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Abstract

Background: Information regarding the response of brain cells to infection with herpes simplex
virus (HSV)-1 is needed for a complete understanding of viral neuropathogenesis. Ve have recently
demonstrated that microglial cells respond to HSV infection by producing a number of
proinflammatory cytokines and chemokines through a mechanism involving Toll-like receptor 2
(TLR2). Following this cytokine burst, microglial cells rapidly undergo cell death by apoptosis. We
hypothesized that TLR2 signaling might mediate the cell death process as well.

Methods: To test this hypothesis, we investigated HSV-induced cell death of microglia obtained
from both wild-type and TLR2”- mice. Cell death was studied by oligonucleosomal ELISA and
TUNEL staining, and the mechanisms of apoptosis were further analyzed using murine apoptosis-
specific microarrays. The data obtained from microarray analysis were then validated using
quantitative real-time PCR assays.

Results: HSV infection induced apoptotic cell death in microglial cells from wild-type as well as
TLR2 cells. However, the cell death at 24 h p.i. was markedly lower in knockout cells. Furthermore,
microarray analyses clearly showed that the expression of pro-apoptotic genes was down-
regulated at the time when wild-type cells were actively undergoing apoptosis, indicating a
differential response to HSV in cells with or without TLR2.

Conclusion: We demonstrate here that HSV induces an apoptotic response in microglial cells
which is mediated through TLR2 signaling.

Background

In the central nervous system (CNS), microglial cells gen-
erate the first line of defense against invading pathogens
[1]. They are key immune cells that survey the brain
parenchyma. During early onset of infection, microglia
become activated and produce proinflammatory
cytokines and chemokines. Production of these proin-
flammatory mediators may result in the infiltration of

lymphocytes across the blood-brain barrier to sites of viral
infection [2]. Microglia are functionally very similar to
macrophages in that they clear up dead neurons and other
cell debris by phagocytosis [1,2]. Therefore, efficient
immune functions by microglial cells may be critical in
controlling a number of CNS infections.
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Herpes simplex virus 1 (HSV-1) is a neurotropic virus that
infects a wide range of mammalian cells. Following pri-
mary infection of epithelial cells, HSV gains access to the
nervous system and establishes latency in ganglionic neu-
rons. Viral reactivation from this latent state may result in
herpes encephalitis. A number of studies have demon-
strated that Toll-like receptor (TLR) signaling in microglia
is critical in generating innate immune responses against
viral pathogens in the CNS [3-7]. In cell lines, HSV infec-
tion has been shown to activate signaling from TLR2 and
TLRY [4,8,9]. While TLR2 is localized on the cell surface,
TLRY is expressed intracellularly on lysosomal mem-
branes. In a recent report, TLR2-deficient neonatal mice
were found to be less susceptible to encephalitis caused by
HSV, suggesting that TLR2 plays an important role in dis-
ease pathogenesis [4].

We have previously shown that microglial cells respond to
HSV-1 by producing a large number of proinflammatory
immune mediators in a TLR2-dependent manner [3].
Interestingly, however, these cells undergo apoptotic cell
death following immune mediator production [10].
Although activation of TLR signaling has been shown to
induce apoptosis in cell lines [11,12], little is known
about TLR involvement in cell death of primary brain
cells. In this study, we hypothesized that TLR2 signaling
induces HSV-mediated microglial cell apoptosis.

Methods

Preparation of microglial cell cultures

Wild type and TLR2-/- C57BL/6 mice were purchased from
the Jackson Laboratories (Bar Harbor, ME). Purified
microglial cell cultures (>99% pure), as determined by
MAC-1 antibody staining (Roche Applied Science, Indian-
apolis, IN), were prepared from these mice using a previ-
ously described method with minor modifications [13].
Growth medium for microglial cell cultures was Dul-
becco's modified Eagle's medium (DMEM) with 10%
heat-inactivated fetal calf serum (HyClone Laboratories,
Logan, UT) and antibiotics. For microarray analysis and
real-time PCR assay, 1 x 10° cells/sample were used. For
oligonucleosomal ELISA and TUNEL staining, 2 x 10°
cells were used.

Virus

A highly neurotropic HSV-1 17 syn* strain, propagated
and purified from rabbit skin fibroblasts, was used for
infection studies at a multiplicity of infection (MOI) of 2.
After adding virus, culture plates were incubated at 37°C
for the indicated time points.

