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Abstract

Background: Prion diseases are neurodegenerative disorders characterized by the accumulation of an abnormal
disease-associated prion protein, PrP>“. In prion-infected brains, activated microglia are often present in the vicinity
of PrP>¢ aggregates, and microglial activation is thought to play a key role in the pathogenesis of prion diseases.
Although interleukin (IL)-1( release by prion-induced microglia has been widely reported, the mechanism by which
primed microglia become activated and secrete IL-1(3 in prion diseases has not yet been elucidated. In this study,
we investigated the role of the NACHT, LRR and PYD domains-containing protein (NALP)3 inflammasome in IL-13
release from lipopolysaccharide (LPS)-primed microglia after exposure to a synthetic neurotoxic prion fragment
(PrP106-126).

Methods: The inflammasome components NALP3 and apoptosis-associated speck-like protein (ASC) were knocked

down by gene silencing. IL-1 production was assessed using ELISA. The mRNA expression of NALP3, ASC, and pro-
inflammatory factors was measured by quantitative PCR. Western blot analysis was used to detect the protein level

of NALP3, ASC, caspase-1 and nuclear factor-kB.

Results: We found that that PrP106-126-induced IL-1(3 release depends on NALP3 inflammasome activation, that
inflammasome activation is required for the synthesis of pro-inflammatory and chemotactic factors by PrP106-126-
activated microglia, that inhibition of NF-kB activation abrogated PrP106-126-induced NALP3 upregulation, and that
potassium efflux and production of reactive oxygen species were implicated in PrP106-126-induced NALP3
inflalmmasome activation in microglia.

Conclusions: We conclude that the NALP3 inflammasome is involved in neurotoxic prion peptide-induced
microglial activation. To our knowledge, this is the first time that strong evidence for the involvement of NALP3
inflammasome in prion-associated inflammation has been found.
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Background

Prion diseases, also known as transmissible spongiform
encephalopathies, are fatal neurodegenerative disorders,
characterized by brain vacuolation, neuronal cell death,
and microgliosis [1]. They are caused by the conversion of
cellular prion protein (PrP<) into the pathological isoform
(PrP) through conformational changes. PrP*¢ is protease-
resistant, and has a higher proportion of -sheet structure
in place of the normal a-helix structure [2]. The accumu-
lation of abnormal forms of prion protein (PrP*°) has been
shown to be the main causative agent of these diseases [3].

The neurotoxic PrP fragment 106—-126 (PrP106-126) pos-
sesses similar physicochemical and pathogenic properties to
PrP%, in that it forms amyloid fibrils with a high B-sheet
content, shows partial proteinase K resistance, and is neuro-
toxic in vitro. Therefore, PrP106-126 is commonly used as
a model for the investigation of PrpS¢ neurotoxicity [4-6].

A large number of studies have shown that the accu-
mulation of aggregated PrP*° leads to activation of micro-
glia, and these in turn produce chemotatic factors, pro-
inflammatory cytokines, and neurotoxic factors [7-9].
Furthermore, studies on brains from prion-infected mice
have found upregulation of multiple cytokines and chemo-
kines, including interleukin (IL) 1f, tumor necrosis factor
(TNF), and chemokine (C-C motif) ligand (CCL)3 [10].

IL-1p plays a central role in the regulation of immune
and inflammatory responses. It is produced as the in-
active precursor pro-IL-1B in the cytosol, and a variety
of stimuli can lead to higher expression of pro-IL-1
[11]. The inactive pro-IL-1B can be cleaved by protease
caspase-1 into the mature, active form, IL-1P. Several
studies have shown that synthetic neurotoxic prion frag-
ments activate mouse microglia and lead to an increase
in the production of IL-1p in vitro [12-15]; however, the
mechanism by which PrP106-126 induces IL-1p release
is yet unknown.

