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Abstract

Background: Kinins are mediators of pain and inflammation. Their role in thermoregulation is, however, unknown
despite the fact the B1 receptor (B1R) was found implicated in lipopolysaccharide (LPS)-induced fever. The aim of
this study was to investigate the mechanism by which peripheral B1R affects body core temperature in a rat model

known to show up-regulated levels of B1R.

with calcitonin-gene-related peptide in sensory C-fibers.

Thermoregulation

Methods: Male Sprague-Dawley rats received streptozotocin (STZ, 65 mg/kg; i.p.) to enhance B1R expression.
Control rats received the vehicle only. One week later, rectal temperature was measured in awake rats after
i.p. injection of increasing doses (0.01 to 5 mg/kg) of des-Arg®-Bradykinin (BK) and Sar-[D-Phe®]des-Arg®-BK
(B1R agonists) or BK (B2R agonist). The mechanism of B1R-induced hyperthermia was addressed using specific
inhibitors and in rats subjected to subdiaphragmatic vagal nerve ligation. BIR mRNA level was measured by
quantitative Real Time-polymerase chain reaction (QRT-PCR) and B1R was localized by confocal microscopy.

Results: B1R agonists (0.1 to 5 mg/kg) showed transient (5- to 30-minute) and dose-dependent increases of rectal
temperature (+1.5°C) in STZ-treated rats, but not in control rats. BK caused no effect in STZ and control rats.

In STZ-treated rats, B1R agonist-induced hyperthermia was blocked by antagonists/inhibitors of B1R (SSR240612),
cyclooxygenase-2 (COX-2) (niflumic acid) and nitric oxide synthase (NOS) (L-NAME), and after vagal nerve ligation.
In contrast, COX-1 inhibition (indomethacin) had no effect on B1R agonist-induced hyperthermia. In STZ-treated
rats, BIR mRNA was significantly increased in the hypothalamus and the vagus nerve where it was co-localized

Conclusion: B1R, which is induced in inflammatory diseases, could contribute to hyperthermia through a vagal
sensory mechanism involving prostaglandins (via COX-2) and nitric oxide.
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Background

Heat- or hyperthermia-generating processes are gener-
ally ascribed to peripherally formed cytokines which
convey information to the hypothalamic preoptic area
via the organum vasculosum laminae terminalis [1]. This
pathway is associated with high circulating levels of
cytokines from the immune system [2]. Hyperthermia
can also be induced even with low circulating levels of
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cytokines through a neuronal mechanism involving dir-
ect activation of the vagus nerve [3]. Indeed, vagal sen-
sory afferents represent an important communication
pathway between the immune system, the inflammatory
site and the brain [4]. Subdiaphragmatic vagotomy was
shown to abolish fever [5] and central induction of
interleukin-1f (IL-1) mRNA [6] after intraperitoneal (i.p.)
injection of IL-1p or lipopolysaccharide (LPS).

Kinins are vasoactive peptides involved in pain and
inflammation [7-13]. They act through the activation of
two G-protein-coupled receptors denoted as Bl (B1R) and
B2 (B2R) [14,15]. The B2R is widely and constitutively
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expressed in central and peripheral tissues and is acti-
vated by bradykinin (BK) and Lys-BK. Their metabolites,
des-Arg®-BK and Lys-des-Arg’-BK, are the preferential
agonists of BIR [15,16]. The latter is virtually absent in
healthy condition but up-regulated after exposure to
pro-inflammatory cytokines, LPS and oxidative stress
[9,16-19]. LPS, an endotoxin derived from the cell wall
of Gram-negative bacteria, induces fever through cyto-
kine release and Toll-like receptor 4 activation in several
species, notably in rats, mice and rabbits [1,20,21]. When
injected intracerebroventricularly (i.c.v.), B2R antagonist
curtailed the early phase (0 to 2 h) of the febrile response
induced by LPS while BIR antagonist inhibited the late
phase (4 to 6 h) [22]. These authors also demonstrated
that a 24-h pre-treatment with LPS reduced the febrile
response induced by BK but enhanced that induced by
the BIR agonist des-Arg’-BK injected i.c.v. In rabbits,
BK (icv.) also increased rectal temperature dose-
dependently, which was partly mediated by prostaglan-
dins (PGs) [23]. Similarly, the stimulation of rat brain B2R
caused hyperthermia [24], an effect absent in animals with
a bilateral lesion of the hypothalamic paraventricular
nucleus [25]. The role of peripheral kinin receptors in
fever, however, remains unknown.

