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Abstract 

Background  Parkinson’s disease (PD) is a neurodegenerative disorder that is characterized by the presence of pro-
teinaceous alpha-synuclein (α-syn) inclusions (Lewy bodies), markers of neuroinflammation and the progressive loss 
of nigrostriatal dopamine (DA) neurons. These pathological features can be recapitulated in vivo using the α-syn pre-
formed fibril (PFF) model of synucleinopathy. We have previously determined that microglia proximal to PFF-induced 
nigral α-syn inclusions increase in soma size, upregulate major-histocompatibility complex-II (MHC-II) expression, 
and increase expression of a suite of inflammation-associated transcripts. This microglial response is observed months 
prior to degeneration, suggesting that microglia reacting to α-syn inclusion may contribute to neurodegeneration 
and could represent a potential target for novel therapeutics. The goal of this study was to determine whether colony 
stimulating factor-1 receptor (CSF1R)-mediated microglial depletion impacts the magnitude of α-syn aggregation, 
nigrostriatal degeneration, or the response of microglial in the context of the α-syn PFF model.

Methods  Male Fischer 344 rats were injected intrastriatally with either α-syn PFFs or saline. Rats were continuously 
administered Pexidartinib (PLX3397B, 600 mg/kg), a CSF1R inhibitor, to deplete microglia for a period of either 2 
or 6 months.

Results  CSF1R inhibition resulted in significant depletion (~ 43%) of ionized calcium-binding adapter molecule 1 
immunoreactive (Iba-1ir) microglia within the SNpc. However, CSF1R inhibition did not impact the increase in micro-
glial number, soma size, number of MHC-II immunoreactive microglia or microglial expression of Cd74, Cxcl10, Rt-1a2, 
Grn, Csf1r, Tyrobp, and Fcer1g associated with phosphorylated α-syn (pSyn) nigral inclusions. Further, accumulation 
of pSyn and degeneration of nigral neurons was not impacted by CSF1R inhibition. Paradoxically, long term CSF1R 
inhibition resulted in increased soma size of remaining Iba-1ir microglia in both control and PFF rats, as well as expres-
sion of MHC-II in extranigral regions.

Conclusions  Collectively, our results suggest that CSF1R inhibition does not impact the microglial response to nigral 
pSyn inclusions and that CSF1R inhibition is not a viable disease-modifying strategy for PD.
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Background
Parkinson’s disease (PD), the second most common neu-
rodegenerative disease, affects around 1 million people 
in the USA, with 60,000 newly diagnosed people each 
year [29]. Pathologically, PD is characterized by the pres-
ence of proteinaceous alpha-synuclein (α-syn) inclusions 
(Lewy bodies) and progressive loss of the nigrostriatal 
dopamine (DA) neurons [22]. While the exact cause of 
PD is still unknown, mounting evidence has suggested 
that neuroinflammation, mediated by microglia, may 
play a significant role in PD progression and neuropa-
thology. Microglia have many roles in helping maintain 
healthy homeostasis in the brain, including synaptic 
pruning, neurogenesis, and neuronal surveillance [32, 39, 
49]. However, microglia are main players in the immune 
response to an insult and allow for the bridging of the 
innate and adaptive immune system [5, 45]. Analysis of 
postmortem PD brains show increased inflammatory 
markers, including increases in cells immunoreactive 
for ionized calcium binding adaptor molecule 1 (Iba1), 
human leukocyte antigen (HLA-DR), and phagocytic 
marker CD68 in the vicinity of Lewy pathology, spe-
cifically the substantia nigra (SN) [7, 8, 19, 30, 30, 31, 
31]. Patients with PD have elevated proinflammatory 
cytokines (i.e., interleukin 1-beta, interleukin-6, inter-
feron gamma, and tumor necrosis factor-alpha) in their 
cerebrospinal fluid (CSF) and plasma, all produced by 
microglia and immune cells [34–37].

These pathological hallmarks of PD, namely α-syn 
inclusions, loss of dopaminergic neurons and neuroin-
flammation, can be recapitulated in vivo using the α-syn 
preformed fibril (PFF) model of synucleinopathy [26, 27, 
41, 52]. We have previously described the time course of 
the accumulation of phosphorylated α-syn (pSyn) inclu-
sions, nigrostriatal degeneration, and the microglial 
response in the rat PFF model [10, 41]. Specifically, the 
peak of pSyn inclusion formation, number of major-his-
tocompatibility complex-II immunoreactive (MHC-IIir) 
microglia and microglial soma size in the substantia nigra 
pars compacta (SNpc) occur 2 months post intrastriatal 
PFF injection, months before the neurodegeneration 
phase occurring at 5–6 months [10, 47]. Of importance, 
a localized subpopulation of MHC-IIir microglia is 
observed immediately adjacent to nigral pSyn inclusions, 
with the number of responding microglia dependent on 
nigral inclusion load [10]. Further examination of the 
gene expression profile of microglia responsive to nigral 
pSyn inclusions has revealed upregulation of Cd74, 
Cxcl10, Rt-1a2, Grn, Csf1r, Tyrobp, C3, C1qa, Serping1 
and Fcer1g. Importantly, significant microglial upregula-
tion of Cd74 and C3 was only observed following injec-
tion of α-syn PFFs, not α-syn monomer, confirming 
specificity of the response to α-syn aggregation [48]. 

These results, along with results from other laboratories 
[11, 17, 18, 20] suggest that pSyn inclusions are immuno-
genic, provoking a microglial proinflammatory response 
that has the potential to contribute to subsequent nigros-
triatal neurodegeneration. Thus, therapeutic strategies 
that target and attenuate this microglial response to 
pathological α-syn may have potential to slow disease 
progression.

Pexidartinib (PLX3397B; Plexxikon inc.), a selective 
tyrosine kinase inhibitor, targets the macrophage (i.e. 
microglia) colony stimulating factor 1 receptor (CSF1R). 
The CSF1R is required for the activation, proliferation, 
and survival of microglia and, when inhibited, leads to 
microglial death resulting in microglial depletion within 
the brain parenchyma [13]. CSF1R inhibition has previ-
ously been used in mouse models of disease to under-
stand the role microglia may play in disease progression 
[2, 4, 14]. However, microglia are required to maintain 
healthy brain homeostasis and as such, complete micro-
glia depletion may not be a viable therapeutic strat-
egy. Therefore, in the present study we examined the 
effect of CSF1R inhibitor-mediated microglia depletion 
on α-syn aggregation and neurodegeneration within 
the rat PFF model. We demonstrate that CSF1R inhibi-
tion resulted in significant, partial microglia depletion 
(~ 43%) of homeostatic microglia in the SNpc, but did 
not impact the increase in microglial number, soma size, 
number of MHC-II immunoreactive microglia or num-
ber of MHC-II immunoreactive microglia or expression 
of Cd74, Cxcl10, Rt-1a2, Grn, Csf1r, Tyrobp, and Fcer1g 
in microglia proximal to phosphorylated α-syn (pSyn) 
nigral inclusions. Further, CSF1R inhibition in the rat 
PFF model did not impact accumulation of pSyn and 
degeneration of nigral neurons. Surprisingly, long term 
CSF1R inhibition was associated with increased micro-
glial soma size in remaining microglia as well as expres-
sion of MHC-II in extranigral regions. Our results do not 
support CSF1R inhibition as a disease modifying strat-
egy for PD and instead suggest that long term microglial 
depletion may be detrimental through induction of a pro-
inflammatory phenotype in remaining microglia.