The inflammasome is a cytosolic multiprotein com-
plex that serves as a platform for activating the pro-
inflammatory cytokines IL-1p and IL-18 via caspase-1
cleavage [16]. The inflammasomes play important roles in
innate immunity pathways and are active players in inflam-
matory disorders. To date, several inflammasome com-
plexes have been identified, of which the NACHT, LRR and
PYD domains-containing protein (NALP) 3 inflammasome,
(also known as NOD-like receptor family, pryin domain-
containin (NLRP)3 or cold-induced autoinflammatory syn-
drome (CIAS)1), is probably the best studied [17,18]. This
complex consists of the Nod-like receptor (NLR) NALP3,
the apoptosis-associated speck-like protein (ASC), and pro-
caspase-1, and can be activated by pathogen-associated
molecular patterns and by endogenous danger signals
[19,20].

In the present study, we investigated the role of the
NALP3 inflammasome in PrP106-126-induced IL-1p
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release, and found that the NALP3-ASC inflammasome
plays a key role in caspase-1 and IL-1p activation in
microglia in response to PrP106-126 stimulation.

Methods

Ethics Statement

All of the animal experiments were conducted in accord-
ance with the guidelines of Beijing Municipality on the
Review of Welfare and Ethics of Laboratory Animals
approved by the Beijing Municipality Administration
Office of Laboratory Animals (BAOLA).

Reagents

Rabbit anti-mouse caspase-1, NALP3, and ASC antibody
were acquired from BioVision (Palo Alto, CA, USA),
Abcam (Cambridge, MA, USA) and Santa Cruz Biotech-
nology (Santa Cruz, CA, USA), respectively. Rabbit anti-
mouse nuclear factor (NF)-kB p65, Anti-mouse [-actin,
and Max antibody were from Beyotime Biotechnology
(Wuhan, Hubei, China), Lipopolysaccharide (LPS; E. coli
L2630) and N-acetyl-cysteine (NAC, A9165) were from
Sigma-Aldrich (St. Louis, MO, USA), ELISA kits for
mouse interleukin 1B and the Fast Protein Precipitation
and Concentration Kit were purchased from Wuhan
Boster Biotech (Wuhan, Hubei, China). Reagents and
apparatus used in immunoblotting assays were obtained
from Bio-Rad (Hercules, CA, USA); the goat anti-rabbit
secondary antibody was from Beyotime Biotechnology.

Isolation and culture of microglia cells

Experiments were conducted on murine primary micro-
glia and BV2 microglial cells. The choice of this cell line
is justified by the close similarities between BV-2 and
primary microglia in mechanisms mediating microglial
activation [21]. Primary microglial cell cultures were
obtained from neonatal C57BL/6 mice (5 to 7 days old)
as described previously [14]. Briefly, after sterilization,
the brain was dissected, then the cerebral cortices were
collected and digested with trypsin (0.25 %) for 15 minutes
at 37°C. The digested tissue was repeatedly sucked into a
pipette to obtain single cells. The cells were then passed
through a 200 pm mesh and separated by centrifugation at
100g for 5 minutes. The mixed glial cells were cultured
for about 6 to 7 days, after which the cells were suspended
by agitation for 12 hours on a rotary shaker (180 rpm) at
37°C and transferred to another flask. After incubation for
2 hours at 37°C, microglia had adhered to the flask. The
purity of the microglial cells was approximately 90 %, as
determined using anti-CD-11b antibodies. BV2 cells, a
murine microglial cell line, and ANA1, a murine macro-
phage cell line, were obtained (Xiehe Medical University,
Yugqin Liu, Cell Culture Center, Beijing, China), and cul-
tured in a humidified incubator at 37°C with 5 % CO2 in
DMEM and F12 medium (Hyclone, Logan, UT, USA)
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supplemented with 10 % heat-inactivated FBS (Gibco,
Grand Island, NY, USA), 100 ug/ml streptomycin, 100 U/
ml penicillin (Gibco), and 2 mmol/l glutamine.

Prion protein peptide

PrP peptides PrP106-126 and scrambled PrP106-126 (Scr-
PrP) (sequences KINMKHMAGAAAAGAVVGGLG and
AVGMHAGKGLANTAKAGAMVG, respectively), were
synthesized (Sangon Bio-Tech, China). The purity of prion
peptides was >95 % according to the data from the
synthesizer. The peptides were dissolved in 0.1 mol/l PBS
to a concentration of 1 mmol/l, and left to aggregate at
37°C for 12 hours. Experiments were conducted with final
peptide concentrations of 100 pumol/l.

