associated molecu-
lar patterns (DAMPs) and is able to cause neuroinflam-
mation, synaptic dysfunction and neuronal degradation 
in AD [37]. However, the role of Aβ in the pathogenesis 
of AD and cognition impairment has been challenged 
by the findings that clinical treatment with Aβ antibod-
ies has been shown to successfully reduce Aβ deposition 
in the brain, but not to improve the cognitive function 
of patients [38]. In consistency with these findings, only 
about a third of people with Aβ accumulation eventu-
ally develop AD after 70 years of age, while over half of 
the population remains cognitively intact for their entire 
life [39, 40], indicating Aβ in the CNS may not always be 
neurotoxic [41, 42]. Recent evidence has suggested that 
cognitive impairment may be more related to neuronal 
loss and dysfunction induced by tau hyperphosphoryla-
tion instead of Aβ [43]. Tau protein normally helps to 
stabilize microtubules in neurons, but in AD it becomes 
abnormally phosphorylated and forms neurofibrillary 
tangles (NFTs) causing tau aggregation and neurotoxic 
[44]. Emerging evidence suggests that the neurotoxic 
effects of tau in AD may be linked to its interaction with 
neuroinflammation [45]. Neuroinflammation has been 



Page 3 of 31Zhao  Journal of Neuroinflammation           (2024) 21:40  

identified as a key driver of AD and other neurodegen-
erative diseases in tau pathology [46–48]. Recently, a 
study has revealed that dense-core plaques are formed 
after reactive microglia engulf amorphous Aβ plaques 
to reduce inflammation [49]. Moreover, long-term expo-
sure to various stimuli, including DAMPs and pathogen-
associated molecular patterns (PAMPs) which are signals 
of internal or external brain injury, can trigger neuroin-
flammation by activating immune reactions and causing 
inflammatory cascades that are closely associated with 
neurodegeneration in AD [50]. Together, current evi-
dence indicates that neuroinflammation is a hallmark of 
AD pathology.

Neuroinflammation activation
Neuroinflammation is the term describing the inflamma-
tory reaction in CNS when exposed to various harmful 
stimuli, such as infection, toxins, misfold protein, and 
ischemia [47]. This process involves the reactive immune 
cells in the brain, such as microglia and astrocytes, which 
release various inflammatory molecules, including inter-
leukin (IL)-1β, IL-6, and tumor necrosis factor-alpha 
(TNF-α), and recruit other immune cells. Additionally, 
reactive oxygen species (ROS) and chemokines such 
as C–C motif chemokine ligand 1 (CCL1) and C–X–C 
motif chemokine ligand 1 (CXCL1) are also produced 
by immune cells in the brain [51]. Microglia are the key 
innate immune cells in the brain that are engaged in neu-
roinflammation [51, 52]. In the context of inflammation, 
certain inflammatory cytokines such as TNFα, IL-6, and 
IL-1β can activate the transport systems of BBB and make 
it more permeable, allowing other cells like capillary 
endothelial cells and blood cells to infiltrate the BBB and 
contribute to neuroinflammation and neurodegeneration 
[53–55]. Additionally, microglia can interact with astro-
cytes to regulate neuroinflammation [56]. Astrocytes 
play a key role in maintaining brain health by controlling 
blood flow, preserving BBB, and supporting synapses and 
neurotransmitters [57]. Astrocytes can induce neuro-
inflammation which is associated with the degenerative 
progression of tauopathy [58]. When microglia are reac-
tive, they release inflammatory molecules such as IL-1β, 
TNF-α, and complement, which can cause astrocytes to 
adopt a pro-inflammatory state [59]. On the other hand, 
in conditions such as AD, astrocytes can influence micro-
glial activation by releasing IL-3, which promotes the 
clearance of phosphorylated tau and NFTs by microglia 
[60]. Neuroinflammation can have both positive and neg-
ative effects on the CNS, depending on the type, dura-
tion, and intensity of the inflammatory response [47, 61]. 
As an adaptive mechanism, neuroinflammation aids in 
pathogen elimination, tissue repair, and clearance of cel-
lular debris, while also modulating synaptic plasticity and 

neuronal activity [62, 63]. For example, some pro-inflam-
matory cytokines, such as IL-1β and TNF-α, can enhance 
synaptic plasticity and memory function under physio-
logical conditions [64]. However, prolonged neuroinflam-
mation can be harmful, leading to synaptic loss, neuron 
death, and neurogenic inhibition [65, 66]. For exam-
ple, under pathological conditions, IL-1β contributes to 
increased ROS production, damaging cellular compo-
nents and causing neuronal death, while IL-6 induces 
the expression of pro-apoptotic genes like Bax and cas-
pase-3, triggering programmed cell death in neurons 
[64]. Generally, neuroinflammation in neurodegenerative 
diseases, such as AD, often develops a prolonged process 
that seems not to be resolved by itself and is regarded as a 
critical contributor to neurodegeneration [67].

The activation of innate immune response occurs 
through the recognition and combination of ligands with 
pattern recognition receptors (PRRs), such as Toll-like 
receptors (TLRs) and nucleotide oligomerization domain 
(NOD)-like receptors (NLRs)[46] (Fig. 1). Immune sign-
aling receptors can facilitate important functions like 
phagocytosis and reactive oxygen production, which 
ultimately lead to the elimination of pathogens. TLRs 
are a class of membrane-bound receptors that recognize 
PAMPs. Upon binding to PAMPs, TLRs recruit adaptor 
molecules such as MyD88 that form a molecular complex 
called Myddosome. The complex activates a subsequent 
kinase cascade, which leads to the release of nuclear fac-
tor kappa B (NF-κB) from the cytoplasm and transloca-
tion to the nucleus, where it regulates the expression of 
genes involved in inflammation, such as IL-1β and IL-18 
[68]. Additionally, NLRs are a group of cytosolic recep-
tors that mediate post-transcriptional events upon sens-
ing a specific trigger [69–71] (Fig.  1). Upon activation, 
NLRs can initiate divergent signaling pathways, depend-
ing on the specific N-terminal domain and downstream 
effectors recruited [69]. Some NLRs like NOD1 and 
NOD2 recognize peptidoglycan fragments from bacte-
ria, which can trigger the NF-κB and mitogen-activated 
protein kinase (MAPK) pathways, leading to the pro-
duction of pro-inflammatory cytokines and chemokines 
[72]. Other NLRs, such as the NOD-like receptor fam-
ily pyrin domain containing 3 (NLRP3) and NLR fam-
ily CARD domain-containing protein 4 (NLRC4), can 
detect various PAMPs and DAMPs, including crystals, 
cell debris, toxins, oxidative stress, and bacterial flagellin 
[69]. Upon activation, they form a complex with apop-
tosis-associated speck-like protein containing a CARD 
(ASC) and pro-caspase-1, which triggers the activation 
of caspase-1 and the conversion of pro-IL-1β and pro-
IL-18 into mature cytokines [69, 71, 73]. Additionally, in 
the context of AD, amyloid aggregation and Tau hyper-
phosphorylation can facilitate the formation of NLRP3 
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inflammasome, which increases the activation of micro-
glia, in part, by mediating some molecular signaling 
like the triggering receptor expressed on myeloid cells 2 
(TREM2) pathway [74].

Microglia and AD pathology
Microglia: morphology, function, and role 
in neurodegeneration
Microglia, the resident innate immune cells in the 
CNS, have long been implicated in the early response 
to pathological stimuli [67, 75]. They are distributed 
throughout the brain and account for 5–12% of all 
brain cells in mice, varying by region [76]. They have 
different shapes which reflect their key functions of 

maintaining cerebral homeostasis and defense (Fig. 2). 
Ramified microglia are the most common type in the 
healthy brain that utilize their branches to constantly 
monitor the cerebral environment and detect injury 
signals. They then move their branches toward the 
damaged site and trigger a microglial response that 
involves reshaping synapses and keeping myelin stable 
[77, 78]. Subsequently, microglia become highly rami-
fied and have a robust power to clear pathogens. How-
ever, the highly branched form of microglia can also 
transform into an amoeboid shape when they encoun-
ter and engulf pathological stimuli [77, 79]. Microglia 
in older brains have fewer branches and cover less area, 
which may affect their ability to perform their immune 

Fig.1 Neuroinflammation activation. TLRs are a family of membrane-bound receptors that recognize and bind to PAMPs. Upon binding to PAMPs, 
TLRs recruit adaptor molecules such as MyD88, that form a molecular complex called Myddosome. The complex activates a subsequent kinase 
cascade, which leads to the release of NF-κB from the cytoplasm and translocation to the nucleus, where it regulates the expression of genes 
involved in inflammation, such as IL-1β and TNF-α. NLRs are a group of cytosolic receptors and sense DAMPs and PAMPs that enter the cell. When 
they detect pathogens, NLRs undergo oligomerization and recruit ASC to assemble the NLRP3 or NLRC4 inflammasome. The filamentous ASC 
then attracts pro-caspase 1, which becomes activated and cleaves pro-IL-1β into mature cytokines. Additionally, in the context of AD, Amyloid 
aggregation and Tau hyperphosphorylation can facilitate the formation of NLRP3 inflammasome leading to microglial activation. The interaction 
between Aβ and microglia activation is involved in diverse molecular signaling such as the TREM2–TYROBP axis. AP, adaptor proteins; DAMPs, 
danger-associated molecular patterns; PAMPs, Pathogen-associated molecular patterns; TLRs, Toll-like receptors; TNF-α, Tumor necrosis factor-alpha; 
ASC, Apoptosis-associated speck-like protein containing a CARD; NLRP3, NOD-like receptor family pyrin domain containing 3; NLRPC4, NOD-like 
receptor family CARD domain-containing protein 4; AD, Alzheimer’s disease; Aβ, amyloid beta; TREM2, triggering receptor expressed on myeloid 
cells 2; TYROBP, tyrosine kinase binding protein; GDMD: gasdermin D
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functions [80–83]. Moreover, microglia become dys-
trophic and hyperinflammatory with neurodegenerative 
disorders [84]. Intriguingly, microglia aspects also vary 
in different regions and stages of the diseased brain. For 
example, microglia near amyloid plaques change a lot 
in their shape and function, while microglia far from 
plaques alter little over time [85]. Furthermore, micro-
glia in the later stages of the disease often experience 
dramatic morphological changes compared to those in 
earlier stages [86]. The temporal changes of the micro-
glia aspect could depend on the intensity and duration 
of exposure to the harmful environment [87] but could 
also be attributed to the divergent reaction of microglia 

to differing substances like Aβ or tau [88]. The pheno-
typic changes of microglia are believed to be caused in 
part by hyperphosphorylated tau leading to inhibition 
of immunosurveillance function and driving the dis-
ease development via forming more tangles in the brain 
[86]. To facilitate the identification of microglial func-
tion, researchers have formulated a simplified model of 
microglia activation, with M1 referring to the type of 
pro-inflammation and M2 referring to the type of anti-
inflammation [89]. Growing evidence has challenged 
this simplified paradigm and revealed that microglia 
do not always fit into the M1–M2 categories [67, 90]. 
However, the M1–M2 dichotomy remains commonly 