Methods
Experimental overview
Rats received unilateral intrastriatal injections of either 
mouse α-syn PFFs or an equal volume of phosphate 
buffered saline (PBS) and were fed the CSF1R inhibi-
tor PLX3397B or control chow for a period of either 60 
(n = 48) or 180 days (n = 40). An additional group of rats 
were fed PLX3397B or control chow for 7 days prior to 
surgery and 60  days following surgery (n = 20). At the 
conclusion of the experiment rats were euthanized and 
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brain tissue analyzed. Figure  1A illustrates the experi-
mental design.

Rats
Three-month old, male Fischer 344 rats (Charles River) 
were housed, 2–3 per cage, at the Grand Rapids Research 
Center vivarium which is fully approved through the 
Association for Assessment and Accreditation of Labo-
ratory Animal Care (AAALAC). Rats were housed in a 
room with a 12-h light/dark cycle and provided food and 
water ad  libitum. All procedures were done in accord-
ance with the guidelines set by the Institutional Animal 
Care and Use Committee (IACUC) of Michigan State 
University.

α‑syn PFF preparation and fibril measurements
Α-syn PFFs were generated from wild-type-full length, 
recombinant mouse α-syn monomers as previously 
described [27, 44, 56, 57]. Quality control was completed 
on full length fibrils to ensure fibril formation (trans-
mission electron microscopy), amyloid structure (thi-
oflavin T assay), pelletability as compared to monomers 
(sedimentation assay), and low endotoxin contamination 
(Limulus amebocyte lysate assay; < 0.5 endotoxin units/
mg of total protein). On surgery day, α-syn PFFs were 
thawed to room temperature and diluted to 4  µg/µl in 
sterile Dulbecco’s PBS and sonicated with an ultrasonic 

homogenizer (300 VT; Biologics, Inc.) for 60- 1 s pulses, 
pulser set at 20% and power output at 30%. A sample of 
sonicated α-syn PFFs was prepared on Formvar/carbon-
coated copper grids (EMSDIASUM, FCF300-Cu). Fibrils 
were then imaged with a JEOL JEM-1400+ transmission 
electron microscope [42]. The length of ~ 650 fibrils was 
determined using ImageJ 1.53  K (Wayne Rasband and 
contributors, National Institutes of Health, USA) (Fig. 1B, 
C). The mean fibril length for the 2-month surgical 
cohort was 35.9 ± 0.06  nm and for the 6-month surgical 
cohort was 34 ± 0.57 nm. Fibril length < 50 nm is required 
for efficient seeding of endogenous α-syn inclusions [51].

Stereotaxic injections
Unilateral intrastriatal α-syn PFF injections were con-
ducted as previously described [41]. Rats were anes-
thetized with isoflurane (5% induction and 1.5% 
maintenance) and received unilateral intrastriatal injec-
tions to the left hemisphere (2 × 2 µl, AP + 1.6, ML + 2.0, 
DV − 4.0; AP + 0.1, ML + 4.2, DV − 5.0, AP and ML 
coordinates relative to Bregma, DV coordinates relative 
to dura). α-syn PFFs (4  µg/µl; 16  µg total) or an equal 
volume of PBS were injected at a rate of 0.5 µl/min with 
a pulled glass capillary tube attached to a 10  µl Hamil-
ton syringe [42]. To avoid α-syn PFF displacement, the 
needle was left in place for 1  min following injection, 
retracted 0.5 mm and left for 2 min before fully retracted. 

Fig. 1  Experimental design and PFF size distribution. A Male Fischer 344 rats (3-months of age) received two intrastriatal injections of sonicated 
mouse alpha-synuclein preformed fibrils (α-syn PFFs) or phosphate buffered saline (PBS). Rats were fed Pexidartinib (PLX3397B) or control 
chow ad libitum starting on the day of surgery until euthanasia at 2- or 6-months post-surgery. Brains were collected for postmortem 
endpoints including quantification of a-syn phosphorylated at serine 129 immunoreactive (pSynir) neurons, major histocompatibility complex 
II immunoreactive (MHC-IIir) cells, tyrosine hydroxylase immunoreactive (THir) neurons, and ionized calcium-binding adaptor molecule 1 
immunoreactive (Iba1ir) microglia count and size, in the substantia nigra pars compacta (SNpc). B Representative electron micrograph of sonicated 
α-syn fibrils. C Size distribution of ~ 650 sonicated fibrils prior to injection (mean fibril size-2 months: 35.9 ± 0.06 nm, 6-months: 34 ± 0.57 nm)
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All animals received analgesic (1.2  mg/kg of sustained 
release buprenorphine) after surgery and were monitored 
until euthanasia.

Pexidartinib dosing
Pexidartinib chow was generously provided by Plexxikon, 
Inc. Rats were fed Pexidartinib binary chow (PLX3397B, 
600  mg/kg; Plexxikon Inc.; Research Diets Inc.) or con-
trol chow ad libitum for either 60 or 180 days starting on 
the day of PFF injections. To investigate the impact of 
CSF1R inhibition prior to α-syn PFF injection, an addi-
tional group of rats was fed Pexidartinib (non-binary) 
chow or control chow ad libitum for the 7 days leading up 
to α-syn PFF injections and continued for 60  days until 
sacrifice. Rat weights and collective cage food intake was 
tracked weekly (Additional file  1: Figures  S1A, B, Addi-
tional file 2: Figure S2A, B).

Euthanasia
Rats were euthanized at 60  days (peak pSyn accumula-
tion in the SNpc) or 180 days (peak nigral degeneration) 
post-surgery, pathological intervals that have been previ-
ously identified in this model [10, 41, 43]. Rats were given 
a 30  mg/kg pentobarbital injection (i.p.) (Euthanasia-III 
Solution, MED-PHARMEX, Inc.) and perfused intracar-
dially with heparinized 0.9% saline. Livers were removed 
and weighed (Additional file  1: Figure S1C, Additional 
file 2: Figure S2C). Brains were removed and post-fixed in 
4% paraformaldehyde (PFA) for one week and then trans-
ferred to 30% sucrose in 0.1  M phosphate buffer until 
sunk. Brains were frozen on dry ice and cut at 40 µm on 
a sliding microtome, sections were stored in cryoprotect-
ant (30% sucrose, 30% ethylene glycol, in 0.1  M Phos-
phate Buffer (PB), pH 7.3) at − 20 °C.