Kinin BIR is involved in the main cardinal signs of
inflammation, such as pain [8,11], edema and increased
vascular permeability [13,17,26] and vasodilatation [27,28]
through the release of pro-inflammatory cytokines (IL-1p,
IL-6) and other mediators (NO, substance P and PGs)
[8,11,12]. Surprisingly, the role of kinin BIR in the regula-
tion of body core temperature has never been investi-
gated in the periphery. As BIR is virtually absent in
control rats, we used streptozotocin (STZ)-treated rats
as a model to induce BIR expression [10,29-31]. This
study was then undertaken to determine whether intra-
peritoneal activation of BIR with selective agonists
enhances rectal temperature through a vagal afferent
pathway. Pharmacological treatments with inhibitors
were administered to determine the contribution of
inflammatory mediators (NO, PGs). The expression of
BIR in the hypothalamus and vagus nerve was also
determined by quantitative real-time PCR (qRT-PCR)
and confocal microscopy.

Methods

Experimental animal and care

All research procedures and the care of the animals were
in compliance with the guiding principles for animal ex-
perimentation as enunciated by the Canadian Council
on Animal Care and were approved by the Animal Care
Committee of our University. Male Sprague—Dawley rats
(200 to 225 g; Charles River, St-Constant, QC, Canada)
were housed two per cage under controlled conditions
of temperature (23°C) and humidity (50%), on a 12 h
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light—dark cycle and allowed free access to a normal
chow diet (Charles River Rodent) and tap water.

STZ treatment

STZ is a chemotherapeutic agent of the glucosamine-
nitrosourea class, commonly used to treat human Lang-
erhans islet cancer. Since STZ is structurally similar to
glucose, it is taken up by glucose transporter 2 (GLUT2)
in pancreatic B-cells leading to their destruction and,
thereby, to insulin deficit and hyperglycemia. This condi-
tion mimics human type 1 diabetes.

Rats were injected under low light with freshly pre-
pared STZ (65 mg/kg, i.p.; Zanosar, McKesson, Mon-
treal, QC, Canada) [10]. Age-matched controls were
injected with the vehicle (sterile saline 0.9%, pH 7.0).
Blood glucose was measured with a commercial blood
glucose-monitoring kit (Accusoft; Roche Diagnostics,
Laval, QC, Canada) from a drop of blood obtained from
the tail vein, in non-fasting animals. The impact of one-
week diabetes was assessed on body weight (g), water
intake (ml/day/rat) and food consumption (g/day/rat).

A total volume of 250 ml of water and 250 grams of
chow diet were made available for daily consumption by
two rats per cage; 24 h later the residual amount of
water and food was calculated and subtracted from the
original amount and divided by two. Thereafter, water
bottles were filled up again to 250 ml and food was
weighed at 250 grams.

Measurement of body temperature

Rat body temperature was measured before (0 minute)
and after drug injections (5, 10, 15, 30 and 60 minutes)
with a lubricated flexible digital thermometer delicately
inserted into the rat rectum (2.5 cm) for 10 sec. Experi-
ments were conducted daily at 10:00 A.M. by two experi-
enced investigators. Rats were trained to the procedure
in a quiet room during the week preceding experiments.
STZ-treated and control rats were pre-treated or not
with different drugs described in the following section.