Fig. 2 Microglial function and AD pathology. Microglia are present throughout the brain and their distribution varies by region. They have 
different shapes that reflect their essential functions of maintaining cerebral homeostasis and defense. Ramified microglia are the most common 
type in the healthy brain. They use branches to monitor the cerebral environment and detect injury signals. They then move their branches 
toward the damaged site and trigger a microglial response that involves reshaping synapses and keeping myelin stable. Microglia become 
highly ramified and have a robust power to clear pathogens. The highly branched form of microglia can also transform into a less branched 
shape as a result of engulfing pathological items, such as Aβ and Tau proteins. Microglia become dystrophic and hyperinflammatory with aging 
and neurodegenerative disorders such as AD. Moreover, the morphology of microglia varies in different regions and stages of the diseased brain. 
The temporal changes of the microglia aspect could depend on the intensity and duration of exposure to the harmful environment but could 
also be attributed to the divergent reaction of microglia to differing substances like Aβ or tau. AD, Alzheimer’s disease; Aβ, amyloid beta; PAMPs, 
Pathogen-associated molecular patterns
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applied in describing the notion that microglia can be 
helpful or harmful when they react to pathogens.

Transcriptomic profiles of microglia revealed by scRNA‑seq 
and snRNA‑seq in neuroinflammation
The investigation of neuroimmune communication in the 
brain has been dramatically advanced by the application 
of single-cell RNA sequencing (scRNA-seq) and single-
nucleus RNA sequencing (snRNA-seq) techniques. Map-
ping single-cell or single-nucleus transcriptomes has 
provided novel insights into the cellular and molecular 
characteristics of macroglia–neuroinflammation inter-
actions. This approach has revealed unexpected details 
such as the identification of new cell populations, sub-
populations, and states. It has also uncovered the spatial 
and temporal patterns of gene expression and has shed 
light on the molecular pathways and underlying mecha-
nisms of neuroinflammation and neurodegeneration 
[91]. Using transcriptional single-cell profiling, Keren-
Shaul et al. [92] identified a novel subcluster of disease-
associated microglia and revealed their trajectory across 
AD progression. The transition from a homeostatic stage 
to a disease-related phase was hallmarked by express-
ing a unique set of genes, which enhanced their capac-
ity for metabolizing lipids and engulfing plaques in 
transgenic AD mice [92]. This study confirmed that the 
Tyrobp and TREM2 formed a signaling complex, linked 
to Aβ removal, that could increase the phagocytic activity 
of microglia and contribute to the inhibition of inflam-
matory reaction via suppressing microglia-regulated 
cytokine release [93]. Additionally, snRNA-seq profil-
ing of postmortem older human brains revealed aging-
associated phenotypes of microglia, highlighting the 
absence of a set of genes involved in actin assemblies, 
such as Talin-1, Profilin-1 and vasodilator-stimulated 
phosphoprotein (VASP), indicating a decreased capac-
ity of cellular motility and migration toward the dam-
aged region [94]. Furthermore, genes related to axonal 
guidance, cell adhesion, and the sensome, such as IL6R, 
TLR10, intercellular adhesion molecule (ICAM)-3, 
semaphorin (SEMA)3C and SEMA7A also decreased, 
indicating the impairment of microglial sensing with 
aging [94]. Using snRNA-seq protocol, Mathys et  al. 
[95] tracked microglial activation along with the disease 
process in the CK-p25 mouse model with severe neu-
rodegeneration. They discovered distinct microglia cell 
states during the progression of neurodegeneration. An 
early-reaction state was found to express cell-cycle genes 
and genes related to DNA replication and repair, while 
a late-reaction state expressed interferon response and 
anti-virus genes [95]. However, the early and late micro-
glia states are related, as some transcripts that increase in 
late microglia are already upregulated in early microglia. 

This suggests that early microglia are a transient interme-
diate phase that reflects the cellular reprogramming of 
homeostatic microglia in reaction to the neurodegenera-
tion [95]. Together, transcriptomic profiling datasets have 
enabled the identification of new subclusters of reactive 
microglia that represent distinct activation states previ-
ously unreported [96]. These transcriptomic studies have 
helped establish a molecular atlas of microglial-mediated 
neuroinflammation and its relation to neurodegeneration 
[97].

The interaction between microglial activation and AD 
pathology
Reactive microglia show a close spatial relationship with 
amyloid plaques in the brains of AD patients [98, 99]. 
Moreover, both postmortem and in  vivo neuroimaging 
studies have revealed a correlation between the amount 
of pathological tau and the number of microglial cells in 
AD brains, suggesting that microglia interact with the 
key pathological features of AD [100, 101]. The inter-
play among amyloid plaques, microglia activation, and 
NFTs emerges as a key area of research in AD pathol-
ogy. Early studies have revealed that distinct Aβ species, 
such as small and large Aβ oligomers, could cause differ-
ent patterns of microglial activation and the production 
of pro-inflammatory (such as IL-1β, IL-6, and TNF-α) or 
anti-inflammatory (such as TGF-β) cytokines, as well as 
chemokines, diverse cell adhesion molecules, and ROS, 
all of which could modify neuronal morphology and 
function [102–105]. Microglia can recognize different Aβ 
species through various PRRs [106, 107], such as TLRs, 
NLRs, TREM2, CD14, CD33, and scavenger receptors 
(SR). These receptors can activate different molecular 
pathways that induce pro-inflammatory, anti-inflamma-
tory, or phagocytic changes in the microglia [106–112].

Among multiple pathways regulating the interaction 
between microglial activation and AD pathology, one 
signaling is involved in the activation of NLRP3 inflam-
masome, a protein complex that triggers inflammatory 
reactions in microglia. The activation of this complex is 
stimulated by NF-κB [113], which leads to a conforma-
tional change and subsequent inflammasome assembly 
leading to the release of caspase 1 and IL-1β [114, 115]. 
Additionally, TREM2, known as a genetic risk factor for 
AD, is another key molecule that mediates Aβ-induced 
oxidative stress and inflammatory response in microglia 
[116, 117]. The upregulated TREM2 was observed on 
Aβ-triggered microglia in AD patients and transgenic AD 
murine models [118]. The TREM2 cascades are involved 
in promoting microglial proliferation and phagocyto-
sis, as well as the release of pro-inflammatory factors, 
microglial metabolism, and survival [119, 120]. Reactive 
microglia have the ability to phagocytose Aβ plaques, 
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but their degradation capacity is limited due to the slow 
rate of autophagy, raising concerns about the effective-
ness of microglia in the Aβ clearance [121]. The efficacy 
of microglia in clearing Aβ aggregations remains unclear 
because microglia in later-stage AD brains have short-
ened branches, shrunken coverage areas, and fragmented 
processes, indicating surveillant dysfunction [88, 122] 
(Fig. 2). Additionally, the expression of TREM2 and CD68 
on plaque-related microglia is downregulated in AD 
patients, indicating an impaired phagocytic function of 
microglia [123]. Interestingly, a similar microglial change 
was also seen in aging individuals, hinting at the contri-
bution of dysfunctional microglia in neurodegeneration 
[124, 125]. Moreover, microglia can release cytokines like 
IL-1β, IL-6, TNF and IFNγ that boost β-secretase pro-
duction, an enzyme that increases harmful Aβ generation 
through the NF-κB pathway [126, 127]. Generally, micro-
glia have a complex role in AD that varies depending on 
the disease stage and pathology context. They can pre-
vent the spread and seeding of amyloid plaques, but this 
may also increase the neurotoxicity of the plaques [128]. 
On the other hand, they can also accelerate the formation 
of amyloid plaques through ASC particles [129]. Given 
the toxic nature of soluble amyloid species, this process 
may be helpful by depositing amyloid [129].

Exposure to tau oligomers and fibrils in  vitro is suffi-
cient to change microglial morphology and cytokine pro-
duction [130]. Subsequent experiments applying rodent 
tauopathic models verified that microglia stimulated by 
tau in vivo show increased expression of genes related to 
disease-associated microglia (DAM), such as phagocytic 
and inflammatory genes [131]. Microglia can internalize 
tau fibrils in cell cultures as well as healthy rodent brains 
[132]. The process involves the activation of the com-
plement system through both classical and alternative 
pathways [131]. However, the inspection of pathological 
alterations in human brains indicated the dysfunction of 
microglia, demonstrating tau pathology-induced mor-
phological degradation [86]. The deleterious alterations 
are assumed to stem from the senescence of microglia 
and amyloid toxicity and the promotion of the diffu-
sion of the tau pathology [133]. Aβ can cooperate with 
microglia to facilitate tau pathology [134]. Upregulation 
of NLRP3 in microglia facilitates the harmful association 
between Aβ and tau pathology, and the enhanced tau 
pathology is likely to help clear the Aβ [135]. The diver-
gent microglial response to different stimuli may account 
for the complicated interactions. A pivotal microglial 
signaling pathway, the TREM2–TYROBP axis, could 
intercommunicate with both Aβ42 and tau protein signal-
ing to regulate the genic expression [74]. Almost half of 
TREM2–TYROBP mediated pathways activated by Aβ 
overlap with the pathways triggered by tau, hinting that 

microglia acts as a co-regulator for the Aβ-tau interac-
tion [74]. Together, those observations might propose 
that there exists a complex communication between 
microglia, amyloid plaque, and Tau protein in AD.