Oligonucleosomal ELISA

A sandwich ELISA-based system (Roche Applied Science)
was used to detect nucleosomes generated due to DNA
fragmentation during apoptosis. The assay was performed
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at the indicated time points as per the manufacturer's
instructions. Data are representative of three independent
experiments, and bars represent the mean + SD of tripli-
cate samples.

TUNEL staining

Wild type and TLR27/- microglial cells were infected with
HSV (MOI = 2) and DNA fragmentation was determined
by terminal deoxynucleotidyl transferase (TdT)-mediated
dUTP-X nick end labeling (TUNEL) using the ApopTag ®
peroxidasein situ apoptosis detection kit (Millipore,
Temecula, CA). Microglial cells were cultured on Lab-Tek
chamber slides at a density of 2 x 105 cells per well. At the
end of the incubation period, cells were fixed in 4% para-
formaldehyde for 20 min followed by a staining proce-
dure according to the manufacturer's protocol.

Microarrays

Mouse-specific OligoGEArray® apoptosis microarrays
(OMM-12) (SuperArray, Frederick, MD) were used for our
studies, and hybridization procedures were performed per
manufacturer's instructions. Wild type and TLR2- micro-
glial cells were treated with HSV, and total RNA was
extracted after 8 h and 24 h post-infection (p.i.) using the
RNeasy mini kit (Qiagen, Valencia, CA). Following the
chemiluminescent detection steps, positive spots on
arrays were scanned using a Kodak Image Station 2000R
(Molecular Imaging Systems, Rochester, NY) and were
quantified using GEA analysis suite software (SuperAr-
ray). Data were analyzed as relative induction after each
gene was normalized to the house-keeping gene GAPDH.

Quantitative real-time PCR

c¢DNA was synthesized using 1 pg of total RNA from unin-
fected and infected wild-type and TLR2-/- microglia, at 8 h
and 16 h p.i,. using Superscript II reverse transcriptase
(Invitrogen, Carlsbad, CA) and oligo dT,_;, primers
(Sigma-Genosys, The Woodlands, TX). PCR was per-
formed with the FullVelocity SYBR Green QPCR master
mix (Stratagene, La Jolla, CA). The PCR conditions for the
Mx3000P QPCR System (Stratagene) were: 40 denatura-
tion cycles of 95°C for 10 s, annealing at 60°C for 10 s
and elongation at 72°C for 10 s. The relative product lev-
els were quantified using the 2(-Delta Delta C(T)) method
[14] and were normalized to B-actin, and are representa-
tive of three independent experiments. Forward and
reverse primer sequences used in the study: caspase-3: 5'-
gggcctgaaataccaagtca-3'  and  5'-aaatgaccccttcatcacca-3';
Dsipl: 5'-ggtggccctagacaacaaga-3' and 5'-tcaagcagctcac-
gaatctg-3'; CIDE-B: 5' ctggaactcagctcctccac-3' and 5'- ccte-
caggaccagtgttagc-3'; caspase-2: 5'- cagctccaagaggtttttcg-3'
and 5'- acatccaggggattgtgtgt-3'; Tnfrsf12a: 5'-gattcggcttggt-
gttgatg-3' and 5'-cagtccatgcacttgtcgag-3'; RipK2: 5' cagct-
gggatggtatcgttt-3' and 5'- tggttaaggcaggcttcagt-3'.
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Results and discussion

TLR2 signaling mediates HSV-induced apoptosis in murine
microglia

To test the hypothesis that TLR2 signaling is involved in
the induction of apoptosis in HSV-infected microglia, 2 x
105 cells/sample were infected with the neurotropic HSV-
1 strain 17 syn*. We have previously demonstrated that
HSV infects both wild-type and TLR2-/- microglia with
similar efficiencies [3], and that apoptosis in virus-
infected wild-type microglia peaks at 24 h p.i. [10]. Fol-
lowing these observations, we harvested cells at 8 h and
24 h p.i., to reflect early and peak apoptotic time points,
and performed oligonucleosomal ELISA assay to detect
nucleosomes generated as a result of DNA fragmentation.
As shown in Fig. 1A, cell death was not observed at signif-
icant levels in either wild-type or TLR2-/- microglia at 8 h
p.i. However, apoptosis was induced in wild-type cells at
24 h p.i. The extent of HSV-induced cell death observed in
TLR2/-microglia at 24 h p.i. was 40% of that seen in wild-
type microglia. To confirm apoptotic death in these cells,
TUNEL assay was performed using wild type and TLR2-/-
microglial cells following a 24 h infection with HSV. As
shown in Fig. 1B, HSV-induced apoptosis was found to be
markedly lower in TLR2-/- microglia than in wild type
cells, further demonstrating that TLR2 signaling plays a
role in regulating microglial cell apoptosis in response to
HSV.