Experimental protocols in whole animals

Des-Arg’-BK (DABK) [14] and the peptidase resistant
Sar-[D-Phe®]des-Arg”-BK (SDABK) [32] were used as
selective BIR agonists (0.01 to 5 mg/kg) to evaluate the
effect of intraperitoneal BIR stimulation on body temp-
erature in control and STZ-treated rats. BK (1 mg/kg)
was used as a B2R agonist [14]. The contribution of NO
and PGs in BIR-induced hyperthermia was evaluated
after 2 h pre-treatment with (a) L-NG-Nitroarginine
Methyl Ester (L-NAME) (30 mg/kg, ip.), a nitric
oxide synthase (NOS) inhibitor [33], (b) indomethacin
(10 mg/kg, i.p.), a non-steroidal anti-inflammatory in-
hibitor [34], or (c) niflumic acid (15 mg/kg, i.p.), a select-
ive cyclooxygenase-2 (COX-2) inhibitor [34]. SSR240612
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[(2R)-2-[((3R)-3-(1,3-benzodioxol-5-yl)-3-[[(6-methoxy-2-
naphthyl)sulfonyllamino]propanoyl)amino]-3-(4-[[2R,6S)-
2,6-dimethylpiperidinyllmethyl]phenyl)-N-isopropyl-N-
methylpropanamide-hydrochloride], a highly potent and
selective B1R antagonist [35] was administered by gavage
(10 mg/kg) 3 h prior to SDABK to ascertain the BIR
mediated response on hyperthermia. SSR240612 was
obtained from Sanofi-Aventis R&D (Montpellier, France),
dissolved in dimethylsulfoxide (DMSO, 0.5% v/v), etha-
nol (5% v/v) and Tween-80 (5% v/v) and then completed
with distilled water [7]. DABK was purchased from
Bachem Bioscience, Inc. (King of Prussia, PA, USA) and
diluted in sterile saline. SDABK was synthesized at the Bio-
technology Research Institute, National Research Council
of Canada (Montreal, QC, Canada) and diluted in sterile
saline. BK and L-NAME were diluted in sterile saline,
while niflumic acid and indomethacin were diluted in 5%
DMSO and 95% ethanol, respectively. Unless stated
otherwise, other reagents were purchased from Sigma-
Aldrich Canada, Ltd (Oakville, ON, Canada).

Subdiaphragmatic vagal ligation

To investigate the role of the vagus nerve in BIR-
induced hyperthermia, rats underwent subdiaphragmatic
vagal nerve ligation [36]. Under isoflurane anesthesia
and after a midline laparotomy, the stomach and poster-
ior subdiaphragmatic vagal trunks were exposed, and the
proximal parts were ligated with 4-0 silk. Sham-
operated rats had the same surgery; the vagus nerve was
exposed but not ligated. On the day of surgery and for
the two subsequent days, rats received the antibiotics tri-
methoprime and sulphadiazine (Tribrissen 24%, 30 mg/
kg, subcutaneously (s.c.), Schering Canada, Inc., Pointe
Claire, QC, Canada) and the analgesic ketoprofen (Ana-
fen, 5 mg/kg, s.c., Merial Canada, Inc., Baie d'Urfé, QC,
Canada). Rats were housed in individual plastic cham-
bers (40 X 23 X 20 c¢m) in the same standard conditions;
they had free access to water and food and were allowed
to recover for one week before STZ administration.

Confocal microscopy

Tissue preparation for microscopy

One-week STZ and vehicle-treated rats were anesthe-
tised with CO, inhalation and decapitated. A portion of
the subdiaphragmatic vagus nerve (2.5 cm) was
removed, frozen in 2-methylbutane (cooled at -40°C
with liquid nitrogen) and stored at -80°C. The vagus
nerve was mounted in a gelatin block and serially cut
into 20-pm thick coronal sections with a cryostat. Sec-
tions were thaw-mounted on 0.2% gelatin-0.033%
chromium potassium sulfate-coated slides and kept at
-80°C for one month to allow sections to adhere to
the coverslip glasses.
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Slide preparation

On the day of the experiments, sections were thawed at
room temperature for 10 minutes to enhance section ad-
hesion. Slides were washed for 10 minutes in phosphate
buffered saline (PBS) (pH 7.4), fixed in PBS 4% parafor-
maldehyde and washed three times (5 minutes). Then,
sections were permeabilized for 45 minutes in PBS 0.5%
Triton X-100.

Immunolabeling protocol

Slides were incubated with a blocking buffer (PBS sup-
plemented with 0.5% Triton X-100, 3% bovine serum
albumin (BSA) and 3% donkey serum) to prevent non-
specific labeling. Primary antibodies were diluted in the
blocking buffer. To generate the BIR antibody, an epi-
tope of 15 amino acids (VFAGRLLKTRVLGTL) loca-
lized in the C-terminal part of the BIR protein was
injected into rabbits (Biotechnology Research Institute,
Montreal, QC, Canada). Care was taken to avoid an epi-
tope sequence region similar to B2R or other rodent
proteins. The specificity of this antibody used at 1:1,500
dilution [37] was confirmed by the absence of the
37 kDa band (putative molecular weight of rat BIR) with
the pre-immune serum or with immune serum in BIR
knock-out mice renal tissues (data not shown). Mouse
anti-calcitonin-gene-related peptide (CGRP) (Chemicon,
Hornby, ON, Canada) was diluted at 1:2,000 and used as
a specific marker of peptidergic C-fibers [31]. Secondary
antibodies were alexa fluor 488 anti-rabbit (Chemicon)
diluted 1:1,000 and rhodamine anti-mouse (Chemicon)
diluted 1:1,000 [31]. Slides were washed three times
(5 minutes), mounted with coverslips, fixed with Vecta-
shield (Invitrogen Life technologies, Burlington, ON,
Canada) (12 h at room temperature) and stored at —4°C
until examination under a confocal microscope (Leica
Confocal Microscope, Richmond Hill, ON, Canada).