Astrocytes and AD
Reactive gliosis is a major component of neuroinflam-
mation that occurs when astrocytes are exposed to vari-
ous pathological stimuli, such as mechanical damage, 
ischemia, or abnormal protein aggregation [136]. This 
process transforms astrocytes into “reactive astrocytes” 
with hypertrophic processes and increased glial fibril-
lary acidic protein (GFAP) expression. Reactive astro-
cytes are heterogeneous and have different phenotypes 
and functions depending on the type and severity of the 
inflammatory stimulus. A1 and A2 astrocytes are two 
contrasting phenotypes of reactive astrocytes. The NF-κB 
pathway induces A1 astrocytes, which are “harmful” 
because they secrete inflammatory factors that disrupt 
homeostasis and cause neuronal and oligodendrocyte 
death [137, 138]. Conversely, the signal transducers and 
activators of transcription 3 (STAT3) pathway induces A2 
astrocytes, which are “protective” because they secrete 
neurotrophic factors that help restore homeostasis [137]. 
However, recent studies challenge the binary model of 
A1 and A2 astrocytes and suggest that astrocytes may 
have multiple activation states that vary according to the 
neural circuits and brain regions they belong to [139]. 
Astrocytes are involved in the pathological processes of 
AD [140]. Astrocytes near amyloid plaques can engulf 
amyloid granules [141, 142] and degrade Aβ aggregates 
[142]. However, A1 astrocytes, which are harmful, are 
prevalent in the brains of individuals with AD, indicating 
their negative role in the disease [138]. Moreover, reac-
tive astrocytes have been observed to produce abnormal 
amounts of GABA and glutamate in rodent models of 
AD, resulting in memory deficits and synaptic degrada-
tion [143, 144]. Additionally, reactive astrocytes can com-
promise the integrity of the BBB, allowing blood-derived 
DAMPs or PAMPs to enter the damaged BBB, leading to 
immune responses and promoting the accumulation of 
Aβ and disease progression [145, 146]. Importantly, reac-
tive astrocytes may facilitate the formation of the earli-
est amyloid plaques [147], and interact with microglia to 
mediate the detrimental effects of microglia in the AD 
progression [138].

Exercise and AD
Therapeutic implications of exercise for AD
As current pharmacological treatments for AD have lim-
ited clinical efficacy, researchers are prompted to explore 
alternative strategies to prevent or treat this disease 
(Fig. 3). The latest report on AD in 2022 has proposed a 



Page 8 of 31Zhao  Journal of Neuroinflammation           (2024) 21:40 

range of risk factors for this disease, particularly the lack 
of exercise [148]. Recent evidence has suggested that 
sedentary behavior is associated with reduced cogni-
tive function in individuals with AD, which underscores 
the importance of physical exercise for preventing the 
disease [149]. A population-based study encompassing 
160,00 subjects showed that individuals who exercised 
regularly had a 45% lower risk of developing AD [150]. 
A comparable result (with a 53% reduction in AD risk 
for active people) was observed in a longitudinal study 
of 716 older people on the relationship between physical 
activity and dementia risk [151]. These findings have pro-
vided robust evidence to support the preventive role of 
physical exercise in AD. Regular exercise can reduce risk 
factors of AD, such as obesity, hyperlipidemia, hyperten-
sion, and type 2 diabetes mellitus (T2DM) [152]. Further-
more, exercise also shows various favorable effects for 
alleviating AD components in observational human and 
experimental animal studies [153]. Although there are 
some inconsistencies in the findings [154, 155], aerobic 
exercise has been found to enhance executive functions, 

memory, and cognitive performance in people with mild 
MCI [156–158]. Exercise can also enhance learning and 
memory function by enhancing adult neurogenesis in the 
hippocampus of rats with brain injury [159], indicating 
the potential of exercise in maintaining cerebral plastic-
ity and function. Similarly, voluntary wheel exercise for 
5 months was found to significantly reduce the levels of 
Aβ40 and Aβ42 in the transgenic murine brain [13], and a 
significant reduction in amyloid deposition and tau phos-
phorylation was observed in APP/PS1 transgenic mice 
following a 5-month treadmill running [160]. Exercise-
related beneficial effects on AD pathology are associated 
with its capacity to affect Aβ deposition by regulation of 
α- and γ-secretase activity [161]. Additionally, 1 month of 
voluntary wheel exercise has been found to significantly 
increase BDNF levels in the rodent hippocampus by 
stimulating lactate secretion in skeletal muscle, which, in 
turn, enhances neuronal function and memory capacity 
[162]. BDNF has also been shown to reduce the activity of 
BACE1, a key enzyme responsible for cleaving APP into 
Aβ peptides, which may help inhibit the development of 

Fig. 3 Exercise for neuroinflammation and AD. Physical exercise can exert multiple positive effects on the brain of AD, such as enhancing cerebral 
blood flow, neurogenesis, synaptic plasticity, neurotrophic factors, antioxidant defense, and cognitive function. Exercise can inhibit the formation 
and deposition of Aβ and abnormal phosphorylation of Tau, partly by affecting α- and γ-secretase activity, BDNF production, and BACE1 function. 
More importantly, physical exercise can modulate neuroinflammation by directly and indirectly mediating the immune response of the CNS. 
Physical exercise can impact the activation state and phenotype of microglia and astrocytes in AD, resulting in the shift of the polarization 
of microglia and astrocytes from a pro-inflammatory (M1 or A1) to an anti-inflammatory (M2 or A2) pattern. This immune action results in reduced 
production of pro-inflammatory cytokines and enhanced production of anti-inflammatory molecules. Furthermore, physical exercise can suppress 
the activation of inflammasomes, such as NLRP3, which in turn decreases the production of IL-1β and caspase-1. Additionally, physical exercise 
can strengthen the thigh connection of the BBB, which can prevent the infiltration of peripheral immune cells and inflammatory molecules 
into the brain. AD, Alzheimer’s disease; Aβ, amyloid beta; BACE1, beta site APP cleaving enzyme 1
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AD [163]. Interestingly, recent evidence has shown that 
exercise can affect immune function in AD murine mod-
els [164], indicating that anti-inflammation may play a 
role in the exercise-induced benefits of AD. Since AD is 
recognized as a neuroinflammatory disease, exercise may 
impact the pathology of AD by mediating the inflamma-
tory status.

Exercise alleviates inflammation
Exercise is a vital component of human health and well-
being, especially generating multiple benefits for the 
immune system, such as enhancing cell survival, prevent-
ing cell death, optimizing autophagy, and improving the 
inflammatory state [164, 165] (Fig.  3). However, intense 
exercise can also increase inflammation, including gen-
erating ROS and reactive nitrogen species (RNS) from 
damaged muscle, impairing immune function, stimu-
lating inflammation, and draining the glycogen [166, 
167]. Compared to vigorous or high-intensity exercise, 
long-term moderate-intensity exercise tends to gener-
ate anti-inflammatory effects, indicating that the effects 
of exercise on inflammation status largely depend on the 
duration, intensity, and frequency of exercise [168, 169]. 
Neopterin is a commonly used marker for assessing lev-
els of inflammation and immune activation, making it a 
useful tool for monitoring exercise intensity. Three weeks 
of moderate treadmill exercise (50 min/day, 5 days/week,) 
can reduce neopterin production and suppress inflam-
matory responses in mice models with lipopolysaccha-
ride (LPS)-induced inflammation [170]. It is indicated 
that long-term moderate exercise enhances the immune 
system and helps prevent infections and chronic diseases 
[171].

Growing evidence has suggested that appropriate 
and regular exercise can induce a particular state of 
anti-inflammation within the body [172]. In addition to 
enhancing cognitive function by increasing blood flow 
and oxygen delivery to the brain, regular exercise has 
been shown to suppress the production of pro-inflam-
matory markers and their receptors such as IL-1β, IL-6, 
TNF-α, TNFR1, and TNFR2, and promote the genera-
tion of anti-inflammatory molecules like IL-4, IL-1RA, 
and TGF-β [169, 173] (Table 1). Those molecular mark-
ers are recognized as key regulators of the inflammatory 
response and changes in their production can influence 
the inflammatory response and the tissue repair pro-
cess.  Compelling evidence has supported the positive 
role of regular exercise in mediating inflammation status 
in aging or metabolism diseases. A study has shown that 
regular moderate exercise significantly decreases circu-
lating levels of IL-6 by 30% and TNF-α by 15% in individ-
uals with metabolic syndromes [174]. Similarly, 16 weeks 
of aerobic exercise (45–60  min/day, 4  days/week) has 

been found to alleviate inflammation conditions in 
chronic inflammatory diseases such as T2DM [175]. In 
addition, elderly people aged 71 years have been shown 
to experience a threefold reduction in the number of pro-
inflammatory monocytes CD14 and CD16 in their blood 
after 12  weeks (3  days/week) of endurance (20  min at 
70–80% heart rate reserve) and resistance exercise train-
ing (two sets of 8RM) [176]. The expression of TLRs on 
the monocyte membrane is also reduced after prolonged 
exercise (1.5 h cycling at 75%  VO2max) [177], which leads 
to a decrease of co-stimulatory molecules and cytokines 
of TLR ligands, such as LPS [178]. Together, regular 
exercise has an overall effect on the immune system and 
inflammatory responses, which may help alleviate some 
neuroinflammation-highlighted diseases such as AD.