Peptide treatment

Microglia were primed with 300 ng/ml LPS for 3 hours,
after which the culture medium was washed off and the
cells were treated with the aggregated peptide PrP106-126
in culture medium. Scr-PrP was used as the negative con-
trol. Three wells were used for each group of experimental
conditions. In experiments involving co-treatments with
PrP106-126 plus high potassium (130 mmol/l) or NAC
(15 mmol/l), cells were primed with 300 ng/ml LPS for 3
hours, and were then exposed to the indicated concentra-
tions of the inhibitors.

Small interfering RNA transfections and treatments

Small interfering (si)RNA used for NALP3 and ASC silen-
cing, and the scramble siRNA sequence used as control (all
Qiagen, Valencia, CA, USA) were used. For siRNA transfec-
tion, cells were plated at 0.8 x 10° cells/well in a 12-well
plate, and transfected the next day in accordance with the
manufacturer’s instructions. Briefly, on the day of transfec-
tion, 75 ng siRNA (siRNA-NALP3, siRNA-ASC and con-
trol, respectively; Qiagen) were diluted in 100 pl culture
medium without serum. A volume of 3 pl of transfection
reagent (HiPerfect Transfection Reagent; Qiagen) was
added to the diluted siRNA and mixed by vortex. The sam-
ples were then incubated for 5 to 10 minutes at room
temperature to allow the formation of transfection com-
plexes before adding the complexes onto the cells. The
decrease in NALP3 and ASC expression after treatment
was checked by quantitative PCR and western blot analysis.

Enzyme-linked immunosorbent assay for IL-1B secretion
Cell-culture supernatants were assayed for IL-1B by
ELISA using a commercial kit (Wuhan Boster Biotech)
in accordance with the manufacturer’s instructions.

RNA isolation, complementary DNA synthesis and
quantitative PCR

Total RNA was extracted from cells using the SV Total
RNA Isolation System (Promega, Madison, WI, USA),
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and reverse transcribed into complementary (c)DNA
using a commercial kit (cDNA Synthesis Kit; Fermentas,
Glen Burnie, MD, USA) using oligo (dT) 18 primers in
accordance with the manufacturer’s instructions. Quanti-
tative (qQ)PCR was performed using a commercial mix
(SYBR Green Master Mix; Bio-Rad) and a thermal cycler
(DNA Engine Opticon™ 2 system; MJ Research, Waltham,
MA, USA) with the primers shown in Table 1. The ampli-
fication efficiency of these primers had been established by
means of calibration curves. The total volume for qPCR
was 20 ul, comprised of includes 8 ul water, 0.5 ul of each
primer (10 pmol/l), 10 pl Master Mix and 30 ng of cDNA.
The PCR amplification was as follows: after denaturation at
94°C for 2 minutes, 40 PCR cycles of 94°C for 20 seconds,
55°C for 20 seconds, 72°C for 20 seconds, followed by 1
cycle at 84°C for 1 second appended for a single fluores-
cence measurement above the melting temperature of pos-
sible primer-dimers. Finally, a melting step was performed
consisting of 10 seconds at 70°C and slow heating at a rate
of 0.1°C per second up to 95°C with continuous fluores-
cence measurement. Quantification was performed using
the comparative Cr method (2"24<7) [22]. All samples were
analyzed in triplicate.