Immunohistochemistry
Free floating sections were washed 4 × 5  min in 0.1  M 
tris buffered saline (TBS) containing 0.5% Triton-X100 
(TBS-Tx), quenched in 3% H2O2 for 1 h, blocked in 10% 
normal goat serum (NGS) in TBX-Tx, and incubated 
overnight in primary antibody in 1% NGS/TBS-Tx at 4 °C 
on a shaker. Primary antibodies used included: mouse 
anti-α-syn phosphorylated at serine 129 (pSyn) (1:10,000; 
Abcam, AB184674), mouse anti-tyrosine hydroxylase 
(TH) (1:4000; Millipore, MAB318), rabbit anti-ionized 
calcium binding adaptor molecule 1 (Iba1) (1:1000; 
Wako, 019-09741), mouse anti-major histocompatibility 
complex-II (MHC Class II RT1B clone OX-6) (1:2000; 
BioRad, MCA46G). Sections were washed in TBS-Tx and 
then incubated for 2-h at room temperature with bioti-
nylated secondary antibodies in 1% NGS/TBS-Tx. Sec-
ondary antibodies used included: goat anti-mouse IgG 
(1:500; Millipore, AP124B), goat anti-rabbit IgG (1:500, 

Millipore, AP132B), and horse anti-mouse IgG rat pre-
absorbed (for TH; 1:500; Vector Laboratories, BA-2001). 
Sections were washed 4 × 5 min in TBS-Tx and incubated 
in standard avidin–biotin complex detection kit (ABC, 
Vector Laboratories, PK-6100). Visualization for pSyn 
was done using 2.5 mg/ml nickel ammonium sulfate hex-
ahydrate (Fisher, N48-500), 0.5 mg/ml diaminobenzidine 
(Sigma-Aldrich, D5637), and 0.03% H2O2 in TBS-Tx. TH 
was visualized with 0.5 mg/ml diaminobenzidine (Sigma-
Aldrich, D5637), and 0.03% H2O2 in TBS-Tx. MHC-II 
was visualized using Vector ImmPACT DAB (brown) 
Peroxidase kit (Vector Laboratories; SK-4105). Iba1 was 
visualized with ImmPACT VIP (purple) Peroxidase Kit 
(Vector Laboratories; SK-4605). Sections were mounted, 
allowed to dry, rehydrated, then dehydrated in ascending 
ethanol washes and cleared with xylene before cover slip-
ping using Epredia Cytoseal-60 (Thermo-Fisher, 22-050-
262). pSyn sections were counterstained with cresyl 
violet before dehydration.

Immunofluorescence
Free floating sections were washed 5 × 5 min in TBS-Tx, 
blocked in 10% NGS in TBX-Tx, then incubated over-
night in primary antibodies in 1% NGS/TBS-Tx at 4  °C 
on a shaker. Primary antibodies used included: mouse 
anti-pSyn (1:10,000; Abcam, AB184674) and rabbit anti-
Iba1 (1:1000; Wako, 019–09741). Sections were washed 
in TBS-Tx and then incubated for 2-h, in the dark, at 
room temperature, with fluorescent conjugated second-
ary antibodies in 1%NGS/TBS-Tx. Secondary antibod-
ies used included: Alexa Fluor 568 goat anti-mouse IgG 
(1:500, Invitrogen, A-11004), and Alexa Fluor 647 goat 
anti rabbit IgG (1:500, Invitrogen, A32733). Sections were 
then rinsed 5 × 5 min in TBS-Tx, incubated 1 × 5 min in 
4ʹ,6-Diamidino-2-Phenylindole, Dihydrochloride (DAPI) 
made in TBS-Tx (1:10,000, Invitrogen, D1306) and placed 
back in TBS-Tx for mounting. Sections were mounted 
and cover-slipped with VECTASHIELD Vibrance anti-
fade mounting medium (Vector Laboratories, H-1700) 
and kept in the dark until imaging utilizing the Zeiss Axi-
oscan.Z1 scanning microscope.

Total enumeration for pSyn and MHC‑II
Due to heterogeneity in the distribution of both pSyn and 
MHC-II immunoreactive (MHC-IIir) profiles within the 
SN, total enumeration rather than stereological counting 
frames was used for quantification. The investigator was 
blinded to treatment groups. Total enumeration of pSyn 
immunoreactive (pSynir) neurons and MHC-IIir cells 
was conducted utilizing Microbrightfield Stereoinvesti-
gator (MBF Bioscience). Sections containing the SN pars 
compacta (SNpc, 1:6 series) were used. Contours were 
drawn around the SNpc at 4X, a 20× magnification was 
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then used for identification and counting. Counts rep-
resent the raw total number multiplied by six. Data are 
reported as total estimates of pSynir neurons or MHC-
IIir cells in each hemisphere.

Stereological assessment of nigral TH immunoreactive 
neurons
The number of THir neurons in the ipsilateral and con-
tralateral SNpc was estimated using unbiased stereology 
with the optical fractionator principle. The investigator 
was blinded to treatment groups. Using a Nikon Eclipse 
80i microscope, Retiga 4000R camera (QImaging) and 
Microbrightfield StereoInvestigator software (Micro-
brightfield Bioscience, Williston, VT), THir neuron 
quantification was completed by drawing a contour 
around the SNpc borders using the 4X objective on every 
sixth section and counting neurons according to stereo-
logical principles at 60X magnification. Briefly, counting 
frames (50  µm × 50  µm) were systematically and ran-
domly distributed over a grid (183 µm × 122 µm) overlaid 
on the SNpc. A coefficient of error < 0.10 was accepted. 
Data are reported as total estimate of THir neurons in 
each hemisphere.

Microglia soma size and number
Nigral sections were fluorescently labeled for pSyn and 
Iba1. The investigator was blinded to treatment groups. 
Utilizing the Zeiss Axioscan.Z1 scanning microscope, 
Z-Stacks images at 20X were obtained and three con-
secutive nigral sections representing the sections with 
the highest number of pSynir neurons were analyzed 
with Nikon Elements AR (Version 4.50.00, Melville, NY). 
All Iba1 immunoreactivity (Iba1ir) somas were outlined, 
excluding processes, and the number of individual micro-
glial objects calculated. Data for soma size are reported 
as the number of pixels per outlined microglia soma. The 
HALO® (Indica Labs) image analysis module “Area quan-
tification v1.0 for brightfield” was used to calculate total 
pSyn signal in the striatum and MHC-II signal in the 
mesencephalon.