The effects of exercise on neuroinflammation in AD
Physical exercise has positive effects on inflammation 
in aging and AD humans and animals by decreasing the 
pro-inflammatory products and enhancing the anti-
inflammatory markers [11, 15, 21, 179, 180] (Table  1) 
(Fig. 3). Exercise can alter the inflammatory pattern in the 
AD brain and modify the neuropathological properties 
of the disease [15, 181]. Accordingly, several lines of evi-
dence have shown that physical exercise can enhance the 
immune system by reducing inflammation and oxidative 
stress and lead to cognitive improvement by increasing 
processes of neuroplasticity, such as increasing brain vol-
ume and connectivity in older people or those with AD 
[182–184]. Moreover, other beneficial changes in brain 
inflammation related to physical exercise are inhibiting 
complement-related signal pathways in the hippocampus 
[21] and preserving TREM2 levels in the cerebrospinal 
fluid (CSF) of AD patients and AD mice model [185–
187]. In response to immune insults, microglial cells are 
stimulated and release pro-inflammatory products to 
restore cellular balance in AD conditions. However, the 
persistent activation state and patterns of microglia play 
a critical role in the neuroinflammation observed in AD 
[47]. A recent exercise-intervention study has shown that 
the phagocytic ability of rodent microglial cells has been 
enhanced tremendously after ten days of treadmill train-
ing (25–50 min/day) which leads to the improvement of 
neuron loss and memory impairment [188]. In addition, 
5 weeks of treadmill exercise (5 days/week, 60 min/day) 
has been found to alleviate hippocampal microglial acti-
vation in APP/PS1 rodent models [189]; a 12-week run-
ning program (45 min/day, 5 days/week) has been shown 
to facilitate the transition of microglia from the M1 phase 
to the M2 phase, resulting in improved neuroinflamma-
tion and oxidative stress together with cognitive enhance-
ment in the rodent hippocampus [190]. The interaction 
between exercise and brain immune responses is thought 
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in part to be mediated by the cell membrane expression 
of PRRs [191–193], such as TLRs and NLRs. For example, 
six weeks of treadmill running has been found to have a 
positive impact on memory performance and reduce 
brain inflammation in a rodent model of AD, which was 
involved in decreasing TLR4, nuclear factor kappa B (NF-
kB), TNF-α, and IL-1α expression in the rat brain [191]. 
Moreover, 8  weeks of treadmill exercise (60  min/day, 
5  days/week) helps attenuate TLR2-mediated neuroin-
flammation and cell apoptosis in rodent brains with PD 
through mediating key markers related to microglial acti-
vation (Iba-1), apoptosis (caspase-3 and Bcl-2) and TLR2 
downstream signaling cascades including myeloid dif-
ferentiation factor-88 (MdD88) and tumor necrosis fac-
tor receptor-associated factor 6 (TNFR6) [192] (Fig.  3). 
Compelling evidence from animal experiments has sug-
gested that mediating microglia activation by blocking 
NLRP3 could be a potential target for preventing AD 
[194, 195]. Interestingly, a recent study has shown that 
4 weeks of treadmill exercise (40 min/day, 5 days/week) 
can reduce NLRP3 and Caspase-1 expression in the hip-
pocampus of mice that received lateral ventricle injec-
tions of Aβ40 [193]. Those findings indicate that targeting 
microglial PRRs through exercise interventions may have 
the potential to alleviate neuroinflammation and improve 
AD pathology.

Exercise-induced improvement of neuroinflammation 
can lead to an increase in AHN and memory function in 
the rodent AD model [196] (Fig. 3). Hippocampal neuro-
genesis impairment often occurs before the onset of AD 
in adult people and rodent AD models [197, 198], and the 
aggregation of Aβ has been found to further impair the 
function of NSCs in the adult hippocampus [199]. Exer-
cise has been shown to generate various beneficial effects 
on hippocampal neurogenesis. For instance, four months 
of voluntary wheeling running significantly enhanced 
hippocampal neurogenesis in the rodent AD model [200]. 
Moreover, exercise also boosts the generation and matu-
ration of newborn neurons in the adult hippocampus 
and improves the cognitive function in AD by resorting 
to BDNF levels [22, 201]. Therefore, it is indicated that 
exercise can decrease neuroinflammation and increase 
the number of neurons and glial cells, which provide sup-
portive factors for brain function in AD [15].

BBB dysfunction is a key feature of AD pathology [202, 
203]; it affects Aβ clearance, endothelial and pericyte 
function, tight junction integrity, and microglia activa-
tion of the brain [203–205]. Furthermore, when the BBB 
is damaged, peripheral immune cells and inflammatory 
cytokines can enter the CNS and cause neuroinflamma-
tion [205–207]. By restoring the tight junction proteins 
in the BBB, exercise can reverse the leakage of the BBB 
[208] (Fig.  3). Additionally, physical exercise can reduce 

circulating inflammation (such as reducing IL-1β, IL-6, 
and TNF-α concentrations) and protect the BBB in 
T2DM patients [209]. Voluntary running exercise also 
protects against age-related neurovascular dysfunction, 
limits the influx of inflammatory products into the CNS, 
and enhances synaptic plasticity and overall behavioral 
performance in aged mice [210]. In summary, exercise 
has the potential to improve neuroinflammation and 
benefit AD pathology by reducing peripheral inflamma-
tion components, affecting cerebral microglial activity, 
increasing adult neurogenesis, and restoring BBB integ-
rity. Given the close relationship between neuroinflam-
mation and the disease, targeting molecules that regulate 
the inflammatory response could be a promising thera-
peutic approach for AD.

Exercise mimetics: molecular targets for AD
Exercise mimetics provide a potential therapeutic 
approach for AD
Exercise mimetics are a class of molecules that can sim-
ulate the beneficial effects of physical exercise on the 
body and brain [34, 211]. Theoretically, the mimicking 
impact can involve molecular pathways that directly or 
indirectly mediate the beneficial effects of exercise. For 
example, certain exercise mimetics may trigger the same 
pathways that are activated by exercise, such as AMP-
activated protein kinase (AMPK) or PGC-1α [211, 212]. 
Other exercise mimetics may activate pathways that are 
downstream or upstream of the exercise-stimulated 
pathways, such as sirtuins or NF-κB [33, 213]. Exercise 
mimetics may have considerable potential utility in pro-
tecting and treating a wide range of human disorders due 
to the fact that exercise can generate beneficial effects 
on diseases involving neurological, psychiatric, cardio-
vascular, metabolic, inflammatory, and oncological fac-
tors [9, 15, 214–218]. Recently, some of these substances 
have verified their efficacy in preventing AD-related 
brain damage, such as impaired neurogenesis, synaptic 
disconnection, memory impairment, and neuropatho-
logical alterations [14, 21, 219]. The underlying mecha-
nism by which exercise mimetics prevent AD is not fully 
understood, but a range of proposed factors are thought 
to be involved in this effect, such as the reduction in Aβ 
deposits and NFTs, enhanced neurogenesis and syn-
aptic plasticity, elevated neurotrophin expression, and 
decreased inflammation and oxidative stress [33, 34, 
220]. Exercise has various forms that can induce differ-
ent effects on individuals by mediating genetics, epige-
netics, and various processes at molecular, cellular, and 
systems levels. We here discuss several promising exer-
cise mimetics, particularly focusing on their potential to 
restore the therapeutic effects of physical exercise and 
the underlying mechanisms (Fig. 4). Those molecules or 
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hormones, such as BDNF, FNDC5/irisin, Gpld1, SAM, 
and microRNA (miRNA), function through facilitating 
interorgan communications, including muscle–brain 
crosstalk, liver–brain crosstalk, gut–brain crosstalk, and 
bone–brain crosstalk. By understanding the molecular 
mechanisms underlying these interactions, we can bet-
ter harness the power of exercise mimetics for improved 
health outcomes. 

BDNF
Exercise has positive effects on the prevention and 
delay of the onset of AD, and such beneficial effects are 
believed partly by increasing various neurogenic factors 
such as the BNDF [23, 221, 222]. BDNF is a key molecule 

that supports neuronal formation, survival, growth, neu-
rotransmitter regulation, and synaptic plasticity and is 
engaged in the process of learning, memory, and cogni-
tion [223–225]. Given that one pathological feature of 
AD is synaptic disorder, BDNF has been recommended 
as a potential predicting biomarker and a therapeutic 
target for AD [224, 226]. The changed levels and expres-
sion of BDNF have been described in the brain and blood 
of AD patients [226–229], and hypermethylation of the 
BDNF promoter region, a new approach to evaluate the 
relationship between BDNF and AD, has been found in 
postmortem AD brain samples and peripheral blood cells 
of subjects with AD [230, 231]. The current evidence 
reveals a close link between BDNF depletion and Aβ 

Fig. 4 Exercise mimetics for improvement neuroinflammation and AD. The neuroprotective effects of exercise are regulated by a variety 
of molecular factors that can be activated in a way similar to exercise through the administration of exercise mimetics. These mimetics have 
been shown to be effective in reducing neuroinflammation and managing AD pathology, making them a valuable alternative for patients who 
are unable to follow regular physical activity. Exercise benefits the brain through communication between peripheral organs and the brain, such 
as muscle–brain crosstalk, liver–brain crosstalk, and gut–brain crosstalk. Exercise increases the secretion of FNDC5/irisin from muscles, which 
can reduce oxidative stress and alleviate neuroinflammation in AD. The liver also generates important factors such as Gpld1 and SAM that are 
crucial for metabolism and neuroinflammation and can cross the BBB to affect brain function in various AD models. Progress in understanding 
the molecular mechanisms underlying these interactions endows patients to better utilize the power of exercise mimetics to improve health 
outcomes. AD, Alzheimer’s disease; BBB, blood–brain barrier; FNDC5, fibronectin type III domain-containing protein 5; Gpld1, glycosylphosphatidyli
nositol-specific phospholipase D1; SAM, S-adenosylmethionine
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deposition, tau hyperphosphorylation, neuroinflamma-
tion, and neuronal death [226, 232], which warrants more 
exploration of its effect and mechanisms in the treatment 
of AD.

