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Abstract

The depth, pattern, timing and duration of unconsciousness, including sleep, vary greatly in inflammatory disease,
and are regarded as reliable indicators of disease severity. Similarly, these indicators are applicable to the
encephalopathies of sepsis, malaria, and trypanosomiasis, and to viral diseases such as influenza and AIDS. They are
also applicable to sterile neuroinflammatory states, including Alzheimer’s disease, Parkinson’s disease, traumatic
brain injury, stroke and type-2 diabetes, as well as in iatrogenic brain states following brain irradiation and
chemotherapy. Here we make the case that the cycles of unconsciousness that constitute normal sleep, as well as
its aberrations, which range from sickness behavior through daytime sleepiness to the coma of inflammatory
disease states, have common origins that involve increased inflammatory cytokines and consequent insulin
resistance and loss of appetite due to reduction in orexigenic activity. Orexin reduction has broad implications,
which are as yet little appreciated in the chronic inflammatory conditions listed, whether they be infectious or
sterile in origin. Not only is reduction in orexin levels characterized by loss of appetite, it is associated with
inappropriate and excessive sleep and, when dramatic and chronic, leads to coma. Moreover, such reduction is
associated with impaired cognition and a reduction in motor control. We propose that advanced understanding
and appreciation of the importance of orexin as a key regulator of pathways involved in the maintenance of normal
appetite, sleep patterns, cognition, and motor control may afford novel treatment opportunities.
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Introduction: TNF and IL-1 in disease
pathogenesis
A number of proinflammatory (and indeed anti-
inflammatory) cytokines exist, but for conciseness,
comments will largely be restricted to tumor necrosis
factor (TNF) and interleukin-1 (IL-1). In practice, this
will mean IL-1β, since its twin, IL-1α, mostly avoids assay
by remaining cell-bound, and is thus absent from serum.
In brief, TNF activates NLRP3, a NOD-like receptor,
which in turn activates caspase-1, which, as the IL-1β
cleavage enzyme, converts the TNF-induced precursor,
pro-IL-1β, to active IL-1β [1]. Studies in a rheumatoid
arthritis context make the case for TNF being the master
cytokine that initiates the inflammatory cascade [2]. In
addition, being the specific target of a number of
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biological drugs in wide use gives TNF high profile in the
disease literature. TNF and IL-1 share many functions
[3], including the capacity to induce each other and
interleukin-6 (IL-6) [4]. This cytokine has a number of
important activities, and is often a convenient marker for
inflammatory reactions because it appears in the circula-
tion later, when illness is more evident, and it remains at
higher levels for longer than either IL-1 or TNF. Both
TNF [5] and IL-1 [6] are phylogenetically ancient, as are
orexin (hypocretin) [7] and insulin [8], two mediators
discussed here because of their functional alliance to
TNF and IL-1, arguably present for many millions of
years.
Both TNF and IL-1 have proved to be both ubiquitous

and pleiotropic, and if one is present, the other typically
will be also. While often grouped on their capacity to
mediate innate immunity, they have physiological and
disease roles that, at least in the literature, overshadow
their immune functions. Hence, while often termed
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proinflammatory cytokines, in increasing concentrations
they modulate normal physiology (including physio-
logical sleep), the innate arm of the immune system, and
inflammatory disease processes and progression. This
occurs in conditions caused by infectious agents in gen-
eral [9], and, as well as those discussed in this text,
Crohn’s diseases [10], psoriasis [11], spondyloarthritis
[12], rheumatoid arthritis [13], amyotrophic lateral scler-
osis [14], Behçet’s disease [15], graft-versus-host disease
[16], acute heart failure [17], preeclampsia [18], and
autoimmunity in general, as well as aspects of the illness
that accompanies malignancies [19].