Differential expression of apoptotic genes in HSV-infected
wild-type and TLR2-- microglial cells

To further investigate differences in cell death between
HSV-infected wild-type and TLR2/- cells, and to study the
expression profiles of apoptotic genes, we performed
microarray analyses using mouse-specific apoptosis
microarrays. These arrays contained most murine apop-
totic genes. Since gene expression occurs several hours
ahead of DNA fragmentation, 8 h and 16 h p.i. time
points were selected for this study. Furthermore, an induc-
tion or down-regulation of at least two-fold or higher of a
given gene was considered significant in either inducing
or blocking apoptosis. As shown in Tables 1 and 2, the
expression profiles of the apoptotic genes were markedly
different between wild-type and in TLR2-/- microglial cells.
At 8 h p.. the expression of most apoptotic genes
remained unchanged in wild-type cells, while TLR2/- cells
showed induction of few genes. At 16 h p.i., however, pro-
apoptotic genes such as caspase-3 and caspase-8 were
highly expressed in wild-type cells demonstrating that
they were actively undergoing apoptosis. Interestingly,
these genes were not expressed in TLR2-/- cells at this time
point. Moreover, many pro-apoptotic genes were down-
regulated in TLR2-/- cells at 16 h p.i. when compared with
their expression at 8 h p.i.
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Validation of apoptotic gene expression in HSV-infected
microglia

To further confirm these findings, we performed quantita-
tive real-time PCR for six different apoptotic genes
selected from the microarray data. These genes were found
to be either up-regulated or down-regulated in HSV-
infected wild-type microglia and were down-regulated in
TLR27/- cells (Tables 1 &2). As shown in Fig. 2, the expres-
sion levels of caspase-2, caspase-3, Cide-B and Dsipl
increased in wild-type cells between 8 h to 16 h p.i.
whereas they were down-regulated from basal expression
in uninfected controls. On the other hand, Tnfrsf12a and
RipK2 were down-regulated both in wild-type and TLR2-/
- cells. These data further demonstrate that TLR2/- cells
have significantly lower levels of pro-apoptotic gene
expression than wild-type cells, and that TLR2 signaling
mediates apoptotic cell death in HSV-infected microglial
cells. We have previously shown that the levels of TNF-a
expression in TLR2-/- microglia were approximately 50%
of those seen in wild-type cells [3]. In this study, apoptotic
death in TLR2-/- cells was found to be 40% of that in wild-
type microglia and, therefore, it is possible that TNF-a., as
well as other immune mediators, might eventually trigger
apoptosis in cells lacking TLR2.

Conclusion

In this study, we showed that TLR2 signaling induces
apoptosis in HSV-infected microglia. Although the virus
infects both wild-type and TLR27/- microglial cells with
similar efficiencies [3], apoptotic cell death was signifi-
cantly lower in TLR2/- cells. In addition, a large number of
pro-apoptotic genes were clearly down-regulated in TLR2-
/- cells at a time when wild-type cells were actively under-
going apoptosis. We have previously demonstrated that at
early time points the production of proinflammatory
immune mediators did not occur in TLR27/- microglia but
they were produced robustly in wild-type cells [3]. How-
ever, TNF-o was still expressed in TLR27/- cells at approxi-
mately 50% of the level seen in wild-type cells, and it is
possible that immune mediators such as TNF-a produced
early in infection, might induce apoptosis. In a recent
study, we deduced apoptotic pathways occurring in pri-
mary glial cells infected with HSV and found that TNF-a
pathway was active in HSV-infected microglial cells [10].
Taken together, these data indicate that HSV infection of
microglial cells activates TLR2 signaling which, in turn,
induces the production of immune mediators and eventu-
ally leads to cell death.
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Figure |