Several studies have demonstrated the beneficial effects 
of the pharmacological delivery of BDNF in animal mod-
els of AD. For instance, BDNF treatment (1-week intrave-
nous injection, 5.7 nmol/kg) in combination with ADTC5 
(10  µmol/kg), a molecule facilitating the transport of 
BDNF across the BBB, induced a marked rise in the cog-
nitive performance and NOR assessments of transgenic 
AD mice [233]. The treatment also enhanced the number 
of NG2 glial cells and the expression of EGR1 and ARC 
mRNA in the brain cortex [233]. Moreover, a three-week 
running wheel exercise program significantly reduced 
Aβ levels and increased sAPPα levels in the hippocam-
pus of transgenic AD mice, together with a twofold incre-
ment of BDNF levels [24]. Accordingly, BDNF treatment 
(50  ng/mL) significantly lowered Aβ levels through an 
α-secretase-dependent mechanism and elevated sAPPα 
levels in the culture of the human neuroblastoma cell 
line [24]. Similarly, Parrini and colleagues [234] increased 
hippocampal BDNF levels in Ts65Dn mice (a transgenic 
model of Down syndrome) via chronic administration 
(5 mg/kg body weight, 4 weeks) of 7,8-dihydroxyflavone 
(DHF). Chronic DHF intervention, in contrast to acute 
treatment [235], directly induced a 26% increase in phos-
phorylated tropomyosin receptor kinase B (TrkB) levels 
and successfully restored hippocampal synaptic plasticity 
and cognitive function [234]. Recently, one study [219] 
combined BDNF protein and drug-induced neurogen-
esis (P7C3) to recapitulate exercise impact on memory 
performance in a transgenic rodent model of AD. They 
revealed that the treatment could generate exercise-
related neurobiological effects (especially cognitive func-
tion), indicating that the usage of exercise mimetics helps 
promote adult neurogenesis in some brain disorders 
[219]. Hence, BDNF mimics may provide a therapeu-
tic approach to the treatment of AD by restoring BDNF 
signaling and mitigating AD pathology.

The ability of BDNF mimics to benefit the cognitive 
and pathological outcomes of AD may be explained by 
their interaction with neuroinflammation. One proposed 
mechanism underlying BDNF-related anti-inflamma-
tory effects is preventing the activation of transcription 
factors like NF-kB. BDNF can suppress NF-kB activity 
through several mechanisms, such as binding its receptor 
TrkB, triggering the PI3K/Akt pathway, or stimulating the 
SIRT-1 release [236–238]. However, BNDF administra-
tion can also activate inflammatory reactions by inducing 
inflammatory cytokine secretion. Intrathecal injection of 
BDNF (3  ng/10  µL/rat, every other day for one month) 
to rats with CYP-induced cystitis enhanced the activation 

of astrocytes and microglia to release pro-inflammatory 
cytokines such as TNF-α and IL-1β, exacerbating neu-
roinflammation and resulting in mechanical allodynia 
through BDNF-TrkB-p38/JNK signaling [239]. It is sug-
gested that the mediator role of BDNF in neuroinflam-
mation and the subsequent impact on brain disorders 
such as AD is not fully understood yet. BDNF may have 
both pro- and anti-inflammatory actions depending on 
the disease conditions and the molecular pathways trig-
gered [226, 232]. Further research is needed to elucidate 
the mechanisms of BDNF–neuroinflammation interac-
tions in AD pathology and to identify potential therapeu-
tic strategies to modulate BDNF levels and signaling.

Note that, the delivery of exogenous BDNF is challeng-
ing due to its short half-life and poor penetration of the 
BBB [240, 241]. Fortunately, many strategies have been 
developed to enhance BDNF levels and signaling endog-
enously, by directly stimulating its production (for exam-
ple, increasing endogenous BDNF production drugs and 
BDNF gene delivery) [226]. Moreover, novel exogenous 
delivery methods for transporting large molecules, such 
as the intranasal route and nanoencapsulation tech-
nologies, have been extensively studied to overcome the 
drawbacks of oral or intravenous drug delivery [226, 
242–244]. The preclinical data have demonstrated that 
these particular ways of delivering BDNF can enhance 
the levels and activity of BDNF and its receptors, leading 
to improved synaptic communication, adult neurogen-
esis, and synaptic flexibility [226].

FNDC5/irisin
Irisin is a newly discovered myokine that has emerged 
with tremendous interest for its multiple effects on vari-
ous organs and tissues [245–248]. It is produced from 
the proteolytic cleavage of a membrane protein FNDC5, 
which is expressed in both myocytes and brain cells 
[249–251]. The release of irisin is under the regulation of 
the transcriptional coactivator peroxisome proliferator-
activated receptor gamma coactivator (PGC-1α) dur-
ing exercise, and muscle and adipose tissue contribute 
the major sources of circulating irisin levels in rodents 
[247, 248]. Additionally, the brain can also locally pro-
duce irisin and its putative receptor—αVβ5 has been 
detected in several brain areas, such as the hippocam-
pus, cortex, cerebellum, hypothalamus, and amygdala 
[28, 249, 252]. Apart from its typical effects on glucose 
homeostasis, lipid metabolism, insulin sensitivity, and 
energy expenditure, irisin has been implicated in medi-
ating neuroinflammation, neurogenesis, synaptic plastic-
ity, and cognition in different brain conditions such as 
AD [16, 246, 253, 254]. Recent clinical studies have pro-
vided compelling evidence linking irisin to the develop-
ment of AD. This evidence includes [255–257] [258, 259]: 
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(i) AD patients often exhibit lower irisin levels in their 
blood and CSF compared to healthy controls; (ii) irisin 
levels are inversely associated with AD symptoms, cogni-
tive impairment, brain amyloid deposits, and inflamma-
tion; and (iii) specific genetic variations of FNDC5/irisin 
increase the risk of AD in certain populations. Moreover, 
the role of irisin as a mediator in AD pathology has been 
extensively studied in various rodent models of AD using 
different strategies to alter FNDC5/irisin expression [249, 
253, 260–262].

Emerging evidence has indicated that FNDC5/irisin 
plays a role in mediating the positive impact of exercise 
on synaptic plasticity, memory, and AD pathology. In 
a study by Hegazy et  al. [263], rats with AD were sub-
jected to 4 weeks of swimming exercise (1 h/day, 5 days/
week), which almost rescued the reduced hippocampal 
FNDC5/irisin expression levels. Notably, this was linked 
to a decrease in soluble β-amyloid peptide and phospho-
rylated tau protein levels, improved BDNF and insulin 
signaling proteins, and ultimately resulted in improved 
cognitive function [263]. Similarly, a five-week swimming 
program (1 h per day, 5 days per week) protected against 
Aβ-induced memory deficits and decreased expression 
levels of FNDC5/irisin mRNA and protein in mouse hip-
pocampi [16]. However, intraperitoneal administration of 
an anti-FNDC5 agent also blocked the protective effects 
of exercise against impairments in synaptic plasticity 
and memory caused by Aβ [16]. The results indicate that 
FNDC5/irisin is crucial in mediating the neuroprotective 
benefits of exercise on synaptic plasticity and memory 
in AD. This suggests that administering irisin may pro-
vide a therapeutic avenue for AD pathology by conferring 
the beneficial effects of exercise. For example, Bretland 
et al., [264] showed that a 4-week injection of recombi-
nant (r)-irisin (100 µg/kg weekly) significantly decreased 
the tau phosphorylation load and inflammatory cytokine 
levels such as TNF-α in the hippocampus of a transgenic 
rodent model of AD. Similarly, the r-irisin administration 
also protested against Aβ-related impairment in NOR 
and fear conditioning memory in murine AD models 
[16]. Interestingly, blocking of FNDC5/irisin activa-
tion with an antibody could inhibit the exercise-induced 
improvement of synaptic plasticity and memory function 
in AD mice [16].

The beneficial effects of irisin administration on AD 
pathology and cognitive function are proposed to be due, 
in part, to the modulation of the modulating anti-inflam-
matory response in the CNS. Irisin treatment markedly 
reduces the expression of genes specific to astrocytes 
and microglia, and peripherally increasing irisin levels 
improves cognitive function in AD mice by interacting 
with αVβ5 integrin receptor complexes [254]. Moreo-
ver, irisin intervention can also enhance spatial learning 

and memory, reduce neuronal apoptosis, and modulate 
the inflammatory response by inhibiting microglia/mac-
rophage activation, neutrophil infiltration, IL-1β expres-
sion, and promoting the phenotypic switch of microglia/
macrophage in a murine model of the brain injury [249]. 
Additionally, irisin treatment shows therapeutic poten-
tial for cognitive impairment and synaptic plasticity by 
modulating neuroinflammation, astrocyte activation, and 
the expression of P38, STAT3, and NFκB signaling mole-
cules in the rodent diabetic brain [253]. Several pathways 
have been proposed to explain the anti-inflammatory and 
anti-neurotoxicity effects of irisin in CNS. One pathway 
involves the binding of irisin to integrin αVβ5, a recep-
tor expressed in glial cells in the CNS [249, 265]. This 
binding activates AMPK, an enzyme that regulates cel-
lular metabolism and inflammation, which then inhibits 
NF-κB signaling that promotes pro-inflammatory gene 
expression [16, 262]. Another pathway requires the par-
ticipation of BDNF. BDNF is a neurotrophic factor that 
has anti-inflammatory and neuroprotective effects on the 
CNS [259, 266]. Irisin stimulates BDNF production in 
hippocampal neurons and astrocytes through PGC-1α/
FNDC5 signaling [19]. BDNF then activates its receptor 
TrkB and downstream signaling pathways such as Akt/
CREB, and Erk1/2/MAPK, which modulate synaptic plas-
ticity, neuronal survival, and inflammation [259]. Taken 
together, irisin treatment might be a potential strategy for 
alleviating neuroinflammation and AD symptoms, per-
haps by modulating cytokine production, glial activation, 
hippocampal synaptic plasticity, Aβ formation and accu-
mulation, tau abnormal phosphorylation, and excessive 
oxidative stress [253, 254, 258]. However, to be a feasible 
strategy, there are still some key questions that need to be 
addressed. These include determining the optimal dose, 
route, frequency, and duration of irisin administration for 
different stages and subtypes of AD. Validating the safety 
and efficacy of irisin in humans through clinical trials and 
monitoring potential side effects or adverse reactions is 
also necessary. Finally, improving the stability and bioa-
vailability of irisin through novel formulations or delivery 
systems is crucial.