Extraction of nuclear and cytoplasmic protein and
western blotting

After treatment of microglia cells, the culture medium
was discarded, and the cytoplasmic and nuclei proteins
were extracted using a protein extract kit (Cytoplasmic
and Nuclear Protein Extraction Kit; Wuhan Boster Bio-
tech). Equal amounts of protein (40 ug in each lane) were
separated by SDS-PAGE on 12 % gels, and the separated
proteins were transferred onto a nitrocellulose membrane.
Nonspecific binding sites were blocked by incubating the
membrane with 5 % fat-free dried milk in Tris-buffered sa-
line (TBS-T: 10 mmol/l Tris, 0.15 mol/l NaCL, 0.05 %
Tween-20, pH of the solution adjusted to 7.5). Rabbit anti-
NF-kB p65 (1:500), anti-caspase-1 (1:500), anti-NALP3
(1:5000), or anti-ASC (1:500) antibodies were added and

Table 1 Primers used for quantitative PCR

Name Sequence (5'—3’)

NALP3 ATTACCCGCCCGAGAAAGG
TCGCAGCAAAGATCCACACAG

ASC GCAACTGCGAGAAGGCTAT
CTGGTCCACAAAGTGTCCTG

-actin TTH AGCT

B GCTTCTTTGCAGCTCCTTCG
CCTTCTGACCCATTCCCACC

CCL3 TCCCAGCCAGGTGTCATTT
GGCATTCAGTTCCAGGTCAG

TNF CCCTTCCTCCGATGGCTAC
CGCCTCCTTCTTGTTCTGG
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incubated at 4°C overnight. Membranes were washed with
TBS-T, and then incubated with the secondary antibody,
either goat anti-mouse IgG or anti-rabbit IgG horseradish
peroxidase-conjugated antibody (1:5000). Bands of immu-
noreactive protein were visualized after membrane incuba-
tion with enhanced chemifluorescence (ECF) reagent for
5 minutes, on an image system (Versadoc; Bio-Rad). The
blot was stripped and reprobed with anti-B-actin (for cyto-
plasmic extracts) or anti-Max (for nuclear extracts) to esti-
mate the total amount of protein loaded in gel.

Statistical analysis

All assays were performed on three separate occasions.
Data are expressed as means+S.D. All comparisons for
parametric data were made using Student’s ¢ test or one-
way ANOVA followed by post hoc Turkey’s test, Nonpara-
metric data (ELISA of the primary microglia) were ana-
lyzed by the Kruskal-Wallis ANOVA test followed by the
Nemenyi test for post hoc analyses. SPSS software (version
13.0: SPSS Inc., Chicago, IL, USA) was used, and P < 0.05
was considered significant.

Results

Neurotoxic prion peptide PrP106-126 activates caspase-1
and induces interleukin-1p release in lipopolysaccharide-
primed microglia

To investigate the mechanisms of PrP106-126 induced
release of IL-1f, we incubated primary mouse microglial
cells and BV2 cell lines with PrP106-126 and its
scrambled form, Scr-PrP. Because pro-IL-1p is not con-
stitutively expressed in microglia [23], the cells were
primed with 300 ng/ml LPS for 3 hours to induce pro-
IL-1pB synthesis and to mimic the chronic activation of
microglia in prion disease. Treatment of LPS-primed
BV2 microglia and primary microglia with PrP106-126
led to a significant increase in IL-1p release. At all time
points examined, the IL-1p level was significantly higher
in cells treated with PrP106-126 than in those treated
with Scr-PrP or PBS (Figure 1).

Similarly, only the PrP106-126 treatment led to caspase-1
activation in LPS-primed BV2 microglia and the murine
macrophage cell line, ANA1, as indicated by the cleavage of
caspase-1 to its active p20 subunit. No caspase-1 cleavage
was seen in LPS-primed BV2 microglia or in ANAI treated
with PBS or Scr-PrP (Figure 2). These results indicate that
PrP106-126 induces IL-1P release and activates caspase-1
from microglia.

PrP106-126 upregulates NALP3 and ASC expression

To investigate the involvement of NALP3 inflammasome
activation in PrP106-126-induced microglial activation,
we first examined the effect of PrP106-126 treatment on
the mRNA expression of NALP3 and ASC in BV2 micro-
glia. PrP106-126 treatment significantly upregulated the
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Figure 1 PrP106-126 induces the release of interleukin (IL)-1.
Cells were primed with 300 ng/ml lipopolysaccharide (LPS) for 3
hours, and then left untreated or stimulated with PrP106-126