Inflammatory cytokines and sleep
Interferon was one of the first (1983) cytokines to be im-
plicated in sleep [20] but has been less investigated than
others, probably because its species specificity limits gen-
eralizations. The following year IL-1, previously known
as endogenous pyrogen (the link being unexpectedly
made because both were identical to serum amyloid A-
inducer and lymphocyte-activating factor (LAF) [21])
was first associated with sleep [22]. TNF, first described
in 1975 for its in vivo capacity to kill tumor cells [23],
was, six years later, shown to kill malaria parasites
in vivo, and proposed, along with IL-1 (then known as
LAF), to cause the disease complexities of malaria and
sepsis [24,25]. While sleep aberrations are part of these
conditions, they were not singled out as a particular out-
come of the presence of these cytokines. Soon after be-
coming available in recombinant form, these cytokines
were confirmed to be linked to physiological sleep in
1987 [26], and an awareness developed of the metabolic
and disease relevance of this association [27]. As
reviewed in 1995 [28], this group and others had, by then,
done considerable work on these effects being amplified
by the increased cytokines generated by microbial infec-
tions, and also the implications of their functional redun-
dancy. Moreover, just before the normal time of sleep
onset for rats, TNF levels in brain tissue were shown to
be 10-fold higher than their daily minimum [29]. Diurnal
variations of the soluble TNF receptors (two forms exist,
induced by increases in TNF) in plasma from healthy hu-
man volunteers are consistent with this model [30]. Key
steps in establishing the importance of TNF in sleep were
its suppression by an anti-TNF antibody [31] and both
spontaneous and influenza-induced sleep being vari-
ously altered in double TNF receptor-deficient mice
[32]. In brief, when uninfected, these mice had less non-
rapid eye movement sleep (NREMS) than wild-type mice
at night-time and more rapid eye movement sleep (REMS)
than control mice during the day, whereas challenge with
mouse-adapted influenza X-31 enhanced NREMS and de-
creased REMS in both strains to roughly the same extent.
In addition, the strain lacking TNF receptors had higher
levels of orexin mRNA. As recently summarized [33],
wakefulness enhances TNF protein levels and expres-
sion in brain, and the highest normal brain levels, at least
in the rat, occur at the time of usual sleep onset. Sleep
deprivation elevates levels even further, the effects of
which we experience in jetlag.
The nocturnal surge of melatonin that arises in the

pineal gland, and determines the synchronization of pin-
eal function with the diurnal cycle, has been studied ex-
tensively in normal physiology. Melatonin is, however,
relatively absent from the literature on sleep variation in
disease, with the exception of a recent valuable contribu-
tion [34]. In brief, therefore, we note that melatonin is
well-recognized as an inhibitor of TNF [35-37], and that
TNF, in turn, transiently inhibits its production [38]. In-
ferences regarding the previous paragraph can be drawn
from these observations.
The roles of orexin (hypocretin), including
sleep/wake cycles
Orexin, a pleiotropic neuropeptide recently reviewed in
detail [39], is a member of the incretin gene family of
peptides [40,41], to which glucagon-like peptide-1 (GLP-
1), discussed later, belongs. In brief, orexin has two
isoforms, orexin A (hypocretin-1) and orexin-B (hypo-
cretin-2), a single precursor protein, and two ubiqui-
tously distributed receptors (OXR1 and OXR2), details
of which need not concern a brief overview such as this.
As recently reviewed [42], neurons that synthesize
orexin are located in the lateral hypothalamus, said to be
the key executive function site in the central nervous
system. For decades, it has been well documented that
this site governs core survival behaviors, such as sleep/
wake cycles, energy metabolism, fight, flight, and food
consumption. Typically orexin reaches critical sites in
the brain through elaborate innervation throughout the
brain, particularly in regions related to wakefulness [43].
Evidence for cerebrospinal fluid (CSF) levels of orexin
reflecting its degree of neurotransmission, or even func-
tional meaning, is argued to be still lacking [44]. Indeed,
it seems safest to speak of this neuropeptide in terms of
the degree of activity in the hypothalamic orexin neur-
onal network [45]. When levels of this activity are high,
it orchestrates the appropriate levels of alertness re-
quired for planning and executing goal-oriented behav-
iors [45]. Low levels of orexin initiate sleep, and very low
levels coma. Although still off the beaten path of many
medical researchers, this neuropeptide may, in addition
to its many other roles, be as close as we have yet come
to understanding what modulates sleep depth and
the sleep/wake cycle [46]. The involvement of orexin in
the sleep pathology of neuroinflammatory diseases is
discussed later.
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The concept of sleep rinsing the brain of
molecules that accumulate while awake
In the absence of a lymphatic circulation to remove ex-
cess interstitial protein, the brain relies on its interstitial
spaces, and thence the CSF, to serve this purpose. A re-
cent report of a dramatic and quite unexpected diurnally
cyclic event may well have rewritten assumptions of
extracellular fluid flows in the mouse brain [47,48], and
thus paved the way for novel explanations of sleep and
related phenomena in mammals in general. Briefly, in-
flux into the brain interstitial space of a tracer intro-
duced into the CSF was reduced by ∼95% in awake as
compared with sleeping mice, arguing that the space to
which CSF has access is considerably enlarged during
sleep. In other words, the flow of CSF through the inter-
stitial space is reduced during waking to only 5% of the
flow found in sleep. Since an author of this work had
earlier shown that interstitial fluid levels of amyloid-β
(Aβ) in the brains of amyloid precursor protein (APP)
transgenic mice correlated with time spent awake, and
were significantly increased by chronic sleep restriction
[49], radiolabeled soluble Aβ clearance was monitored,
and levels were found to fall at twice the rate in sleeping
than waking mice. It seems reasonable to predict that
other molecules used as markers of Alzheimer’s disease
(AD), such as pTau, α-synuclein and TNF, will prove to
clear at the same rate as Aβ during sleep, with practical
implications for timing CSF collection when studying
patients.