Clusterin
CLU, also referred to as apolipoprotein J (ApoJ), is a pro-
tein that is highly expressed in the brain, especially glial 
cells and neurons where it mediates cholesterol metabo-
lism, oxidative stress, and cell apoptosis [267–269]. In 
the context of AD, CLU has been implicated in the Aβ 
formation and mediates its clumping and clearance 
[270–272]. Growing evidence has revealed that CLU 
levels are increased in AD-affected brain regions [273, 
274] and in the CSF of AD patients [275]. For instance, 
Thambisetty et al. [276] reported that CSF levels of CLU 
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were significantly higher in AD patients compared with 
controls, and Schrijvers et  al. [277] revealed that higher 
plasma CLU was associated with disease prevalence and 
severity of AD. Compelling evidence has suggested that 
there is a close link between the levels of CLU and the 
occurrence, development, and severity of AD [277–279], 
indicating that CLU may serve as a peripheral indica-
tor of AD. Although the precise function of CLU in AD 
pathogenesis is not fully understood, there is evidence 
that it plays a part in removing the Aβ peptides [280] and 
mediating the tau phosphorylation [281, 282]. For exam-
ple, a study by DeMattos et  al. [280] reveals that CLU 
binds to Aβ peptides and facilitates their clearance from 
the brain in the rodent model of AD.

Exercise is known for its potential benefits on AD onset 
and the development of disease pathology [13, 15, 283]. 
Emerging evidence has indicated this positive effect is 
linked to its effect on CLU expression. A 14-day tread-
mill training significantly elevated adipocytic CLU lev-
els, which inhibited the cortical complement pathway 
and prevented motor dysfunction worsening in a rodent 
model of overexpressing mutant human TDP-43 [284]. 
Moreover, serum levels of CLU were markedly elevated 
after 6-month exercise intervention (30 min/day, 3 days/
week, intensity at 60–70% of maximum heart rate) in 
the patients with amnestic mild cognitive impairment 
compared to basic values before interventions [21]. It 
is indicated that CLU could be an "exercise factor" that 
benefits brain function in neurological disorders. One 
recent study collected “runner plasma” from exercised 
mice and infused it into sedentary mice leading to a 
markedly increased number of neural stem/progenitor 
cells and  DCX+ neuroblasts, enhanced contextual learn-
ing and memory function, and decreased expressions of 
inflammatory genes in young rodent hippocampus [21]. 
Runner plasma decreased transcripts related to neuroin-
flammation and suppressed inflammatory reactions. Sub-
sequent analysis confirmed an increment in complement 
cascade inhibitors-CLU [21], which is responsible for the 
exercise-related anti-neuroinflammatory reactions in 
AD mice [285]. It is suggested that CLU acts as a pivotal 
molecule in regulating the beneficial effects of exercise 
on brain plasticity and function, and various therapeutic 
methods have aimed to target CLU pharmacologically to 
reduce AD pathology. A recent in vivo study has revealed 
that CLU-deficient mice exhibit impairment in excita-
tory synaptic transmission and spine density, which can 
be restored by increasing CLU secretion from astrocytes; 
additionally, increasing CLU expression can increase 
excitatory neurotransmission, reverse synaptic damage, 
and alleviate AD pathology in transgenic AD mice [267]. 
Apolipoprotein E (ApoE) is known to mediate the inflam-
matory response in AD pathology [286, 287]. Oral ApoJ 

peptides (D-[113–122]apoJ, 125 or 250 µg/mouse/d) can 
improve HDL inflammatory characteristics in mice and 
monkeys, as well as reduce lesion formation in ApoE-
deficient mice [288]. Additionally, treatment of CLU at a 
concentration of 10  nM significantly increases neuronal 
differentiation from human NPCs and reduces cell apop-
tosis [289]. The effectiveness of exogenous CLU treat-
ment depends partly on its ability to cross the BBB, which 
can be facilitated by several mechanisms, including 
receptor-mediated transport via gp330/megalin recep-
tors in the choroid plexuses and vascular epithelium and 
the formation of complexes with other molecules such as 
Low-density lipoprotein [290]. However, while targeting 
CLU may provide new therapeutic opportunities for AD 
prevention or treatment, there are challenges associated 
with this approach. The role of CLU in AD is complex 
and context-dependent, as it can act as either a protective 
or harmful factor depending on its interaction with other 
molecules or cellular processes [270, 272, 290]. Therefore, 
further research is needed to fully understand the molec-
ular mechanisms and regulation of CLU in AD, which 
may provide new insights into the etiology, progression, 
and clinical implications of this devastating disease.

Gpld1
Recently, several novel circulating factors have emerged 
with great interest for their evident bioactive role in 
mediating the communication between peripheral organs 
and the brain during exercise [291, 292]. Among the vari-
ous biomarkers, Gpld1 represents a potent and promis-
ing exercise mediator that functions as an enzyme to 
cleave GPI molecules from the cell membrane, thus play-
ing a crucial role in regulating various cellular processes 
[22, 292]. Gpld1 is predominantly synthesized by the liver 
and circulates  in the blood affecting diverse metabolic 
and inflammatory processes [29, 293–296]. The expres-
sion of Gpld1 has been detected in the brain [297, 298], 
modified by exercise [22, 299], and involved in neuronal 
plasticity and cognitive functions in health and dis-
eases [29, 48, 300]. It is indicated that Gpld1 mimic may 
have the potential to restore brain plasticity and func-
tion in neurological disorders. Recently, Horowitz et  al. 
[22] conducted a voluntary wheel-running program on 
aging mice (18  months) and revealed that hippocampal 
neurogenesis and memory performance were markedly 
enhanced. Interestingly, the “runner plasma” isolated 
from exercising old mice was intravenously transferred 
(eight times for 3 weeks) to sedentary old mice, resulting 
in a significant increase of hippocampal neurogenesis, 
BDNF up-regulation, and learning and memory improve-
ment in aged mice [22]. To identify which factor accounts 
for exercise-induced effects, they analyzed the runner 
plasma and proposed Gpld1 as the candidate mediator. 
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Moreover, in a subsequent exercise-intervention study 
(6-week voluntary wheel running), circulating Gpld1 
levels were higher in active healthy elders compared to 
sedentary individuals, and the major source of Gpld1 was 
derived from the liver [22]. To mimic exercise effects, 
they increased hepatic Gpld1 expression to raise circulat-
ing GPI levels which was enough to improve hippocam-
pal neurogenesis and cognitive performance in aged 
rodent hippocampus. To further verify the crucial role 
of Gpld1, they overexpressed a mutated form of Gpld1 
that effectively blocked Gpld1 function and decreased 
its beneficial effects on neurogenesis and cognitive func-
tions [22]. It is proposed that the favorable effects of exer-
cise on the CNS can be conferred by the administration 
of exercise mimetics such as Gpld1 through liver–brain 
crosstalk, suggesting that Gpld1 has the potential to 
restore neuronal plasticity and function in brain disor-
ders such as AD [22, 292].

SAM
SAM is referred to as a type of methyl donor, a mol-
ecule that facilitates the transfer of a methyl group 
to another molecule via the process of methylation 
[301, 302]. In recent years, methyl donors have gained 
immense popularity for their essential role in various 
biological processes such as DNA methylation (DNAm). 
DNAm can modulate gene expression, protein produc-
tion, neurogenesis, and neurotransmitter metabolism 
[303]. These processes are often disrupted in neurologi-
cal disorders such as AD [304, 305]. Emerging evidence 
has indicated changes in methylation profiles of specific 
genes or regions in the brain of AD patients, suggest-
ing that methylation may be involved in the pathogen-
esis of AD. A recent study conducted a meta-analysis of 
methylation data in different brain regions of individu-
als with AD [305]. The study revealed that methylation 
changes related to AD were predominantly enriched in 
genes that play a crucial role in neurodevelopment and 
neurogenesis [305]. Additionally, Altuna et al. [304] par-
ticularly focused on genome-wide DNA methylation 
levels in the hippocampus of AD individuals. They dis-
covered 118 differentially methylated positions (DMPs) 
related to AD and these DMPs were remarkably associ-
ated with the phosphorylated tau protein burden [304]. 
Subsequent functional analysis revealed that these DMPs 
were enriched for genes involved in neural development 
and hippocampal neurogenesis that were altered in the 
progression of AD pathology [304]. The actions of DNA 
methylation are dynamically regulated by diverse fac-
tors including DNA repair, oxidative stress, inflamma-
tion, environmental stimuli, and exercise [306]. These 
modifications in DNAm can subsequently impact brain 
functions such as neurogenesis, synaptic plasticity, and 

cognition, indicating a possible therapeutic implication 
of DNAm in regulating the development and progression 
of AD pathology [306].

Exercise is a dynamic mediator for methylation pat-
terns in brain health and disorders [307]. For example, 
in a group of older African Americans with mild cogni-
tive impairment, a 6-month program of aerobic exer-
cise (40  min/day, 3  days/week) caused alterations in 
global DNA methylation patterns [308]. These changes 
affected genes such as VSP52, SACRB1, ARTN, NR1H2, 
and PPPLR5D, which are involved in various processes 
including amyloid formation, intracellular protein trans-
port, and lipoprotein mediation [308]. Exercise also 
modifies the activity of the enzyme DNMTs, which are 
involved in the regulation of neuronal survival and the 
methylation processes in aging- and disease-associated 
neurodegradation [309]. Swimming exercise (1  h/day, 
26  days) results in a significant increase in the protein 
levels and DNA-binding activity of nuclear factor eryth-
roid 2-related factor 2 (Nrf2) in a rodent model of AD, 
which leads to subsequent inhibition of the expression 
of downstream antioxidant genes [310]. Given the sig-
nificant role of methylation of genes in the beneficial 
effects of exercise on brain function, it may be possible 
to develop a potential therapeutic approach for brain dis-
orders like AD by targeting DNAm and related signaling 
pathways, such as methyl donors.