(100 pmol/1) or Scr (100 umol/l). Data show ELISA analysis of the
release of IL-1(3 by (@) mouse primary microglia and (b) BV2 cell
lines. Data represent the mean + SD of triplicate samples from one of
three independent experiments. *P < 0.05, significantly different from
control and Scr-treated cells under the same experimental
conditions.

mRNA expression of both NALP3 and ASC in microglia
(Figure 3a,b). The mRNA level of NALP3 was significantly
higher in PrP106-126-treated microglia than in PBS-trea-
ted microglia at all time points examined, while ASC ex-
pression was upregulated only at 24 and 36 hours after
PrP106-126  stimulation. The  PrP106-126-induced
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Figure 2 PrP106-126 induces caspase-1 activation. Cells were
primed with 300 ng/ml lipopolysaccharide (LPS) for 3 hours and
then left untreated or stimulated with PrP106-126 (100 umol/l) or Scr
(100 pmol/l). Data show western blot analysis of caspase-1 (p20)
cleavage in (a) LPS-primed BV2 and (b) the ANAT cell line. p45, full-
length pro-form of caspase-1; p20, active subunit of caspase-1. Data

represent one of three independent experiments.
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Figure 3 Exposure of lipopolysaccharide-primed BV2 microglia
to PrP106-126 increases mRNA expression of NACHT, LRR and
PYD domains-containing protein (NALP)3 and ASC.
Measurement by quantitative PCR of the mRNA expression of (a)
NALP3 and (b) ASC in BV2 microglia at the indicated time points
after exposure to PrP106-126. Data were performed in triplicate and
expressed as the mean + SD, and are representative of three separate
experiments. *P < 0.05, significantly different from control under the
same experimental conditions.

upregulation of NALP3 and ASC indicates an active par-
ticipation of NALP3 inflammasome in PrP106-126-
induced microglial activation.

PrP106-126-induced release of interleukin (IL)-1B requires

the NALP3 inflammasome

To elucidate the role of the NALP3 inflammasome in
PrP106-126-induced microglial activation, we examined the
role of the NALP3 inflammasome in PrP106-126-induced
IL-1p release. Because the NALP3 inflammasome is a mul-
tiprotein complex that consists of NALP3, ASC, and pro-
caspase-1 [24,25], we analyzed the effect of siRNA-mediated
disruption of NALP3 or ASC on IL-1p release in PrP106-
126-treated microglia. The efficiency of siRNA-mediated
disruption was evaluated at 24 and 48 hours after siRNA
transfection by qPCR (Figure 4a) and western blot analysis
(Figure 4b), respectively. Expression of NALP3 and ASC
was significantly downregulated both at the mRNA (76 %
and 80 %, respectively) and protein levels after siRNA
transfection.

Following NALP3 or ASC disruption, BV2 cells were
primed with 300 ng/ml LPS for 3 hours before
PrP106-126 treatment. The cells were then exposed to
PrP106-126, and the cell-culture supernatants were
collected at 6 hours after PrP106-126 exposure and
assayed for IL-1f by ELISA. Knock-down of either
NALP3 or ASC significantly reduced the release of
IL-1B after exposure to PrP106-126 (Figure 4c), sug-
gesting a key role for the NALP3 inflammasome in
PrP106-126- induced IL-1p release.
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Increased levels of extracellular K+ and N-acetyl-cysteine
abrogate PrP106-126-induced secretion of interleukin-1f3
Several studies have shown that the NALP3 inflamma-
some assembly requires a low K+ intracellular environ-
ment [26], and the activation of NALP3 inflammasome
is reportedly blocked by reactive oxygen species (ROS)
inhibitors through a mechanism that is not well under-
stood [27]. To determine the role of K+and ROS in
PrP106-126-induced NALP3 inflammasome activation,
we evaluated the effect of increasing the level of extra-
cellular K+and of NAC (an antioxidant known for its
ability to scavenge ROS), on PrP106-126-induced secre-
tion of IL-1p and NALP3 and ASC upregulation.

A high extracellular K+ concentration significantly
abrogated PrP106-126-induced release of IL-1p in LPS-
primed microglia. Similarly, NAC significantly blocked
IL-1B activation in LPS-primed microglia stimulated
with PrP106-126 (Figure 5a).