RNAscope™ HiPlex fluorescent in situ hybridization 
combined with immunofluorescence
RNAscope™ HiPlex Fluorescent in  situ hybridization 
(FISH) was performed on nigral tissue sections to analyze 
the proinflammatory status of the remaining microglia 
after partial depletion. RNAscope probes were designed 
and produced by ACD Bio and FISH was performed as 
previously described [48]. Free floating sections were 
washed 4 × 10  min in TBS-Tx and then quenched in 
ACD Bio Hydrogen Peroxide (Advanced Cell Diagnos-
tics, 322335) for 1 h. Tissue was then washed 4 × 10 min 
in TBS-Tx, followed by 2 × 10-min washes in TBS-Tx 

diluted 1:4 in ultra-pure water. Tissue was mounted on 
HistoBond + slides (VWR VistaVision, 16004-406) and 
placed on a slide warmer at 60  °C overnight. The slides 
were incubated in an ACD RNAscope™ Target Retrieval 
buffer (diluted 1:10 in ultra-pure water,Advanced Cell 
Diagnostics, 322001) warmed to 99  °C for 10  min and 
then quickly washed 2 × 1 min in ultra-pure water. Tissue 
sections were outlined with a Super PapPen (IHC World; 
SPM0928) and 3 drops of ACD protease III (Advanced 
Cell Diagnostics; 322337) was added and incubated in a 
Hybez ™II oven at 40.0  °C (Advanced Cell Diagnostics) 
for 30  min. Slides were then quickly washed 2 × 1  min 
in ultra-pure water, and diluted ACD probes (1:50; see 
Additional file 5: Table S1 for detailed probe information) 
were added to the tissue and incubated in the Hybez ™II 
oven for 2-h. 3 × 30-min amplification steps were done 
with ACD amplification buffers 1, 2, and 3 respectively 
[RNAscope™HiPlex12 Detection Reagents (488, 550, 
650) v2; Advanced Cell Diagnostics, 324410] in a Hybez 
™II oven. Between each amplification tissue was washed 
2 × 1-min in RNAscope™Wash Buffer (1:500 Dilution in 
ultra-pure water; Advanced Cell Diagnostics, 310091). 
Following the 3rd amplification incubation, slides were 
washed 2 × 1 min and incubated for 15 min in the Hybez 
oven with the appropriate ACD fluorophores for the tails 
on the probes [RNAscope™ HiPlex12 Detection Reagents 
(488,550,650) v2; Advanced Cell Diagnostics, 324410]. 
Slides were washed 2 × 1 min and blocked in 10% NGS in 
TBX-Tx for 1-h at room temperature. Sections were then 
incubated with primary antibody (Iba1; 1:100; Wako, 
019-09741) diluted in TBS-Tx containing 1% NGS over-
night at RT. Slides were washed 2 × 1 min in TBS-Tx and 
incubated in Alexa Fluor 488-goat anti rabbit (1:250; Inv-
itrogen, A11034) diluted in TBS-Tx containing 1% NGS 
for 2  h at RT. Slides were washed 2 × 1  min in TBS-Tx 
and a drop of RNAscope™HiPlex DAPI (Advanced cell 
Diagnostics; 324420) was added and left for 1 min. Excess 
DAPI was removed, and slides were cover slipped with 
ProLong™ Gold antifade reagent (Invitrogen, P36930). 
Images were taken using Nikon Eclipse Ni-U microscope 
with CFI60 infinity optical system (Nikon Instruments 
Inc.).

Statistical analysis
All statistical tests were completed using GraphPad 
Prism software (version 9, GraphPad, La Jolla, CA). Out-
liers were assessed via the absolute deviation from the 
median method [24] utilizing the very conservative dif-
ference of 2.5X median absolute deviation as the exclu-
sion criterion. Statistical significance was set to α ≤ 0.05. 
Comparisons were made across all groups using two-way 
analysis of variance (ANOVA) with a post-hoc Tukey test 
with the following exceptions: two-way ANOVA with 
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repeated measures was used for comparisons of food 
intake over time, Student’s T-test (two-tailed) was used 
for comparisons in pSyn accumulation in the striatum 
between PFF injected PLX3397B and control rats, two-
way ANOVA with post-hoc Tukey test comparisons in 
THir neurons in the SNpc were made within each brain 
hemisphere separately.

Results
Impact of CSF1R inhibition during peak aggregation 
in the SNpc
Two months of Pexidartinib (PLX3397B) partially depletes 
microglia in both α‑syn PFF and PBS injected rats
Α-syn PFF injected rats displayed substantial accumu-
lation of pSyn within the SNpc ipsilateral to α-syn PFF 
injection as well as significantly more microglia com-
pared to PBS rats, regardless of chow treatment (p < 0.04, 
Fig. 2A–E). Specifically, α-syn PFF injection was associ-
ated with ~ 19% and ~ 37% more microglia in the SNpc of 
control and PLX3397B chow rats, respectively. Treatment 
with Pexidartinib (PLX3397B; 600  mg/kg) for 2  months 
led to a significant depletion of microglia within the SNpc 
in both PBS and α-syn PFF injected rats. PBS PLX3397B 
rats displayed 45% fewer microglia (p = 0.001) and 
α-syn PFF PLX3397B rats displayed 36.6% fewer micro-
glia (p < 0.001) compared to the control fed rats in their 
respective surgical treatment groups (Fig. 2E). These data 
suggest that inclusion-associated increases in microglia 
persist despite significant depletion of microglia due to 
2 months of PLX3397B treatment.

CSF1R inhibition does not impact accumulation of pSyn 
aggregates in nigral neurons or early loss of TH phenotype
Intrastriatal injection of mouse α-syn PFFs results in peak 
pSyn accumulation in the ipsilateral SNpc at 2  months 
[10, 41, 47]. In the present study we observed pSyn accu-
mulation in the ipsilateral SNpc of α-syn PFF injected rats 
(Fig. 2B, D, Fig. 3A) but not in PBS control rats (Fig. 2A, 
C). PLX3397B treatment had no impact on the number 
of pSynir neurons within the SNpc of α-syn PFF rats 
(p > 0.05, Fig. 3B). α-syn PFF rats fed control chow pos-
sessed 4826 ± 229.3 pSyn containing neurons in the ipsi-
lateral SNpc whereas α-syn PFF PLX3397B rats possessed 
4760 ± 148.8. To investigate whether CSF1R inhibition 
prior to α-syn PFF injection impacted pSyn accumula-
tion, rats were pretreated with Pexidartinib (non-binary) 
for one week prior to α-syn PFF injection, along with 
continued treatment for 2 months post injection. Pre and 
post treatment with Pexidartinib (non-binary) did not 
lead to a significant difference (p > 0.05) in the number of 
pSynir neurons within the SNpc (4490 ± 361.2) as com-
pared to rats only receiving Pexidartinib (non-binary) 

post α-syn PFF injections (4370 ± 242.3) or control fed 
rats (3752 ± 442.5; Additional file 3: Figure S3A).