As an essential methyl donor, SAM is primarily syn-
thesized in the liver and plays an essential role in various 
biological processes affecting signaling pathways involved 
in cell growth, apoptosis, and immune function [311–
313]. SAM could be utilized as both a dietary supplement 
and a prescription drug for a range of conditions, such as 
depression, anxiety, liver disease, osteoarthritis, and AD. 
SAM administration can help ameliorate AD pathology 
and improve cognitive function. A study conducted on 
3xTg-AD mice showed that SAM administration (100 mg 
SAM/kg) decreased hippocampal intracellular Aβ depos-
its and phosphorylated tau immunoreactivity [314]. SAM 
therapy showed a temporal pattern in altering AD neu-
ropathology, reducing extracellular Aβ deposition by 
80% in 11-month-old mice after a 1-month treatment 
but only by 24% in 15.5-month-old mice after a 3-month 
intervention [314]. The anti-AD effects are believed to be 
regulated in part by the ability of SAM to normalize gene 
methylation. Fuso et al. [315] found that SAM treatment 
can restore normal gene expression, reduce presenilin1 
expression, and decrease Aβ levels in conditions associ-
ated with AD onset. Additionally, SAM may impact Aβ 
metabolism by regulating its formation, clearance, and 
aggregation. As a methyl donor, SAM affects the activity 
of enzymes, such as secretases, involved in the synthe-
sis or cleavage of APP [316]. SAM can also enhance Aβ 
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clearance by increasing the expression of ApoE [317] and 
prevent Aβ aggregation by disrupting its interaction with 
metal ions or altering its conformation [318].

SAM therapy can benefit AD by modulating some of 
the pathological processes such as oxidative damage, 
inflammation, mitochondrial impairment, and choliner-
gic deficiency. For example, SAM has antioxidant effects 
by targeting glutathione (GSH) and its transferase, which 
are important for quenching oxidative species and elimi-
nating toxic xenobiotics. SAM supplementation restored 
glutathione S-transferase activity and eliminated reactive 
oxygen species in transgenic  ApoE−/− mice, highlighting 
its critical role in maintaining neuronal health, particu-
larly in AD [319, 320]. Moreover, administration of SAM 
(16 mg/kg for 4 weeks) reverses cognitive impairment in 
D-galactose-induced brain aging rats and rescues neuron 
loss, elevates BDNF levels in the hippocampus, decreases 
amyloid-β deposits, and inhibits microglia activation and 
pro-inflammatory cytokine levels in the hippocampus 
and serum [321]. Additionally, SAM injection (10  mg/
kg daily for 6  weeks) could protect brain cells against 
Aβ-induced cellular injury by inhibiting neuroinflamma-
tion and oxidative stress [322]. Mitochondrial dysfunc-
tion is a hallmark of brain disorders such as AD [323], 
which could be a potential target for treatment. Recently, 
Lam et  al. [324] reported that dietary vitamin B12 can 
alleviate mitochondrial fragmentation, bioenergetic 
defects, and oxidative stress, delaying Aβ-induced paraly-
sis in a methionine/SAM-dependent manner. Together, 
SAM administration has shown multiple favorable effects 
on AD by modifying various pathological processes 
involved in the disease [325]. However, SAM therapy 
may face some challenges or limitations such as the lack 
of a well-established optimal dose, duration, and route of 
administration for AD, as well as the possible side effects. 
Therefore, further research is necessary to address those 
concerns.

MicroRNAs
MiRNAs are a class of short (18–25 nucleotides) non-
coding RNAs that bind to the 3’ untranslated region of 
target mRNAs affecting their translation or stability [326, 
327]. MiRNAs can affect various aspects of immune 
responses by modulating the expression of key molecules 
involved in inflammatory signaling pathways, such as 
NF-κB, MAPK, and TLRs [328, 329]. MiRNAs can have 
either pro- or anti-inflammatory effects depending on 
their target genes and the cellular context [328–330]. 
Given the essential roles of miRNAs in immune regula-
tion and AD pathology [331, 332], they have emerged 
as promising biomarkers and therapeutic targets for AD 
[333]. In addition to being critical molecules in modu-
lating neuroinflammation and AD pathology [331, 332], 

miRNAs also interact with lifestyle factors such as physi-
cal activities. For example, both acute and chronic exer-
cise can markedly affect miRNA expressions in various 
tissues and fluids [334–336], such as skeletal muscle, 
brain, blood, and CSF. These miRNAs are involved in 
various biological processes [337, 338], including cell dif-
ferentiation, proliferation, apoptosis, metabolism, and 
immune response, as well as pathological processes of 
various diseases, such as diabetes, heart diseases, cancer, 
neurodegenerative disorders, neuroinflammation, and 
mental disorders [337, 338]. Physical exercise is recog-
nized as a non-pharmacological regimen for improving 
memory function and delaying the onset and progres-
sion of AD [15, 283]. Therapeutic strategies that target 
miRNAs and relevant signaling molecules involved in 
exercise effects have been proposed to ameliorate neu-
roinflammation and AD pathology [333, 339, 340]. Those 
exercise mimetics can be recombinant oligonucleotides, 
such as miRNA mimics, antagomirs, and locked nucleic 
acids, or viral vectors that deliver miRNA genes or 
miRNA inhibitors into particular brain areas or cell types 
[340, 341].

MiR-132 is one of the most markedly changed miRNAs 
in AD brains and CSF and is also the most widely inves-
tigated one due to its essential role in mediating some 
genes critical for synaptic transmission, neurogenesis, 
neuroinflammation, and tau phosphorylation [340]. The 
expression of miR-132 is down-regulated by Aβ pathol-
ogy in the hippocampus of transgenic AD mice, whereas 
one-month voluntary running upregulates miR-132 
expression and improves cognitive function [342]. How-
ever, intracerebroventricular delivery of anti-miR-132 oli-
gonucleotide can abolish the exercise-induced favorable 
effects on hippocampal neurogenesis and cognition as 
well as BDNF expression, indicating that miR-132 can be 
a therapeutic target [342]. Interestingly, restoring down-
regulated miR-132 levels by delivery of its mimic in the 
hippocampus of AD mice rescues AHN and memory 
impairment [342]. Similarly, data from other experiments 
also verified that delivering miR-132 synthetic agents into 
the brains of diverse rodent AD models (such as APP/
PS1 and 3xTg AD mice) could alleviate the accumulation 
of Aβ 40–42 and Tau hyperphosphorylation and restore 
hippocampal neurogenesis and cognitive function [343, 
344]. Those results suggest that targeting miR-132 signal-
ing may have therapeutic potential for the treatment of 
AD.

MiR-146 is among the commonly dysregulated miR-
NAs with known or potential neuroimmune roles in 
AD [345]. MiR-146 is highly expressed in microglia and 
inhibits the NF-κB signaling pathway by directly affect-
ing IL-1 receptor-associated kinase 1 and TNF receptor-
associated factor 6 [346, 347]. MiR-146 depletion mice 
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do not show effective microglia-regulated phagocytosis 
in response to LPS, indicating that miR-146 is crucial for 
the microglial reaction to inflammation [348]. Exercise 
can alter the expression and function of miR-146 in vari-
ous tissues [349, 350], indicating that the changed miR-
146 profiles may modulate the positive effect of exercise 
on health and diseases. To test the treatment effects of 
miR-146a on AD pathology, Mai et al. intranasally deliv-
ered a miR-146a agomir (M146AG) to transgenic AD 
mice and they revealed that the treatment could alleviate 
amyloid and Tau pathologies and improve neuroinflam-
mation and cognitive function [351].

Recently, increasing studies have shown interest in 
the therapeutic potential of targeting miRNAs for treat-
ing or delaying the onset and progress of AD. For exam-
ple, some studies revealed that AD patients had elevated 
miR-155 levels in blood-derived monocytes and mono-
cyte-derived macrophages [352], as well as in the neo-
cortical extracellular fluid and CSF [353]. Moreover, the 
enhanced production of miR-155 was associated with 
upregulated activation of glial cells and downregulated 
SOCS-1 in the murine model of 3xTg AD [354]. Those 
data indicate that miR-155 could be a potential thera-
peutic target. Accordingly, reducing miR-155 levels by 
administrating curcumin efficiently improved the acti-
vation of microglia cells and related neurodegenerative 
phenotype in ApoE3-5xFAD mice [355]. Similarly, the 
delivery of anti-miR-155 agents reduced the expression 
of pro-inflammatory cytokines (such as IL-1β, IL-6, and 
TNF-α) and Caspase-3, leading to the improvement of 
impaired learning functions [356]. Additionally, a num-
ber of miRNAs, such as miR-7, miR-21, miR-339, and 
miR-29, have been identified as exercise mediators and 
have shown therapeutic potential in treating AD [11, 
357–359]. Taken together, a variety of miRNAs have 
been found dysregulated in AD conditions, indicating a 
crucial role in neuroinflammation and AD. Their thera-
peutic potential has been investigated and some of the 
agents have shown efficacy. However, some problems 
emerge when using miRNAs as a therapeutic approach, 
for example, some studies reveal that the administration 
dose has to be carefully controlled, as memory perfor-
mance can be adversely affected by miR-132 levels that 
are more than threefold higher than normal [342, 343]. 
This suggests that there are still some challenges and 
limitations that need to be addressed in the development 
and application of miRNA-targeted strategies for AD, 
especially the specificity, stability, efficiency, and safety of 
miRNA agents.

5‑Aminoimidazole‑4‑carboxamide ribonucleotide (AICAR)
AMPK is recognized as a key mediator of cellular metab-
olism and it triggers a plethora of cellular and molecular 

factors to meet metabolic demands during exercise 
[360–362]. Additionally, AMPK activation has been 
shown to have anti-inflammatory effects in different cell 
types, such as macrophages, glial cells, neuronal cells, 
myocytes, adipocytes, and hepatocytes [360, 363, 364]. 
AMPK activation suppresses the NF-κB signaling path-
way in response to hypoxia and reoxygenation [365], a 
crucial regulator of the inflammatory transcript expres-
sion [366]. AMPK inhibits NF-κB signaling by phospho-
rylating and suppressing the inhibitor of κB kinase (IKK), 
which blocks the phosphorylation and degradation of 
the inhibitor of κB (IκB) and thus prevents the nuclear 
translocation and activation of NF-κB [213]. AMPK 
also induces phosphorylation and inhibition of the p65 
subunit of NF-κB through sirtuin (SIRT)1, a deacety-
lase that interacts with AMPK [367, 368]. By inhibiting 
NF-κB signaling, AMPK reduces the expression of pro-
inflammatory cytokines (such as TNF-α, IL-1β, IL-6) 
and chemokines (such as CXCL1) in various cell types 
and tissues. In addition to inhibiting NF-κB signaling, 
AMPK activation also modulates other signaling path-
ways that are involved in neuroinflammation, such as the 
mammalian target of rapamycin, NLRP3 inflammasome, 
Janus kinase/signal transducer and activator of transcrip-
tion, MAPK, and Nrf2, leading to suppression of protein 
synthesis and cell growth, reduction of IL-1β and IL-18, 
increment of anti-inflammatory gene expression, and 
improvement of antioxidant defense and oxidative stress 
[369, 370].