Implication for interpreting recently published
data
Although these observations in mice are yet to be applied
to studies of the human brain, or duplicated independ-
ently, their capacity to allow alternative interpretations of
data is already impressive. For example, infusing the dual
orexin receptor antagonist, almorexant, used to treat in-
somnia, into the cerebral ventricles suppresses the level
of Aβ in brain interstitial fluid, and abolishes the natural
diurnal variation of Aβ [49]. Moreover, systemic treat-
ment with almorexant once daily for 8 weeks decreased
Aβ plaque formation in the brain of APP transgenic mice
[49,50]. However, almorexant would have considerably
increased sleep time, so the period of brain flushing
would increase considerably. One can therefore predict
that Aβ, or any other free molecule in the brain intersti-
tial fluid, would, purely by fluid mechanics, have little op-
portunity to accumulate post-almorexant. Nor would it
show a diurnal pattern.

Implications for normal diurnal changes in brain
inflammatory cytokines, and thus Aβ
The passive removal of either TNF or Aβ from the brain
interstitial fluid is simply a case of going with the flow,
since any protein in the cerebral interstitial space can be
expected to be flushed away with the same kinetics as
shown for Aβ [48]. Presumably, this regular diurnal re-
moval of TNF would allow the activity of orexigenic
neurons in the lateral hypothalamus to rise each morn-
ing, gearing up the individual to face the challenges of
the day [51]. The more profound question is why, as
each awake period progresses, the rise in TNF [33] and
Aβ [49] in CSF should occur. Increases in inflammatory
cytokines have recently been argued to arise from
physiological neuronal activity orchestrating actions of
immune cells, vascular cells and neurons [52]. The
physiological rise of soluble Aβ in awake subjects can be
expected to follow, and be a consequence of, the in-
crease in levels of inflammatory cytokines in the CSF of
the human volunteers referred to previously [49], since
APP expression [53-55] and its cleavage to Aβ [56-59]
require increases in these mediators. These data also ex-
plain raised levels of Aβ and AβPP proteins in infectious
diseases [60-62], since pathogens stimulate TNF gener-
ation [9].

Implications for the poor cognition of disturbed
and limited sleep
Common experience shows us that chronically broken
or lost sleep has a great cognitive cost, and the link is
well documented [63]. Hospital admittance for major
surgery illustrates the phenomenon, and procedures
such as coronary artery bypass surgery provide an ex-
ample. They tend to be followed by cognitive decline,
and excessive cerebral levels of inflammatory cytokines
have been implicated [64], with TNF particularly in the
spotlight [65]. Current ideas on how such cytokines in-
crease so dramatically in these patients include volatile
anaesthetics [66] and mitochondrial DNA, which, like
bacterial DNA is hypomethylated, released from cells
disrupted by surgical trauma [67]. An additional con-
tributor to this cytokine increase is likely to be short and
fragmented sleep, a well-recognized hazard for hospital
patients, especially those undergoing intensive care
[68,69]. The novel data on diurnal changes in brain
interstitial space discussed previously [48] predicts that
absence, during intensive care, of the normal nocturnal
cerebral rinse provided by a good night’s sleep will cause
levels of brain TNF, already excessive, to accumulate fur-
ther, worsening surgery-induced cognitive defects. As
recently reviewed [70], the negative effects of sleep
deprivation, and the associated effect of increased levels
of TNF on learning and memory, synaptic plasticity and
expression of cognition-related signaling molecules are
active topics of research. A recent study of a wide array
of inflammatory markers in healthy young adult volun-
teers who underwent 40 hours of total sleep deprivation
demonstrates the principle [71].
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Sickness behavior, daytime sleepiness, and insulin
resistance
Excessive generation of TNF and IL-1 in infectious and
autoimmune diseases is associated with fever, fatigue, in-
anition, skeletal muscle catabolism, and a tendency to
sleep during normal periods of wakefulness, a syndrome
referred to as sickness behavior [72,73]. As has been
noted [74], this syndrome appears to be the expression of
a central motivational state that reorganizes the organ-
ism’s priorities to cope with the harmful effects of patho-
gens. This includes changes in the diurnal pattern, the
mechanism for which has been shown to be suppressed
expression of the PAR bZip clock-controlled genes Dbp,
Tef, and Hlf and of the period genes Per1, Per2, and Per3
by increased levels of TNF and IL-1, the two most-
studied inflammatory cytokines [75]. These authors also
reported that increased TNF interferes with the expres-
sion of Dbp in the suprachiasmatic nucleus and causes
prolonged rest periods in the dark, the time when mice
normally show spontaneous locomotor activity. Not
surprisingly, therefore, elements of sickness behavior
characterize all chronic inflammatory diseases, whether
or not a pathogen has initiated the event. Should the
reorganization of the animal’s resources overcome the
pathogen or injury, and homeostasis be re-established, all
is well. Should, however, the chronic inflammatory re-
sponse be relentless and the reorganized metabolism and
altered diurnal pattern continue unabated, it becomes a
liability, potentially leading to a fatal outcome character-
ized by energy shutdown and anorexia [76]. More acute
outcomes have additional distinctive clinical characteris-
tics that have been argued to operate through the same
principles [77].
As might therefore be expected, daytime sleepiness is