We next examined whether α-syn PFF injection or 
PLX3397B treatment for 2 months impacted THir neurons 
in the SNpc. Utilizing identical PFF surgical parameters 
in rats we have previously observed ~ 0–25% loss of THir 
SNpc neurons at 2 months after α-syn PFF injection, how-
ever parallel neuronal counts revealed that this represents 
loss of TH phenotype in the absence of overt degeneration 
[33, 41]. In the present study, 2  months following α-syn 
PFF injection we observed a 24–33% reduction (p < 0.04) 
in THir neurons in the ipsilateral SNpc as compared to 
the ipsilateral SNpc of PBS injected rats (Fig. 3C, D) both 

Fig. 2  Inclusion-associated increases in microglia persist in the SNpc 
despite CSF1R inhibition. A–D Ionized calcium binding adaptor 
molecule 1 (Iba1, green) and phosphorylated alpha synuclein 
at serine 129 (pSyn, red) immunofluorescence in the substantia nigra 
pars compacta (SNpc) 2 months post intrastriatal alpha-synuclein 
preformed fibril (α-syn PFF) or phosphate buffered saline (PBS) 
injection, with or without Pexidartinib (PLX3397B) treatment. E 
Quantitation of Iba1 immunoreactive microglia in the SNpc in all 
treatment groups. PFF injected rats display significantly more 
microglia in the SNpc in both chow treatment groups. PLX3397B 
treatment resulted in significant microglial depletion in both PBS 
and PFF rats (p ≤ 0.001). Black outline = no PLX3397B; green 
outline = PLX3397B; *p < 0.04; ***p = 0.0001; ****p < 0.0001. Values 
represent the mean ± SEM. Scale bars in A–D are 100 µm
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with and without PLX3397B treatment. No differences in 
THir neurons were observed due to PLX3397B treatment 
(p > 0.05). These results suggest that CSF1R inhibition does 
not impact THir neurons in control rats, nor does it pre-
vent the modest loss of TH phenotype associated with the 
aggregation phase of the PFF model.

CSF1R inhibition does not impact reactive microglia 
morphology or MHC‑II expression associated with α‑syn 
inclusions in the SNpc
pSyn inclusions in the SNpc are associated with 
an increase in microglial soma size and a localized 

expression of MHC-II that correlates with α-syn inclu-
sion load [10, 33]. In the present study, we observed 
numerous MHC-IIir microglia within the SNpc after 
intrastriatal α-syn PFF injection whereas very few 
MHC-IIir microglia were observed in PBS control 
rats (Fig.  4A). Significantly more MHC-IIir microglia 
were observed in both α-syn PFF control and α-syn 
PFF PLX3397B SNpc compared to PBS injected rats 
(p < 0.0001, Fig.  4B). No significant differences were 
observed in the number of MHC-IIir microglia due 
to PLX3397B treatment (p > 0.05, Fig.  4B). Similarly, 
pre and post treatment with Pexidartinib (non-binary) 

Fig. 3  CSF1R inhibition does not impact pSyn aggregation or early loss of TH-immunoreactivity in the SNpc. A Phosphorylated alpha synuclein 
(pSyn) inclusions in the ipsilateral substantia nigra pars compacta (SNpc) 2 months post alpha synuclein preformed fibril (α-syn PFF) injection 
in both Pexidartinib (PLX3397B) and control fed rats. B Quantification of pSyn immunoreactive (pSynir) neurons in the ipsilateral SNpc 2 months 
after α-syn PFF injection in control and PLX3397B rats. PLX3397B treatment had no impact on the number of pSynir neurons within the SNpc. 
C Tyrosine hydroxylase immunoreactive (THir) neurons in the SNpc of α-syn PFF and control phosphate buffered saline (PBS) injected rats, 
with and without PLX3397B treatment. D Quantification of THir neurons in the SNpc 2 months following injection. PFF injected rats possessed 
significantly fewer THir neurons in the ipsilateral SNpc as compared to the ipsilateral SNpc of PBS injected rats. No differences in THir neurons 
were observed due to PLX3397B treatment. Values represent the mean ± SEM. Black outline = no PLX3397B; green outline = PLX3397B; *p = 0.0330; 
**p = 0.0058. Scale bars in A and C are 100 µm
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did not lead to a significant difference (p > 0.05)in 
the number of MHC-IIir microglia within the SNpc 
(1348 ± 95.75) as compared to rats only receiving 
Pexidartinib (non-binary) post α-syn PFF injection 
(1342 ± 84.80) or control fed rats (1167 ± 90.26; Addi-
tional file 3: Figure S3B).

Rats with nigral pSyn inclusions exhibited signifi-
cantly larger microglial soma size in the ipsilateral 
SNpc compared with microglia in the ipsilateral SNpc 
of PBS control rats, regardless of PLX3397B treatment 
(p < 0.0001, Fig.  4C–G). In general, Iba-1 immunore-
active microglia were ~ 15–20% larger in the SNpc of 
PFF injected rats. No significant differences in micro-
glial soma size were observed within PBS or α-syn PFF 
treatment groups due to PLX3397B (p > 0.05).

In previous studies we determined that microglial 
proximal to nigral pSyn inclusions increase Cd74 
expression along with a suite of innate immune genes 
from multiple immune pathways including antigen 
presentation, phagocytosis, T-cell regulation [48]. 
Using Immunofluorescence (IF) combined with fluo-
rescent in-situ hybridization (FISH), we observed that 
microglia proximal to pSyn inclusions in PLX3397B 
treated α-syn PFF injected rats similarly expressed 
Cd74, Csf1r, Cxcl10, Fcer1g, Grn, Rt1-a2 and Tyrobp 
(Fig.  5). Collectively, these results suggest that the 
microglial response to α-syn aggregation is preserved 
despite CSF1R inhibition and significant depletion of 
homeostatic microglia.

Fig. 4  Localized inflammatory response to pSyn inclusions in the SNpc is preserved despite CSF1R inhibition. A Major histocompatibility 
complex II immunoreactive (MHC-IIir) cells in the ipsilateral substantia nigra pars compacta (SNpc) of alpha synuclein preformed fibril (α-syn 
PFF) or phosphate buffered saline (PBS) injected rats with or without Pexidartinib (PLX3397B) treatment. B Quantification of MHC-IIir microglia 
in the ipsilateral SNpc demonstrates a significant increase in PFF compared to PBS rats at 2 months that is unaffected by PLX3397B treatment. C–F 
Ionized calcium-binding adaptor molecule 1 (Iba1, green) and phosphorylated alpha-synuclein at serine 129 (pSyn, red) immunofluorescence 
in the ipsilateral SNpc 2 months after intrastriatal α-syn PFF or PBS injection, with or without PLX3397B. G Quantification of Iba1 immunoreactivity 
(Iba1ir) microglia soma size demonstrates a significant increase following α-syn PFF injection as compared to PBS that is unaffected by PLX3397B 
treatment. Values represent the mean ± SEM. Black outline = no PLX3397B; green outline = PLX3397B; ****p < 0.0001. Scale bars in A and C–F 100 µm
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Impact of CSF1R inhibition during the nigrostriatal 
degeneration phase
Six months of Pexidartinib (PLX3397B) partially depletes 
microglia in both α‑syn PFF and PBS injected rats
Α-syn PFF injected rats displayed modest accumulation 
of pSyn within the SNpc ipsilateral to α-syn PFF injec-
tion, however microglia number was not increased due 
to α-syn PFF injection (p > 0.05, Fig. 6A–E). Similar to the 
effect of 2 months of PLX3397B treatment, 6 months of 