Exercise has beneficial effects on brain disorders by 
enhancing neurogenesis, synaptic plasticity, and cogni-
tive performance [371–373]. It is well-documented that 
AMPK is a pivotal mediator of exercise-induced ben-
eficial effects on neuroinflammation and neurodegenera-
tion in animal models of neurological disorders [374]. For 
example, exercise reduced microglial activation and neu-
roinflammation in a mouse model of AD [375, 376]. Exer-
cise also attenuated neuroinflammation and neuronal 
death in rat models of ischemic stroke [377, 378] and PD 
[371, 379]. These findings suggest that exercise-activated 
AMPK signaling is a molecular target for modulating 
neuroinflammation and improving brain health in vari-
ous disorders.

Several compounds targeting AMPK signaling have 
been developed and verified as effective in animal models 
of neurological disorders. One such compound is AICAR, 
an analog of AMP and the product of the purine synthe-
sis pathway [213]. The phosphorylation of AICA-riboside 
is under the regulation of the cellular adenosine kinase, 
which activates AMPK by binding its γ subunit and 
inducing its autophosphorylation Thr172 [380]. AICAR 
can influence various organs and tissues and modulate 
different physiological and pathological processes [381, 
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382], in particular, modulating inflammation by directly 
activating AMPK and lowering the production of inflam-
matory cytokines [383, 384]. For example, AICAR treat-
ment reduced the inflammation and cytokine production 
in human aortic smooth muscle cells in a dose-depend-
ent manner [385]. Administration of AICAR promoted 
the expression of insulin-degrading enzyme (IDE) and 
reduced Aβ deposition in mice with AD, resulting in 
enhanced spatial learning and recognition performance 
[386]. Moreover, Du et  al. revealed that all AD-like 
pathological changes including biochemistry and cogni-
tive function could be alleviated in AICAR-treated rats 
[387]. AICAR treatment has inhibitory effects on LPS/
Aβ-induced inflammatory response by reducing the 
production of pro-inflammatory cytokine (such as TNF-
α, IL-1β, and IL-6) and by attenuating ROS generation 
and glutathione depletion in glial cells [384]. It is impli-
cated that the beneficial impact of AICAR on AD condi-
tions may be correlated to its anti-inflammatory effects. 
However, the anti-inflammatory action of AICAR may 
depend on the treatment duration. One study reported 
that the administration of AICAR (500  mg/kg, for 3, 
7, and 14 days) had a similar effect to exercise on mus-
cle AMPK signaling in young male mice, which in turn 
increased the number of new neurons and BDNF levels 
in the dentate gyrus [388]. However, the compound did 
not enhance DG cell proliferation and neurotrophin lev-
els after 14 days of treatment but elevated apoptotic gene 
expression and inflammatory cytokine production (such 
as IL-1β) [388]. The findings are consistent with a previ-
ous study that reported no improvement in spatial mem-
ory and adult neurogenesis after longer (14 days) AICAR 
administration, suggesting that the effects of AICAR on 
the brain depend on the duration of its administration 
and involve divergent underlying mechanisms [389].

Metformin
Metformin is another compound that can activate AMPK 
signaling, which is a first-line antidiabetic drug with 
insulin-sensitizing effects and can cross the BBB. Met-
formin has pleiotropic effects on various cellular pro-
cesses, including energy metabolism, oxidative stress, 
inflammation, mitochondrial function, and adult neu-
rogenesis [390–392]. These effects may implicate its 
mediator role in AD prevention and treatment due to its 
capacity to modulate some key mechanisms involved in 
AD pathogenesis such as reduction of neuroinflamma-
tion, clearance of A, modulation of tau phosphorylation, 
and induction of neurogenesis [61, 393, 394]. Similar to 
exercise, metformin is a common treatment for patients 
with T2DM, which is effective in lowering blood glu-
cose levels by enhancing the expression and membrane 
translocation of glucose transporter-4 in adipose tissue 

and skeletal muscle, thereby promoting glucose uptake 
[395, 396]. Moreover, metformin treatment also inhib-
its TNF-α-regulated inflammatory processes in vas-
cular smooth muscle cells [397]. Metformin has been 
shown to suppress IL-1β expression in macrophages 
during chronic exposure to LPS by reducing ROS levels 
through activating AMPK pathways [398]. Additionally, 
metformin treatment also reduced the transcript expres-
sion of inflammatory markers such as TGF-β, ICAM-1, 
and NF-kB cultured murine glomerular mesangial cells 
[399]. Current evidence indicates that metformin may 
have anti-inflammatory effects similar to exercise in part 
by suppressing the production of inflammatory cytokines 
such as TNF-α, TLR2/4, and IL-6 [400, 401].

The relationship between metformin use and the risk 
of AD has been extensively investigated, but the find-
ings are not consistent or conclusive. Some studies 
have shown that metformin use may reduce the risk of 
AD and improve cognitive function in diabetic patients 
[402, 403]. Using a Taiwanese national health insurance 
database, Hsu et  al. [404] matched 800 T2DM patients 
who developed dementia with 3200 controls. They 
reported that metformin use reduced the risk of demen-
tia (adjusted odds ratio [AOR] 0.46; 95% CI 0.35–0.61), 
especially AD (AOR 0.38; 95% CI 0.25–0.58), compared 
with controls without metformin use. Another study 
[405] used data from a prospective cohort data of elderly 
Latinos in the US to examine the effect of metformin 
on cognition. They used a battery of neuropsychologi-
cal tests to measure cognitive function and found that 
participants with diabetes without metformin use had 
worse cognitive scores than those without diabetes or 
metformin use, while participants with diabetes with 
metformin use had comparable cognitive scores to those 
without diabetes. Contrarily, using a UK primary care 
database, Imfeld et  al. [406] matched 17,415 diabetes 
patients who developed dementia with 68,875 controls. 
They reported that metformin use increased the risk of 
dementia (AOR 1.23, 95% CI 1.13–1.34), especially AD 
(AOR 1.29, 95% CI 1.15–1.44), compared with non-use 
of metformin. Another population-based study using a 
Korean national health insurance database matched 1675 
newly diagnosed T2DM patients who developed AD with 
8375 controls [407]. They revealed that metformin use 
increased the odds of AD (AOR 1.50, 95% CI 1.23–1.83), 
and this effect was stronger in patients with longer dia-
betes duration (> 10 years) and higher cumulative doses 
(> 1000 g) of metformin. However, those studies also had 
some limitations, such as insufficient data on lifestyle fac-
tors, potential misdiagnosis of AD, and possible remain-
ing confounding by indication.

One recent meta-analysis combining data from 19 stud-
ies revealed that metformin had no significant impact 
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on improving cognitive function or protecting against 
dementia risk [408]. However, some researchers pointed 
out that the associations between metformin use and AD 
risk or cognition may be influenced by some factors, such 
as diabetic status, Apoe-ε4 status, vitamin B12 deficiency, 
and homocysteine levels [402, 409]. For instance, Ng 
et  al. [410] performed a meta-analysis of observational 
studies and reported that metformin use reduced the risk 
of AD in patients with diabetes (risk ratio [RR] 0.76, 95% 
CI 0.63–0.92), but not in patients without diabetes (1.05, 
95% CI 0.76–1.46). The underlying reasons for the dis-
crepancy across studies may include variations in study 
design, population characteristics, confounding factors, 
and outcome measures. Together, since metformin use 
has been shown to reduce Aβ deposition and abnormal 
tau phosphorylation, alleviate inflammation, moderate 
insulin-sensitizing, and enhance the neurogenesis [393, 
394], all of which are key mechanisms for AD, the rela-
tionship between metformin use and AD risk warrants 
further investigation.

Perspective
As our society continues to age, the prevalence of neu-
rological diseases and healthcare costs are increasing, 
which require effective strategies to address these issues. 
An active lifestyle is a preferred choice for enhancing 
brain health, and, for those who are immobile due to 
diseases, injuries, or frailty, factors derived from run-
ner plasma can be a valuable alternative. Though we do 
not fully comprehend the exact mechanism of how these 
molecules work, they have been proven to be an effective 
regimen for some neurodegenerative disorders such as 
AD. These molecules have been shown to improve cogni-
tive function, reduce amyloid accumulation, and increase 
neurogenesis and synaptic plasticity in animal models 
and human studies of AD. Exercise mimetics may also 
have an impact on neuroinflammatory responses and 
autophagy, which contribute to the accumulation of toxic 
aggregates and neuronal dysfunction of AD.

This review discussed recent evidence regarding cer-
tain molecules that partially exhibit beneficial effects 
similar to exercise on neuroinflammation and AD. How-
ever, this concept is still in its early stages, facing many 
challenges that need to be addressed. First, it is crucial 
to note that the holistic and multifaceted impact of exer-
cise on the CNS is unlikely to be replicated by deliver-
ing a single factor. Moreover, the benefits of exercise in 
the context of AD are likely related to several molecules, 
with many potentially still unknown. The molecules 
that have been tested represent only a small fraction of 
the molecules involved in exercise-related effects on 
AD. This underscores the necessity for future studies to 
explore molecules that mimic the benefits of exercise 

comprehensively. Additionally, while animal studies pro-
vide evidence of the beneficial effects of exercise mimet-
ics on AD, clinical data among AD patients are limited. 
Therefore, it is necessary to establish the safety, dosage, 
duration, and combination of these molecules for AD 
patients. Together, it is crucial to address those issues 
about exercise mimetics, and future studies are needed to 
confirm their effectiveness and safety in humans.
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