NAC significantly abrogated PrP106-126-induced
NALP3 and ASC upregulation; the mRNA levels of
NALP3 and ASC significantly decreased after NAC treat-
ment in PrP106-126-treated microglia and dropped to
68 % and 54 %, respectively, of the levels seen in micro-
glia treated with PrP106-126 only (Figure 5b). Interest-
ingly, higher levels of extracellular K+ significantly
reduced the PrP106-126-induced NALP3 upregulation
(64 % of the mRNA level seen in microglia treated with
PrP106-126 only) but had no effect on ASC upregulation
(Figure 5b). These results suggest that a low K + intracel-
lular environment and ROS production are also required
for PrP106-126-induced NALP3 inflammasome activa-
tion, and indicate that the expression of ASC and
NALP3 may be regulated through closely related but not
identical regulatory pathways in PrP106-126-treated
microglia.

The NALP3 inflammasome activation promotes tumor
necrosis factor and chemokine (C-C motif) ligand 3
expression

Previous studies with brain samples from mice infected
with prion agent showed upregulation of multiple cyto-
kines and chemokines, including pro-inflammatory TNE,
IL-1a, transforming growth factor B, CCL2, and CCL3
[9]. To investigate the involvement of NALP3 inflamma-
some activation in PrP106-126-induced upregulation of
pro-inflammatory cytokines and chemotactic factors, we
examined the effect of siRNA-mediated silencing of
NALP3 and ASC on the mRNA expression of TNF and
CCL3 in LPS-primed BV2 microglia stimulated with
PrP106-126.

After siRNA-mediated disruption of NALP3 or ASC,
cells were treated with PrP106-126 for 12 hours, then
total RNA was extracted and used to measure the level
of TNF and CCL3 encoding mRNA, using qPCR. Knock-
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Figure 4 PrP106-126-stimulated release of interleukin (IL)-1B is dependent on the NACHT, LRR and PYD domains-containing protein
(NALP)3 inflammasome. BV2 microglia cells were transfected with either control non-targeting small interfering (si) RNA (N-i), NALP3-targeting
SIRNA (NALP3-i), or ASC-targeting siRNA (ASC-i). (@) Quantitative PCR analysis of the mRNA expression of NALP3 and ASC in BV2 microglia after
SiIRNA transfection. (b) Western blot analysis of the protein expression of NALP3 and ASC in BV2 microglia after siRNA transfection. (c) ELISA
analysis of IL-1(3 released in the supernatants of BV2 microglia with NALP3 or ASC knock-down treated with PrP106-126. Data represent the
mean £ SD of triplicate samples from one of three independent experiments. *P < 0.05, significantly different from control under the same

experimental conditions.
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Figure 5 High concentration of K+ and N-acetyl-cysteine (NAC) blocks PrP106-126-stimulated release of interleukin (IL)-1f in BV2
microglia. Lipopolysaccharide (LPS)-primed BV2 microglia were treated with PrP106-126 in combination with either K+ or NAC for 6 hours, then
the supernatants were collected for (a) ELISA analysis of the secreted IL-13, and (b) gPCR analysis of the mRNA expression of NALP3 and ASC).
Data were performed in triplicate and expressed as the mean +SD, and are representative of three separate experiments. *P < 0.05, significantly
different from PrP106-126 treated cells.
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Figure 6 The NALP3 inflammasome participates in tumor necrosis factor and chemokine (C-C motif) ligand (CCL)3 mRNA upregualtion
in PrP106-126-stimulated microglia. Real-time quantitative PCR analysis of the mRNA level of TNF-a and CCL3 in BV2 cells treated for 12 hours
with PrP106-126 after small interfering (si)RNA-mediated silencing of (@) NALP3 and (b) ASC siRNA silencing. Data represent the mean + SD of
triplicate samples from one of three independent experiments. *P < 0.05, significantly different from PrP106-126 treated cells.
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Nuclear factor-kB inhibition abrogates PrP106-126-
induced upregulation of NALP3 and ASC expression
The transcription factor NF-kB has been shown to play an
important role in prion-induced inflammation, and PrP106-
126-induced NF-«B activation has been widely reported
[13,28,29]. In this study we also found that PrP106-126
treatment stimulated NF-kB activation as indicated by the
nuclear translocation of p65 in BV2-microglia (Figure 7a).
We then examined the relevance of NF-kB activation
to NALP3 activation through the analysis of the effect of
NF-xB inhibitor, Bay 11-7082, on the expression of
NALP3- and ASC-encoding mRNA in PrP106-126-treated
BV2 microglia. The results showed that low, moderate,
and high concentrations of Bay 11-7082 significantly
reduced the PrP106-126-induced upregulation of NALP3-
and ASC-encoding mRNA (Figure 7b), suggesting that
NF-kB activation is required for NALP3 inflammasome
activation.