a common manifestation of a disrupted diurnal cycle,
and a characteristic of the continuing chronic inflamma-
tory states largely driven by these two cytokines. An ex-
ample is AD, in which clock gene function, and hence
the diurnal cycle, was shown to be distorted [78] some
years before it was appreciated that TNF and IL-1 are
not only central players in the pathogenesis of this con-
dition but also regulators of clock genes themselves (see
previous paragraph). It had already been reported that
the duration of daytime sleep in AD correlated with the
degree of functional impairment [79,80]. Other examples
of daytime sleepiness in chronic inflammatory states are
Parkinson’s disease (PD) [81,82], traumatic brain injury
(TBI) [83,84], stroke [85,86], heart failure [87,88], and
type-2 diabetes (T2DM) [89].
Clock genes, present in all tissues, are closely orches-

trated to maintain normal physiology and diurnal pat-
terns [90]. They undergo insulin-dependent regulation
[91]. Circadian clock oscillation is altered in the hearts
and livers of mice in which diabetes has been generated
with streptozotocin [92], and can be corrected by inject-
ing insulin to overcome insulin resistance. This is con-
sistent with GLP-1 mimetics being therapeutically useful
against T2DM through their ability to correct insulin re-
sistance [93], which is evidently present in sickness be-
havior [94,95]. One such agent in regular clinical use,
exenatide, has been reported to shorten daytime sleepi-
ness in patients with T2DM [96]. Conceivably this class
of agents, being related to orexin (that is, hypocretin),
through the incretin family, as mentioned, could also
prove, through an ability to correct altered diurnal pat-
terns, to improve daytime sleepiness in the range of con-
ditions discussed in the previous paragraph. As we have
recently reviewed [97], GLP-1 mimetics routinely pre-
scribed for T2DM have been reported to improve experi-
mental models of AD (reversed memory impairment and
synaptic loss) [98], PD (preserved dopaminergic neurons)
[99], TBI (reversed behavioral impairment and memory
deficits) [100,101], and stroke (reduced brain damage and
improved functional outcome) [99,102].

Orexin in the sleep pathology of inflammatory
brain diseases
Orexin neuron activity is suppressed by bacterial lipo-
polysaccharide (LPS), a cytokine inducer commonly used
to model inflammatory disease, including abnormal
sleepiness and anorexia [103-105]. It is also suppressed by
TNF (for which LPS is the prototype inducer [23]) pre-
dominantly through this cytokine degrading the mRNA
of orexin precursor in a time- and dose-dependent man-
ner [106]. One might therefore predict that orexin activity
is reduced in states in which consciousness is depressed
and TNF is increased, such as TBI, septic encephalopathy,
and the post-chemotherapy brain. All three of these con-
ditions have been tested, and shown promise. For ex-
ample in 44 consecutive TBI patients CSF orexin levels
were abnormally low in 95% of moderately to severely af-
fected individuals 1 to 4 days after trauma [107], and
6 months later levels were still significantly low in pa-
tients, with post-traumatic excessive daytime sleepiness
[108]. Unfortunately, low orexin is yet to reach the review
literature on high levels of TNF in TBI [109]. Mouse TBI
data provide compatible orexin results [110], and in con-
junction with an anti-TNF report in the same model
[111], are ripe for TNF-orexin linkage. A series of reports
[112] of TBI cases in which anti-TNF was administered,
may then eventually lead to controlled human studies
combining these same components.
In a similar vein, a mouse sepsis model has been used