SYBR green-based quantitative RT-PCR

Control and one-week STZ-treated rats were anesthe-
tized with CO, inhalation and decapitated. Subdiaphrag-
matic vagus nerve (2.5 cm) and hypothalamus (10 mg of
tissue) were identified, carefully dissected out and put in
RNAlater stabilization reagent (QIAGEN, Valencia, CA,
USA). Protocols for mRNA extraction, cDNA generation,
SYBR green-based quantitative RT-PCR and quantifica-
tion were described elsewhere [10]. The PCR conditions
were as follows: 95°C for 15 minutes, followed by ampli-
fication cycles at 94°C for 15 s, 60°C for 30 s and 72°C
for 30 s. The Vector NTI-designed RT-PCR primer pairs
used in this study are presented in Table 1.

Statistical analysis
Data were expressed as the means + SEM. of values
obtained from # rats. Statistical significance was determined
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Table 1 qPCR primer pairs used in this study
Sequences Position GenBank
18S forward 5' TCA ACT TTC GAT GGT AGT CGC CGT 3' 363 - 386 X01117
18S reverse 5' TCC TTG GAT GTG GTA GCC GTT TCT 3 470 - 447
B1 receptor forward 5 GCA GCG CTT AAC CAT AGC GGA AAT 3 367 - 391 NM_030851
B1 receptor reverse 5' CCA GTT GAA ACG GTT CCC GAT GTT 3 478 - 454

with unpaired Student’s t-test or with one-way analysis of
variance (ANOVA) followed by post-hoc Bonferroni test
for multiple comparisons. Only probability (p) values less
than 0.05 were considered to be statistically significant.

Results

Diabetic status and BIR mRNA expression

Blood glucose, body weight, water intake and food con-
sumption were measured to confirm the diabetic status
of STZ-treated rats. As expected, a significant increase
in blood glucose and water intake occurred in one-week
STZ rats when compared to age-matched control ani-
mals. However, body weight gain and food consumption
remained unaffected (Figure 1). BIR mRNA levels were

significantly enhanced (four- to five-fold) in the sub-
diaphragmatic vagus nerve and hypothalamus of STZ-
treated rats when compared to control rats (Figure 2).
The up-regulation of BIR mRNA was not significantly
affected by vagal nerve ligation in STZ-treated rats
(Figure 2).

B1R localization in the vagus nerve

BIR immunostaining was almost undetectable in the
control subdiaphragmatic vagus nerve (Figure 3A, D),
whereas it was markedly enhanced in STZ-treated rat
sections (Figure 3A', D'). Moreover, BIR was found
partly co-localized with CGRP-expressing sensory C-
fibers of the vagus nerve in STZ rat (Figure 3C, F'). The
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Figure 2 B1R mRNA levels in the subdiaphragmatic vagus
nerve and hypothalamus of control and STZ-treated rats.
The impact of vagal nerve ligation is also shown on hypothalamic
B1R mRNA level. Rat 185 was used as a housekeeping gene for
quantification. Comparison with control is indicated by * P <0.05.
n=>5 rats.
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specificity of BIR labeling was confirmed by the absence
of co-localization (no yellow color) with the pre-immune
anti-B1R serum (Figure 4).

Effect of B1R stimulation on body temperature

in STZ-treated rats

Three doses of the BIR agonist SDABK and one dose
of the agonist DABK were injected i.p. in one-week STZ-
treated rats to assess their impact on body tempera-
ture (Figure 5). The dose of 0.01 mg/kg SDABK had no
effect on body temperature while the dose of 0.1 mg/kg
SDABK increased significantly body temperature at 5, 10
and 15 minutes post-injection. The dose of 1 mg/kg
SDABK caused a greater effect (+1.5°C) which peaked at
10 to 15 minutes post-injection and persisted at least
30 minutes in STZ-treated rats. The latter response
was similar to that produced by 5 mg/kg DABK, whose
response was, however, still significant at 60 minutes.
Vehicle had no effect on body temperature in STZ-
treated rats (Figure 5). Vehicle and 1 mg/kg SDABK had
no significant effect on body temperature in control rats
(Figure 6). Baseline temperature (time 0 minute) was not
significantly different between control and STZ-treated
rats (Figure 6).