PLX3397B led to a significant depletion of Iba-1 immu-
noreactive microglia in both PBS and α-syn PFF injected 
rats (Fig. 6E, p < 0.001). PBS PLX3397B rats displayed 56% 
fewer microglia and α-syn PFF PLX3397B rats displayed 
36% fewer microglia compared to control fed rats in their 
respective surgical treatment groups. Further, PLX3397B 
α-syn PFF rats possessed significantly more microglia 
than PLX3397B PBS rats (51% increase, p = 0.001). Our 
results confirm successful depletion of microglia using 

Fig. 5  Expression of innate immune genes in microglia proximal to α-syn inclusions is maintained despite CSF1R inhibition. A Immunofluorescence 
(IF) for ionized calcium binding adaptor molecule 1 (Iba1, green) and fluorescent in-situ hybridization (FISH) for Cd74 (red) and Csf1r (blue). B 
IF for Iba1 (green) and FISH for Cd74 (red) and Cxcl10 (green). C IF for Iba1 (green) and FISH for Cd74 (red) and Fcer1g (green). D IF for Iba1 (green) 
and FISH for Cd74 (red) and Grn (green). E IF for Iba1 (green) and FISH for Cd74 (red) and Rt1-a2 (green). F IF for Iba1 (green) and FISH for Cd74 (red) 
and Tyrobp (green). All images taken in the ipsilateral SNpc 2 months post alpha-synuclein preformed fibril (α-syn PFF) injection with Pexidartinib 
(PLX3397B) treatment. Scale bars 50 µm
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PLX3397B over the 6-month interval, although CSF1R 
inhibition may be somewhat less effective in microglial 
depletion during nigrostriatal degeneration.

CSF1R inhibition does not impact pSyn inclusion triggered 
degeneration of nigral dopamine neurons
Our previous work has demonstrated that few pSyn 
inclusions remain in the SNpc 6  months following 
α-syn PFF injection due to the loss of the SNpc neu-
rons that were initially seeded [10, 41]. In general, the 
number of pSyn immunoreactive (pSynir) SNpc neu-
rons observed at 6 months represents 10–20% of what 
is observed during the peak 2-month aggregation phase 
[41]. In the present study we similarly observed an 
approximate 80% reduction in pSynir neurons in the 
SNpc at 6  months when compared to 2  months post 
α-syn PFF injection (p < 0.0001). A modest yet signifi-
cant increase in pSynir SNpc neurons was observed in 
α-syn PFF PLX3397B rats compared to α-syn PFF rats 
fed control chow (p = 0.0470; Fig. 7A, B). We also evalu-
ated the impact of PLX3397B on pSyn accumulation in 
the striatum, a structure in which pSyn accumulation is 
abundant at the 6-month time point [41]. No significant 
differences were observed in pSyn accumulation in the 
striatum of PFF PLX3397B rats compared to α-syn PFF 

control chow rats (p > 0.05, Additional file 4: Figure S4). 
These data suggest that 6  months of PLX3397 treat-
ment results in little to no impact on pSyn accumula-
tion following α-syn PFF injection.

Previous rat α-syn PFF model studies using identical 
surgical parameters reveal significant loss of ipsilateral 
SNpc THir neurons 5–6 months post intrastriatal α-syn 
PFF injection that parallels frank neuronal loss [41]. 
In the present study, 6  months following surgery, we 
observed a 52–55% reduction in THir neurons in the 
ipsilateral SNpc of α-syn PFF rats as compared to the 
ipsilateral hemisphere of PBS injected rats (p < 0.0001), 
both with and without PLX3397B treatment (p < 0.0001, 
Fig.  7C, D). Specifically, the ipsilateral SNpc of α-syn 
PFF rats fed control chow possessed 6333 ± 349.5 
THir neurons whereas the ipsilateral SNpc of PBS rats 
fed control chow possessed 13,221 ± 838.1 THir neu-
rons. The ipsilateral SNpc of α-syn PFF PLX3397B 
rats possessed 5658 ± 967.2 THir neurons compared 
to 12,536 ± 896.8 THir neurons in the ipsilateral SNpc 
of PBS PLX3397B rats. No significant differences were 
observed in ipsilateral SNpc THir neurons in α-syn PFF 
rats due to PLX3397B (p > 0.05). These results suggest 
that CSF1R inhibition does not impact the loss of THir 
SNpc neurons during the degeneration phase of the 
PFF model.

Fig. 6  Long term CSF1R inhibition results in significant microglial depletion during nigrostriatal degeneration. A–D Ionized calcium-binding 
adaptor molecule 1 (Iba1, green) and phosphorylated alpha-synuclein (pSyn, red) immunofluorescence in the substantia nigra pars compacta 
(SNpc) 6 months following intrastriatal alpha-synuclein preformed fibril (α-syn PFF) or phosphate buffered saline (PBS) injection, with or without 
Pexidartinib (PLX3397B). Modest accumulation of pSyn immunoreactive neurons in the ipsilateral SNpc is evident following α-syn PFF injection. 
E Quantitation of Iba1 immunoreactive microglia in the SNpc in all treatment groups. Six months of PLX3397B treatment resulted in significant 
microglial depletion in both PBS and PFF rats. α-syn PFF PLX3397B rats display significantly more microglia compared to PBS PLX3397B rats. Values 
represent the mean ± SEM. No PLX3397B = black outline, PLX3397B = green outline. ****p < 0.0001 ***p = 0.0001. Scale bars in A–D are 100 µm
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Long term CSF1R inhibition results in increased microglia 
soma size and emergence of MHC‑II expression in areas 
outside the SNpc
Analysis of the microglial soma size at 6 months revealed 
that α-syn PFF injected rats possessed significantly larger 
microglia in the SNpc compared to PBS control rats 
regardless of PLX3397B treatment (p = 0.0194, Fig.  8A–
E). Further, 6  months of CSF1R inhibition led to a sig-
nificant increase in microglial soma size in both PBS and 
α-syn PFF injected animals (p < 0.001). We next analyzed 

the number of MHC-IIir microglia in the SNpc ipsilat-
eral to injection. MHC-IIir microglia peak in abundance 
in the SNpc 2 months after intrastriatal α-syn PFF injec-
tion, in immediate proximity to pSyn inclusions [10]. 
Although the number of MHC-IIir microglia decrease 
in abundance over time, MHC-IIir microglia remain 
elevated compared to controls during the degenerative 
phase at 6  months [10]. In alignment with these earlier 
observations, in the present experiment we observed a 
significant decrease in the number of MHC-IIir microglia 