to demonstrate, histologically, a six-fold decrease in
orexigenic activity in the hypothalamus 48 hours after
cecal ligation and puncture [113]. Injecting 3 nmol orexin
intracerebroventricular (i.c.v.), an amount and route pre-
viously shown to overturn narcolepsy in orexin-deficient



Clark and Vissel Journal of Neuroinflammation 2014, 11:51 Page 5 of 11
http://www.jneuroinflammation.com/content/11/1/51
mice, reversed all changes within an hour. Although this
text did not focus on encephalopathy, it relates a trans-
formation, caused by i.c.v. orexin, from lethargy and loss
of response to several stimuli to agitation and hyper-
responsiveness to the same stimuli. Likewise, poor sleep
quality in patients after chemotherapy has been closely
linked to their inflammatory markers [114]. In the post-
chemotherapy brain, the pathogenesis of which involves
excess TNF generation [115] and lowered orexigenic ac-
tivity [116], i.c.v. orexin reversed fatigue (that is, restored
voluntary ambulatory activity) in a mouse model [116].
In addition to that seen in sepsis, the encephalopathies

of malaria (often referred to as cerebral malaria), tryp-
anosomiasis, AIDS and influenza warrant examining to
see if whether orexigenic neuronal activity is depleted,
and i.c.v. orexin restores function, since deep prolonged
pathological sleep (that is, reversible coma without ratio-
nale) and high TNF are already in place [117-122]. The
orexin link has already been made with trypanosomiasis
[123]. Regarding malaria, recent evidence that LPS sup-
presses orexigenic activity [105] is consistent with earlier
arguments that LPS and malaria generate diseases that
are fundamentally the same [124]. Subsequent reports of
parallels between septic and malarial encephalopathies
noted in immunohistological studies on patient material
[125,126] strengthen the case further. The concept is also
conceivable for post-radiotherapy brain, in which orexin
levels have not been published, but fatigue is notable
[127]. Side effects can be ameliorated when either an
anti-TNF monoclonal antibody [128] or a GLP-1 mimetic
[129], two agents expected to increase orexin output
[106,130], is administered soon after irradiation in mouse
models. It is also illuminating that the molecular re-
sponse of the mouse brain within a few hours after low-
dose irradiation down-regulates neural pathways associ-
ated with cognitive dysfunctions that are also reduced in
AD [131]. A GLP-1 mimetic also ameliorates a mouse
model of TBI [100,101], one of the high TNF conditions
noted to exhibit reduced brain orexin [108,110].
The literature on orexin and both AD and PD, two