The hyperthermic response induced by 1 mg/kg
SDABK in STZ-treated rats was significantly reduced by
the selective BIR antagonist SSR240612 (10 mg/kg, gav-
age), confirming a role for BIR in this response.
SSR240612 had no direct effect on body temperature in
control rats (Figure 6) or in STZ rats (not shown) when
compared to vehicle values. The intraperitoneal injection
of BK (1 mg/kg) caused a non-significant diminution
(-0.6°C at five minutes) of body temperature in STZ-
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treated rats, excluding a possible role for B2R through a
peripheral mechanism (Figure 7).

Mechanism of B1R-induced hyperthermia

Selective inhibitors of NOS, COX-1 and COX-2 were
pre-administered to STZ-treated rats to investigate
the downstream mediators implicated in B1R-induced
hyperthermia. Figure 8 shows that SDABK-induced
hyperthermia was prevented by a 2 h pre-treatment
with either L-NAME (30 mg/kg, i.p.) or niflumic acid
(15 mg/kg, i.p.) while indomethacin (10 mg/kg, i.p.) had
no significant effect. Inhibitors had no direct effect on
body temperature in STZ-treated rats (data not shown).
Moreover, BIR-mediated hyperthermia was prevented in
rats that underwent subdiaphragmatic ligation of the vagus
nerve one week prior to STZ treatment (Figure 8). STZ
rats presented no alteration in baseline body temperature
after vagal ligation. Sham-operated rats responded nor-
mally to SDABK (1 mg/kg) (data not shown).

Discussion

In addition to providing the first evidence that BIR is
expressed on peptidergic sensory C-fibers in the vagus
nerve of STZ-treated rats, data uncovered a pyretic
response mediated by the activation of the BIR through
a vagal sensory pathway. The hyperthermic response is
mediated by NO and prostaglandins (derived from
COX-2). These findings are clinically relevant as kinins
and BIR are associated with systemic inflammation.
Thus, in addition to causing pain through activation of
primary sensory fibers and microglia [8,11,13], edema
and vascular hyperpermeability [17,26], and vasodilation
[9,38], the kallikrein-kinin system could also contribute
to hyperthermia during inflammatory processes.

General mechanism leading to hyperthermia
Hyperthermia and fever are initiated following exposure
to exogenous (bacteria, toxin) or endogenous pyrogens
(pro-inflammatory cytokines (IL-1pB, IL-6 and tumor
necrosis factor-a (TNF-a)) [1,20,21]. The classical and
controversial view of fever is that pyrogenic cytokines
are mostly generated systemically and they act centrally
through COX-2 dependent prostaglandin E, (PGE,) and
EP3 receptor in the ventromedial preoptic area (VMPO)
of the anterior hypothalamus [21]. However, another the-
ory is that the peripheral pyrogenic message is not trans-
mitted via a humoral route but rather by the vagus nerve
to the nucleus tractus solitaries, which in turn signals to
the VMPO [20]. In that scenario, the contribution of
PGE, derived from COX-2 is essential for the activation
of vagal afferents which express PGE, receptors (EPs)
while NO is released in the VMPO [20].



Talbot et al. Journal of Neuroinflammation 2012, 9:214
http://www.jneuroinflammation.com/content/9/1/214

Page 6 of 10

Figure 3 Immunolocalization of B1R. Shown are confocal microscopy pictures of coronal sections of subdiaphragmatic vagus nerve isolated
from control rats (A-F) and STZ rats (A-F). B1R (A-A’, D-D’) was labeled with anti-B1R (green spots, arrows). Peptidergic C-fibers (B-B', E-E') were
labeled with anti-CGRP (red) and overlay pictures (yellow) showing co-localization were shown in C-C" and F-F'. Images are representative of at
least four sections from four rats per group. Scale bar=100 (A-C, A-C) or 31.8 um (D-F, D-F).

Model of B1R expression

Our aim was to determine the contribution of a vagal
pathway in the regulation of body temperature by B1R.
Therefore, we chose an animal model known to express
high level of BIR. In STZ-diabetic rats, BIR was induced
by hyperglycemia-increased oxidative stress [19,26,39].
BIR was markedly expressed in various CNS and periph-
eral tissues [10,30,31], including primary sensory C-fibers
[31]. In this model, BIR was associated with diabetic
pain neuropathy [10,40], edema [41], leukocyte migration

[42] vascular permeability [18,26,43,44], all cardinal signs
of systemic inflammation.