Discussion
Previous studies have shown that pathological prion
protein can activate microglia and induce the release of

inflammatory cytokines and chemokines in vivo and in
vitro [9,12]. Furthermore, the inflammatory cytokine IL-
1B has been shown to be an important factor in prion
disease-associated inflammation [10]. Although it is
clear that PrP* can induce IL-1B from microglia both
in vivo and in vitro, the mechanism of prion-mediated
processing and release of IL-13 was unclear.

IL-1P is expressed as a biologically inactive pro-form,
pro-IL-1B, in the cytoplasm of cells. Pro-IL-1p is the sub-
strate of the cysteine protease caspase-1, which mediates
the cleavage of pro-IL-1p and release of the mature, bio-
logically active cytokine form of IL-1p. Caspase-1 itself is
present as an inactive proform in the cytoplasm, and is
activated by proteolytic self-processing. The induction of
IL-1B secretion requires enhanced pro-IL-1B synthesis
through transcriptional mechanisms via NF-kB, followed by
a second stimulus that leads to the activation of caspase-1,
processing of pro-IL-1f and release of mature IL-1f [17].
The NLR NALP3 interacts with the adapter protein ASC
to form the inflammasome that has been identified as cas-
pase-1 activator [17,30-33], and thus controls the second
required step of IL-1p cytokine activation.
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In the present work, we examined the signaling molecules
that contribute to IL-1p activation in microglia in response
to PrP106-126 stimulation. Our data indicate that the NLR
protein NALP3 and the inflammasome adaptor ASC are
involved in PrP106-126-induced caspase-1 and IL-1f acti-
vation. The siRNA-mediated disruption of either NALP3 or
ASC significantly attenuated but did not completely abro-
gated IL-1p production, as residual IL-1[ was still detected.
This may be due to the incomplete silencing of NALP3
or ASC with siRNA-mediated disruption, or to the exist-
ence of alternative pathways for IL-1f activation. Indeed,
recent reports have shown that inflammasome- and
caspase-1-independent mechanisms may also be involved
in the activation of IL-1f in microglia [34,35].

A recent study showed that AP, an endogenous peptide
that forms insoluble fibrils in the brains of patients with
Alzheimer’s disease (AD), activates the NALP3 inflam-
masome [36,37]. Activation of the NLRP3 inflammasome
by islet amyloid polypeptide has been also reported in
type 2 diabetes [36,37]. In the present study we found
that the neurotoxic prion protein fragment PrP106-126,
which forms amyloid fibrils with high p-sheet content,
also activates the NALP3 inflammasome. This supports a

key role for the NALP3 inflammasome as a general sensor
for the recognition of peptide or protein aggregates that
are involved in the pathogenesis of diseases such as AD,
prion diseases, and systemic amyloidosis. However, it is
not clear whether inflammasome activation has a benefi-
cial or deleterious effect on the progression of amyloid-
associated diseases.

Activation of NF-«B is known to be involved in
PrP106-126 induced microglial activation [13,28,29]. Our
experiments indicate that inhibition of NF-kB activation
abrogates PrP106-126-induced NALP3 mRNA upregula-
tion. This confirms that NF-«xB activation acts upstream
of NALP3, which is consistent with the well-described
role of NF-kB as the main regulator of IL-1p precursor
synthesis [38].