conditions characterized by chronic inflammation and
circadian alterations that include daytime sleepiness, has
a complex history. Potentially, one side of this contro-
versy places these diseases outside the logic arrived at
for sepsis, TBI and chemotherapy brain, as discussed.
This impression arises from the number of reports that
orexin levels in CSF samples are not significantly differ-
ent in clinical cases and controls in AD [132,133] or in
PD [134,135]. The alternative arguments, in favor of dir-
ectly examining the orexigenic activity in the hypothal-
amus, and of viewing CSF levels as being a diagnostic
tool to confirm severe cases rather than useful for un-
derstanding pathogenesis of AD [136,137] and PD
[44,138,139], are consistent with the reasoning and
methods employed in the sepsis encephalopathy and
chemotherapy literature cited previously. Since i.c.v.
orexin is reported to restore function in these conditions
[113,116], this second line of reasoning seems the most
plausible. Given that high cerebral TNF is a common de-
nominator in these conditions, it is an obvious next ex-
perimental step to see w this increase explains why
hypothalamic orexigenic activity is reduced [106] in all the
conditions in the previous few paragraphs. Certainly, clari-
fied arguments on a possible key role of orexin in AD and
PD would, for the reasons outlined, give additional weight
to the relevance of anti-TNF agents and GLP-1 mimetics,
in which there is already close interest, as rational treat-
ments for these two conditions. It would also add further
urgency to developing a specific orexin agonist.
Orexin in cognition, appetite, and water intake
To understand the role of orexin deficiency in AD and
PD it is also crucial to appreciate that this neuropeptide,
which is depressed by TNF, performs a number of key
roles in memory acquisition and consolidation [140,141],
as well as in long-term potentiation [142-144]. These
data are entirely consistent with anti-TNF and GLP-1
mimetics improving cognition, as recently reviewed [97].
Regarding the relative importance of inflammatory path-
ways (to which orexin belongs, since TNF suppresses it)
and Aβ in AD, we note that orexin can improve mem-
ory, even in mice overproducing Aβ [145]. The poor ap-
petite that is a component of sickness behavior and
occurs in chronic inflammatory diseases, such as AD
and PD [146,147], is also consistent [148,149] with
orexin inhibition by TNF [106]. Likewise, i.c.v. orexin in-
creases water intake [150], so a reduced physiological
thirst response in AD [151] is not unexpected.
Orexin in motor control
Several converging lines of evidence are consistent with
orexin dependence of central motor control, including
the stage being set by direct innervation from the orexi-
genic hypothalamic neurons to essential subcortical
motor structures [152]. In addition, orexigenic neurons
are increasingly active during movement [153,154], and
injecting orexin into the midbrain triggers locomotion
[155]. More recent work [156] has demonstrated that
orexin (orexin A, acting via both receptors) enhances
the sensitivity of neurons in the lateral vestibular nu-
cleus. Thus, orexigenic activity, increased on demand, is
reasoned [156] to regulate the muscle tone required for
normal subtleties of vestibular-mediated posture, motor
balance, and negative geotaxis. Clearly, these observa-
tions have implications for understanding aspects of
neurodegenerative diseases in which chronic inflamma-
tion down-regulates orexin, as discussed.
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Therapeutic prospects and roles for orexin
agonists
GLP-1 and exenatide, one of its two mimetics in clinical
use, have been reported to excite orexin neurons in
ex vivo hypothalamic slices [130]. If this translates to
in vivo, these agents could be regarded as functionally
similar to an orexin agonist. This rationalizes the capacity
of GLP-1 mimetics to shorten daytime sleepiness in
T2DM, as discussed earlier [96]. Moreover, insulin resist-
ance occurs in orexin knockout mice [157], and hypo-
thalamic orexin prevents insulin resistance in a stress
model in mice [158]. Thus, excitation of orexin by exena-
tide [130] is an additional rationale for GLP-1 mimetics
generating positive in vivo outcomes, beyond improving
insulin resistance, in experimental models of AD [98]
and PD [99], as well as T2DM. Since TNF inhibits orexin
[106], orexin increase through exenatide [130] could be
regarded as another anti-TNF effect of the GLP-1 mi-
metics, and is consistent with the literature on specific
anti-TNF agents reducing pathological human sleep
[159-162], as it does physiological sleep [31,163]. It also
takes our understanding of exenatide shortening daytime
sleepiness in T2DM patients [96] to another level.
Another therapeutic possibility for orexin excitation

has arisen within the literature on administering the
branched-chain amino acids (BCAAs), leucine, isoleu-
cine, and valine. In brief, therapeutic interest in this trio
began in the early 1970s when they were reported to re-
duce the muscle protein catabolism of chronic inflamma-
tion [164]. Therefore, BCAAs began to be investigated
for possible utility to treat burns, sepsis, and trauma.
Their popularity as an uncontrolled over-the-counter diet
supplement at least minimizes toxicity concerns, as does
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unexpected, since orexin is associated with the regula-
tion of stress, depression, and reward in alcohol depend-
ence [173]. Hence, an orexin mimetic could be a useful
addition to anti-TNF agents and GLP-1 mimetics for
treating the excessive sleep and coma in inflammatory
brain states, as well as their cognitive dimension. A re-
cent orexin-replacing ‘designer drug’ provides a promis-
ing approach [174].

Conclusions
This review argues the case that, as with other manifes-
tations of inflammatory disease, pathological uncon-
sciousness arises from distortions of the same cytokine
and neuropeptide pathways that govern normal sleep.
Specifically, the sleep aberrations seen in inflammatory
illnesses, ranging from sickness behavior through day-
time sleepiness to coma, have a common biological
background involving increased inflammatory cytokines
and consequent insulin resistance and orexin reduction.
The logic of this literature reasons the relevance of anti-
TNF agents and GLP-1 mimetics in treating these sleep
aberrations, as well as the desirability of developing
orexin mimetics for the purpose (Figure 1).
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