B1R-induced hyperthermia

Our data suggested that BIR-induced hyperthermia is
dependent on both COX-2 and NOS activity as systemic
treatment with their specific inhibitors prevented the re-
sponse of the BIR agonist. Indeed, NO release has been
extensively associated with BIR stimulation in STZ-
diabetic rat [8,43]. NO can promote hyperthermia by
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Scale bar=100 pm.

Figure 4 Specificity of B1R antibody for immunolocalization. Shown are confocal microscopy pictures of coronal sections of
subdiaphragmatic vagus nerve isolated from STZ rats labeled with pre-immune anti-B1R (A, green) and anti-CGRP (B, red). Picture overlay is
presented in panel C showing no evidence of co-localization (no yellow color). Images are representative of at least four sections from three rats.

activating surrounding immune cells (macrophages, neu-
trophils) known for their capacity to release pyrogenic
cytokines (IL-1PB, IL-6 and TNF-a) [45,46]. Moreover,
NO can activate efferent neurons of the central nervous
system, which can in turn activate either directly the pre-
optic area of the hypothalamus [20,46] or indirectly brain
microglia and endothelial cells to generate PGE, [47].
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Figure 5 Rectal temperature changes to B1R agonists. Two B1R
agonists, SDABK (0.01, 0.1, 1 mg/kg) or DABK (5 mg/kg), were
injected intraperitoneally in STZ rats. Statistical comparison with
STZ + vehicle (*) is indicated by * P <0.05 and *** P <0.001. n=5 to

7 rats.
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Figure 6 Inhibitory effect of B1R antagonist on B1R agonist-
induced increased rectal temperature. B1R agonist (SDABK,

1 mg/kg) or its vehicle was injected intraperitoneally in STZ and
control rats pre-treated (3 h earlier) with a selective B1R antagonist
(SSR240612, 10 mg/kg, per gavage ) or its vehicle. Statistical
comparison with STZ + vehicle (¥) or with STZ+SDABK (+) is
indicated by + P <0.05; *** P <0.001. n=4 to 7 rats.
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The enhanced B1R expression (nRNA and protein) on
sensory C-fibers of the vagus nerve and the suppression
of the BIR agonist-induced hyperthermic response after
ligation of the subdiaphragmatic vagus nerve strongly
suggest the involvement of a vagal sensory mechanism.
The nucleus of the solitary tract is known to receive
sensory information from the vagus nerve and to relay it
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Figure 8 Impact of treatments on B1R agonist-induced
increased rectal temperature. B1R agonist (SDABK, 1 mg/kg) was
injected intraperitoneally in STZ rats pre-treated (2 h earlier) either
with vehicle or inhibitors of COX-1 (indomethacin, 10 mg/kg, i.p.),
COX-2 (niflumic acid, 15 mg/kg, i.p.) or NOS (L-NAME, 30 mg/kg, i.p.).
B1R agonist-induced hyperthermia was also evaluated in STZ rats
subjected to subdiaphragmatic vagal nerve ligation (14 days earlier).
Statistical comparison with STZ+SDABK pretreated with vehicle (*) is
indicated by *** P <0.001. n=4 to 7 rats.
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to the thermoregulatory center in the hypothalamus
[20]. Additionally, BIR stimulation can release pyrogenic
cytokines (IL-1p and TNF-a), NO and prostaglandins
[8], that could in turn activate the vagus nerve. Thus
BIR agonist could activate vagal afferents directly and
indirectly through inflammatory mediators that may act
synergistically to amplify the signal.

An early study reported that i.p. injected LPS induced
fever and BIR mRNA expression in the rat hypothal-
amus. Subdiaphragmatic vagotomy blocked both fever
and BIR, but not B2R gene expression, suggesting a pri-
mary role for central BIR in the early phase of fever
induced by LPS [48,49]. In our study, however, the
enhanced expression of BIR in the hypothalamus of
STZ rats was not affected by vagal nerve ligation, pro-
viding further evidence that the pyrogenic response
induced by i.p. injected BIR agonist is mediated by a
peripheral BIR mechanism.

Conclusion

This study provides the first evidence that kinin BIR can
regulate body core temperature to induce fever through
a vagal sensory mechanism involving prostaglandins (via
COX-2) and NO. The prevention of fever may represent
an additional therapeutic benefit of BIR antagonism
during inflammatory processes.
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