Fig. 7  CSF1R inhibition does not impact degeneration of nigrostriatal dopamine neurons following α-synuclein preformed fibril injection. 
A Phosphorylated α-syn (pSyn) inclusions in the ipsilateral substantia nigra pars compacta (SNpc) 6 months post alpha-synuclein preformed 
fibril (α-syn PFF) injection in both Pexidartinib (PLX3397B) and control fed rats. B Quantification of pSyn immunoreactive (pSynir) neurons 
in the ipsilateral SNpc in rats 6 months after α-syn PFF injection. Significantly fewer pSynir SNpc neurons are observed in α-syn PFF rats fed 
PLX3397B. C Tyrosine hydroxylase immunoreactive (THir) neurons in the SNpc of α-syn PFF and control phosphate buffered saline (PBS) injected 
rats, with and without 6 months of PLX3397B treatment. D Quantification of THir neurons in the SNpc 6 months following surgery. α-syn PFF 
injection resulted in significant loss of THir SNpc neurons in both PLX3379B and control fed rats. Values represent the mean ± SEM. ****p < 0.0001 
*p < 0.05. PLX3397B = green outline, no PLX3397B = black outline. Scale bars in A and C are 100 µm
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Fig. 8  Long-term CSF1R inhibition increases microglial soma size and extranigral major histocompatibility complex II expression. A–D Ionized 
calcium-binding adaptor molecule 1 (Iba1, green) and phosphorylated alpha-synuclein (pSyn, red) immunofluorescence in the ipsilateral 
substantia nigra pars compacta (SNpc) 6 months following intrastriatal alpha-synuclein preformed fibril (α-syn PFF) or phosphate buffered saline 
(PBS) injection, with or without Pexidartinib (PLX3397B). Modest accumulation of pSyn immunoreactive neurons in the ipsilateral SNpc is evident 
following α-syn PFF injection. E Quantification of microglial soma size demonstrates a significant increase associated with PLX3397B treatment. In 
rats not fed PLX3397B, α-syn PFF injection is associated with increased microglial soma size. F Major histocompatibility complex II immunoreactive 
(MHC-IIir) microglia in the ipsilateral SNpc of α-syn PFF and PBS injected rats, with and without 6 months of PLX3397B treatment. G Quantification 
of MHC-IIir microglia in the SNpc demonstrates a significant degeneration-associated increase as compared to PBS injected rats at 6 months 
that is not affected by PLX3397B treatment. H MHC-II expression outside of the SNpc in both α-syn PFF and PBS rats after 6 months PLX3397B 
treatment. I Quantification of MHC-IIir expression in the midbrain parenchyma revealed a significant increase associated with long term PLX3397B 
treatment. Values represent the mean ± SEM. Black outline = no PLX3397B, green outline = PLX3397B. ****p < 0.0001 ***p = 0.001, ** p < 0.01, 
*p < 0.05. Scale bars in A–D and F are 100 µm. scale bars in H are 500 µm
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in the SNpc of PFF injected rats at 6 months compared 
to 2  months (p < 0.0001), representing a reduction of 
approximately 70%. Despite the reduced population of 
MHC-IIir microglia, we observed a significant increase 
in MHC-IIir microglia in α-syn PFF rats compared to 
controls, in both PLX3397B treated (p = 0.0001) and 
untreated (p < 0.0001) groups (Fig.  8F, G). Specifically, 
α-syn PFF control chow rats possessed 302% more MHC-
IIir microglia than PBS control chow rats, whereas α-syn 
PFF PLX3397B rats possessed 214% more MHC-IIir 
microglia than PBS PLX3397B rats. Within surgical treat-
ment groups, no significant differences were observed in 
the number of MHC-IIir microglia in the SNpc due to 
PLX3397B treatment (p > 0.05, Fig.  8G). Further, in rats 
that received PLX3397B chow (both α-syn PFF and PBS) 
we also noticed MHC-II expression in the mesencepha-
lon outside the nigral region (Fig.  8H). Quantification 
of MHC-II expression in the extranigral mesencephalon 
revealed a significant increase associated with long term 
PLX3397B treatment (p = 0.0006; Fig.  8I). Collectively, 
these results suggest that despite significant microglial 
depletion, the localized inflammatory response to nigral 
degeneration normally observed following α-syn PFF 
injection is preserved. Further, long term microglial 
depletion may produce an enhanced proinflammatory 
phenotype in remaining microglia.

Discussion
Imaging and histological studies provide support for 
the presence of ongoing neuroinflammatory processes 
in PD [30, 31, 34, 37, 46, 50, 58]. Our previous studies 
have revealed that microglia react to the aggregation and 
degeneration phases of the rat α-syn PFF model in a con-
sistent, measurable manner [10, 33, 47]. During the peak 
aggregation phase in the SNpc at 2  months, microglia 
increase in number, soma size and MHC-II expression. 
The number of MHC-IIir microglia positively correlates 
to the number of pSyn immunoreactive SNpc neurons 
and is markedly decreased during the nigral degeneration 
phase [10]. During the peak aggregation phase, microglia 
in the immediate vicinity of SNpc inclusions upregulate 
Cd74, Cxcl10, Rt-1a2, Grn, Csf1r, Tyrobp, C3, C1qa, Ser-
ping1 and Fcer1g [48]. Our present results demonstrate 
that CSF1R inhibition significantly decreases homeo-
static microglia. However, the subpopulation of micro-
glia in the immediate vicinity of pSyn inclusions were 
resistant to CSF1R inhibition and continued to upregu-
late MHC-II, Cd74, Cxcl10, Fcer1g, Grn, Rt1-a2, Tyrobp, 
and exhibit increased soma size. Further, CSF1R inhibi-
tion did not prevent α-syn aggregation in the SNpc or the 
striatum or prevent nigral degeneration following intras-
triatal PFF injection.

In the present experiment we initially expected that 
CSF1R inhibition would decrease all microglia, including 
both homeostatic and pSyn inclusion responsive micro-
glia. The maintenance of the pSyn inclusion responsive 
microglial subpopulation, despite CSF1R inhibition, sug-
gests that this subpopulation is not dependent on CSF1R 
activation for survival. Interestingly, a similar phenom-
enon has previously been described in studies examining 
the effect of CSF1R inhibition during retinal develop-
ment. Specifically, homeostatic microglia were revealed 
to be dependent on CSF1R activation, however micro-
glia responding to neuronal apoptosis did not depend 
on CSF1R activation for survival [1]. Additional studies 
using the CSF1R inhibition approaches have reported 
a similar maintenance or an increased inflammatory 
response, despite depletion of the general microglial 
population [4, 12, 13] along with increases in adaptive 
immune cells within the brain [59]. Additional studies 
will be required to understand the mechanism whereby 
pSyn inclusion responsive microglia become CSF1R acti-
vation independent. Insights into this mechanism may 
provide clues for future therapeutic intervention.