In the pathogenesis of prion diseases, several pro-
inflammatory cytokines are upregulated, and are thought
to play important roles in the recruitment and activation
of microglia to areas in whcih amyloid aggregates are
present. In this study, we found that the siRNA-mediated
disruption of NALP3 and ASC significantly downregulated
the mRNA expression of TNF-a and CCL3 in PrP106-
126-stimulated microglia. This is consistent with previous
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reports on the role of inflammasome activation in pro-
moting the production of proinflammatory factors
[19,36]. It is likely that the upstream activation of
NALP3 leads to the production of pro-inflammatory
cytokines and chemotactic factors through the auto-
crine/paracrine effects of activated IL-1p.

It would be interesting to determine the relationship
between NALP3 pathways and the other signaling pathways
involved in PrP106-126-induced microglial activation. In a
recent study, we showed that scavenger receptor CD36 par-
ticipates in PrP106-126-induced microglial activation and
that CD36 mediates PrP106-126-induced upregulation of
IL-1p through a caspase-1-independent pathway suggesting
that there is a limited interaction, if any, between inflamma-
some pathways and scavenger receptor-activated pathways
during PrP106-126-induced microglial activation [35]. Fur-
ther studies are required to elucidate the nature of the rela-
tionship between NALP3 activation and other signaling
pathways involved in PrP106-126-induced microglial
activation.

Among the models that have been put forth to explain
the mechanisms of inflammasome activation is the efflux
of K+ and the possible influx of small danger-associated
or pathogen-associated molecular patterns [24,26]. In the
present study we found that hyperosmotic extracellular
K + significantly attenuated PrP106-126-induced release
of IL-1B through downregulation of NALP3 expression.
The concentration of K+ seems to be irrelevant for the
regulation of ASC expression, as no significant change in
the mRNA expression of ASC was seen in microglia
treated with PrP106-126 in combination with K+. These
results suggest that potassium efflux may account for
inflammasome activation stimulated by neurotoxic
prion peptides, and also indicate that the expression of
ASC and NALP3 may be controlled through distinct
regulatory pathways during the assembly and activation
NALP3 inflammasome. This is consistent with the findings
reported by Hanamsagar et al., who found that IL-1p pro-
cessing in microglia is regulated by multiple pathways that
differentially regulate ASC and NALP3 [34].

Another suggested mechanism for inflammasome activa-
tion is the generation of ROS. PrP106-126 is known to
induce ROS production in treated microglia [27,30,39,40].
In the present study, we found that the ROS inhibitor NAC
significantly reduced the production of IL-1f, and blocked
NALP3 and ASC upregulation after exposure to PrP106-
126, suggesting a role of ROS generation in the activation
of the inflammasome in PrP106-126-stimulated microglia.
Although it is not clear whether these mechanisms act in
concert or independently, these results confirm the widely
accepted view that no single mechanism can account for
inflammasome activation [30].

Together our results demonstrate a role for NALP3
inflammasome in the mediation of IL-1p production
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after stimulation with neurotoxic prion peptides. Our
results do not exclude the possible involvement of other
inflammasome complexes in the activation of caspase-1
and IL-1B processing during the interaction between
microglia and prion peptides. The inflammasomes harbor-
ing the NLR members NALP1, NALP3, IL-1-converting
enzyme protease-activating factor (IPAF), and nucleotide-
binding oligomerization domain-containing protein 2 are
the best characterized, and, in certain pathological condi-
tions, the assembly of inflammasomes harboring more
than one NLR has been reported [41,42]. It would be
therefore of interest to investigate the role of other inflam-
masome complexes, such as NALP1 and IPAF, in prion
peptides-induced IL-1f production in microglia.

Conclusions

We have identified a previously unrecognized role of
NALP3 inflammasome as the main molecular platform
responsible for IL-1p maturation and release in PrP106-
126-stimulated microglia. Although more studies are
needed in vitro and vivo to confirm and explore these
initial findings, our study identified a potential molecular
target for the modulation of prion-associated neuroin-
flammation through the modulation of the assembly of
the NALP3 inflammasome.
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