HSV infection induces apoptosis in murine microglial cells. Wild-type and TLR2-- C57BL/6 microglial cells were infected with
HSV at a MOl of 2. (A) The cells were examined for apoptotic DNA fragmentation using an oligonucleosomal ELISA at 8 and
24 h p.i. Data are presented as optical density (OD) per 104 cells and are representative of three independent experiments
using cells isolated from different brain specimens. (B) TUNEL staining of wild-type and TLR2-- microglia at 24 h p.i. After fixing
and staining the wells, TUNEL positive cells from at least five fields were counted for each well. Data presented were repre-

sentative of three independent experiments.
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Table |I: Expression of apoptotic genes in HSV-infected microglial cells from C57BL/6 mice

Symbol Gene Fold change
8h 16 h
Casp3 Caspase-3 2.39 3.79
Cardl5 Caspase recruitment domain family member 15 - 2.04
Caspl | Caspase-1 | 0.85 2.38
Casp8 Caspase-8 -0.67 241
Dsipl TSC22 domain family 3 -0.26 3.04
Tnfrsfl2a TNF receptor superfamily member |2a 232 0.84
Atf5 Activating transcription factor -2.24 -1.22
BcllO B-cell leukemia/lymphoma 10 -2.50 -0.94
Bid BH3 interacting domain death agonist -2.15 -1.03
Dadl Defender against cell death -2.17 -1.40
Mapk8ip | MAP kinase interacting protein | -4.02 -4.06
Rnf7 Ring finger protein 7 -4.44 -1.81
Polb Polymerase B -5.08 -1.82
Prdx2 Peroxiredoxin 2 -3.49 -2.14
Ltbr Lymphotoxin B receptor -3.00 -1.98
Tnfrsf21 TNF receptor superfamily member 21 -4.70 -5.88
Traf3 TNF receptor-associated factor 3 -3.52 -2.07
Table 2: Expression of apoptotic genes in HSV-infected TLR2KO microglial cells.
Symbol Gene Fold change
8h 16 h
Tnfsfl0 TNF ligand superfamily member |0 8.66 5.59
Caspl2 Caspase-12 4.15 1.00
RipK2 Receptor (Tnfrsf)-interacting kinase2 3.38 2.87
Casp8ap2 Caspase-8-associated protein 2 3.36 0.66
Fasl Fas ligand 3.15 1.37
Casp3 Caspase-3 291 1.46
Tnf Tumor necrosis factor 271 1.35
Cflar Casp-8 and FADD-like apoptosis regulator 2.50 0.90
Tnfrsf5 TNF superfamily member 5 2.35 0.93
Bag4 BCL2-associated athanogene 4 2.16 0.58
Bad Bcl-associated death promoter -3.00 -5.07
Akt Thymoma viral proto-oncogenel -3.76 -2.56
Als2cr2 Als chromosome region candidate 2 -3.97 -2.38
Bax Bcl2-associated X protein -2.35 -1.49
BcllO B-cell leukemia/lymphoma 10 =271 -3.44
Birc5 Baculoviral IAP repeat-containing 5 -2.19 -8.87
Bcl2l14 Bcl2-like 14 (apoptosis facilitator) -2.08 -4.08
Bid BH3 interacting domain death agonist -0.97 -2.21
Bnip3l BCL2/adenovirus E|B-interacting protein -4.94 -5.14
Bircé Baculoviral IAP repeat-containing 6 -1.35 -3.19
Bnip2 BCL2/adenovirus ElB-interacting protein -1.04 -2.56
Api5 Apoptosis inhibitor 5 -4.01 -2.56
Dsipl TSC22 domain family 3 -2.55 -1.50
Cideb Cell-death inducing DNA fragmentation factor 2 -1.78 -3.42
Cradd CASP2 and RIPK| adaptor domain containing protein -1.54 -6.32
Fadd Fas-associated death domain -1.21 -2.92
Faim Fas apoptotic inhibitory molecule -1.81 -3.18
Hells Helicase lymphoid specific -0.84 -2.24
o Interleukin 10 -1.27 =221
Mapk8ip | MAP kinase interacting protein | -0.87 -5.75
Zc3hcl C3HC type zinc finger protein -0.93 -2.25
Nfkb NF-xB -1.92 -1.55
Rnf7 Ring finger protein 7 -2.81 -2.31
Pak7 P21 (CDKNIA)-activated kinase 7 -0.85 -2.03
Traf3 TNF receptor-associated factor 3 -6.31 =271
Tnfrsf21 TNF receptor superfamily member 21 -1.87 -1.75
Trp53 P53 -2.80 -1.17
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