The ability to attenuate inflammatory processes 
through CSF1R inhibition has yielded mixed results in 
both AD (Tau; [4] and PD (MPTP [38]) animal models. 
In some studies, CSF1R inhibition has led to the exacer-
bation of neurodegeneration [21, 25, 60] whereas in oth-
ers neuroprotection is observed [38, 40]. Previous studies 
using CSF1R inhibitors in mice employed dosing strate-
gies that resulted in near complete microglial depletion 
(~ 90%) [13, 16, 40]. However, microglia play many roles 
in maintaining healthy homeostasis in the brain [23, 32, 
49] and thus complete microglia depletion may not be a 
safe therapeutic strategy. Therefore, in the present study 
we employed a PLX3397B dosing strategy that elicited 
partial (~ 40%) microglial depletion in the SNpc in the 
⍺-syn PFF model.

Findings support a bidirectional relationship between 
microglia and ⍺-syn aggregation. ⍺-syn aggregation in 
the PFF model is associated with increased microglial 
soma size and MHC-II expression [10]. Microglia can 
degrade neuron-derived ⍺-synuclein and inhibition of 
microglial autophagy can lead to increased ⍺-synuclein 
aggregation [6]. Amplification of the NLRP3 inflamma-
some increases monomeric ⍺-syn levels and accelerates 
the formation of PFF-triggered aggregates [61]. In our 
present study, despite significant homeostatic microglial 
depletion, the MHC-II immunoreactive microglial sub-
population associated with ⍺-syn aggregation was main-
tained. Given that the magnitude of ⍺-syn aggregation 
and nigrostriatal degeneration was unchanged by CSF1R 
inhibition, a more comprehensive understanding of the 
role of the responding microglia is warranted. In addition, 
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studies using ⍺-syn overexpression models, which display 
a different neuroinflammatory profile and magnitude of 
MHC-II expression [9, 28], would add further insight into 
the role of microglia in neurodegeneration.

The approach of microglia repopulation as a therapeu-
tic strategy in order to “reset” microglia has been recently 
proposed with the goal of exchanging dysfunctional with 
functional microglia. However, the results from repopu-
lation studies vary [2, 16] and suggest that repopulation 
comes from the remaining microglia. Our data suggest a 
microglia repopulation strategy would not be beneficial, 
and that the inflammatory response to pSyn inclusions 
and nigrostriatal degeneration would be maintained.

Our study is unique in that the CSF1R inhibition was 
sustained for a period of 6 months, whereas most previ-
ous CSF1R inhibition studies use much shorter deple-
tion intervals (7–28 days [2, 12, 14, 16, 60]. We observed 
evidence of a more pronounced inflammatory state 
in our 6-month CSF1R inhibition study compared to 
our 2-month CSF1R inhibition study. Specifically, after 
6  months of CSF1R inhibition, microglia soma size was 
increased, even within control PBS injected rats. Further, 
after 6 months of CSF1R inhibition we observed MHC-
IIir cells in multiple brain regions, and also in control 
rats. Normally, except for border associated macrophages 
[54, 55], MHC-IIir cells are not often observed in unin-
jured brain regions in control rats. The increased MHC-II 
expression we observe with long term CSF1R inhibition 
may be attributable to microglia or to infiltrating mono-
cytes, border associated macrophages or perivascular 
macrophages [3, 15, 18, 53]. It is unclear whether this 
increased MHC-II expression in these extranigral regions 
exerted any neurotoxic effects. Future investigation is 
required to ascertain the identity of the cells that respond 
to CSF1R inhibition with upregulated MHC-II expres-
sion, as well as whether any detrimental consequences 
result from this increase in MHC-II.

Conclusions
Inflammatory microglia may contribute to PD progres-
sion and microglial based inflammation has been under 
investigation in order to identify therapeutic targets. 
One limitation of the present study is that the response 
of other cell types (peripheral macrophages, astrocytes, 
adaptive immune cells) to CSF1R inhibition was not 
examined. Previous studies have indicated that near 
complete microglial depletion can impact astrocytes 
and adaptive immune cells [4]. Another limitation of the 
present study is that the magnitude of microglial deple-
tion was not that which has been previously achieved in 
mouse studies (~ 90%) [13, 16, 40]. It is possible that near 
complete levels of microglial depletion may have yielded 
different outcomes. Despite these limitations, the present 

study suggests that CSF1R inhibition may not be an effec-
tive, disease-modifying approach for PD and may instead 
induce a heightened proinflammatory state in remaining 
microglia.
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Additional file 1: Figure S1. Chow consumption, rat weight change and 
liver weights after 2 months of PLX3397B treatment. A: Food consumption 
each week in all four rat treatment groups over 2 months post-surgery. B: 
Average weight change in all four rat treatment groups. C: Liver weights 
at time of euthanasia in all 4 rat treatment groups. Values represent the 
mean ± SEM. Black outline = no PLX3397B, green outline = PLX3397B. 
PFF = alpha-synuclein preformed fibrils, PBS = phosphate buffered saline, 
PLX = PLX3397B.

Additional file 2: Figure S2. Chow consumption, rat weight change and 
liver weights after 6 months of PLX3397B treatment. A: Food consumption 
each week in all four rat treatment groups over 6 months post-surgery. B: 
Average weight change in all four rat treatment groups. C: Liver weights 
at time of euthanasia in all 4 rat treatment groups. Values represent the 
mean ± SEM. Black outline = no PLX3397B, green outline = PLX3397B. 
PFF = alpha-synuclein preformed fibrils, PBS = phosphate buffered saline, 
PLX = PLX3397B.

Additional file 3: Figure S3. pSyn aggregation and localized inflamma-
tory response to pSyn inclusions in the SNpc is preserved despite Pexidar-
tinib pretreatment. A: Quantification of phosphorylated alpha-synuclein 
(α-syn) immunoreactive (pSynir) neurons in the ipsilateral substantia nigra 
pars compacta (SNpc) 2 months post α-syn preformed fibril (α-syn PFF) 
injection in rats fed control chow, Pexidartinib (non-binary) chow pre 
and post surgery, and Pexidartinib chow post surgery only. Pexidartinib 
(non-binary) treatment, either pre and post surgery or post surgery only, 
did not impact on the number of pSynir neurons within the SNpc. B: 
Quantification of major histocompatibility complex II immunoreactive 
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(MHC-IIir) microglia in the ipsilateral SNpc 2 months after α-syn PFF 
injection in control. Pexidartinib (non-binary) treatment, either pre and 
post surgery or post surgery only, did not impact the number of MHC-IIir 
microglia within the SNpc.

Additional file 4: Figure S4. CSF1R inhibition for 6 months does not 
impact accumulation of phosphorylated alpha-synuclein in the striatum. 
Quantification of phosphorylated alpha-synuclein (pSyn) accumulation in 
the striatum 6 months following intrastriatal alpha-synuclein preformed 
fibril (α-syn PFF) in Pexidartinib (PLX3397B) rats compared to rats that 
were fed control chow. No significant difference was seen in striatal pSyn 
load between treatment groups.

Additional file 5: Table S1.  Detailed FISH probe information.
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