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Abstract

Background: Flaviviruses are a genre of closely related viral pathogens which emerged in the last decades in Brazil
and in the world. Saint (St.) Louis encephalitis virus (SLEV) is a neglected flavivirus that can cause a severe neurological
disease that may lead to death or sequelae. St. Louis encephalitis pathogenesis is poorly understood, which hinders the
development of specific treatment or vaccine.

Methods: To address this problem, we developed a model of SLEV infection in mice to study mechanisms involved in
the pathogenesis of severe disease. The model consists in the intracranial inoculation of the SLEV strain BeH 355964, a
strain isolated from a symptomatic human patient in Brazil, in adult immunocompetent mice.

Results: Inoculated mice presented SLEV replication in the brain, accompanied by tissue damage, disease signs,
and mortality approximately 7 days post infection. Infection was characterized by the production of proinflammatory
cytokines and interferons and by leukocyte recruitment to the brain, composed mainly by neutrophils and
lymphocytes. In vitro experiments indicated that SLEV is able to replicate in both neurons and glia and caused
neuronal death and cytokine production, respectively.

Conclusions: Altogether, intracranial SLEV infection leads to meningoencephalitis in mice, recapitulating several
aspects of St. Louis encephalitis in humans. Our study indicates that the central nervous system (CNS) inflammation is a
major component of SLEV-induced disease. This model may be useful to identify mechanisms of disease pathogenesis
or resistance to SLEV infection.
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Background
St. Louis encephalitis virus (SLEV) is a causative agent
of encephalitis in humans and horses in the Americas
[1–3]. SLEV is a member of the Flavivirus genus,
together with important human pathogens, such as
Dengue and Zika viruses, but belongs to the Japanese
encephalitis virus (JEV) serocomplex [4]. Like all flavi-
viruses, SLEV is a single-stranded positive-sense RNA
virus, with a genome of approximately 11 kb that en-
codes three structural genes and seven non-structural

genes [5]. SLEV transmission cycles involve Culex
mosquitoes, birds, and a variety of mammals [3], although
alternative cycles involving other mosquito species have
been reported [6]. SLEV is closely related to JEV and West
Nile virus (WNV), both also characterized by the ability to
cause severe neurological disease in humans [7, 8]. The
recent emergence of Zika virus (ZIKV) and the prospect
of outbreaks of other flaviviruses indicates how necessary
it is to study neglected arboviral diseases [6, 9].
The majority of SLEV infections in humans is asymp-

tomatic or result in flu-like or dengue-like symptoms
[10–12]. Severe cases are acute and characterized by
intense headache, fever, and neurological alterations
such as confusion, convulsions, loss of body reflexes,
paralysis, meningitis, and/or encephalitis [13–16].
Mortality rates in severe cases may reach 20%, and
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survivors often present with neurological sequelae, such
as cognitive impairment, memory loss, and incoordin-
ation [17, 18]. There are no specific treatments or a vac-
cine available against St. Louis encephalitis, although
prototype vaccines were developed and shown to protect
mice against SLEV challenge [19–21].
The development of specific treatments against SLEV

infection would benefit from a greater understanding of
disease pathogenesis, which is limited and mostly
inferred from the study of other flaviviral infections.
From this perspective, rodent models represent an
important and extensively used tool for the study of
flaviviral encephalitis [15, 22, 23]. The earliest reports of
experimental SLEV infection in mice were performed in
the early 1930s, following SLEV discovery, and consist-
ently described the ability of SLEV to cause brain dam-
age and death [13, 22, 24]. Based on mortality indexes
and seroconversion, mouse models of SLEV infection
were used to characterize the virulence of SLEV isolates
[25], to assess vaccine efficacy [19–21], and to test po-
tential treatments [26, 27]. Moreover, mechanisms lead-
ing to SLEV invasion of the central nervous system
(CNS), a critical step in the pathogenesis of viral enceph-
alitis, were studied using a hamster model of infection
[28]. Overall, factors such as age, route of inoculation,
and the viral strain are determinant for mouse and ham-
ster susceptibility to SLEV infection [29].
In this manuscript, we describe a robust model of

SLEV infection in C57BL/6J and Balb/c mice that
recapitulates several aspects of human disease [13]. This
experimental model is based on the intracranial inocula-
tion of a SLEV strain isolated from a symptomatic
patient in Brazil [5, 30] into adult immunocompetent
mice, which develop severe neurological disease. We
found that SLEV replicates in the brains of infected
mice, causing the production of proinflammatory cyto-
kines and the recruitment and activation of leukocytes,
which is consistent with meningoencephalitis. SLEV
infection causes significant brain damage and results in
death. Importantly, this study indicates that CNS inflam-
mation is a major component of SLEV-induced disease.

Methods
Mice
Eight- to 12-week-old wild type (WT) C57BL/6 or Balb/c
mice were purchased from Centro de Bioterismo of
UFMG (Belo Horizonte, Brazil). All animals were kept in
the laboratory animal facility under controlled tem-
perature (23 °C) with a strict 12-h light/dark cycle, food,
and water available ad libitum. All experimental proce-
dures were approved by and complied with the regulations
of Universidade Federal de Minas Gerais (UFMG)
Committee for Ethics in Animal Use (CEUA), under
protocol number 349/2012.

Virus
SLEV strain BeH 355964 was provided by Prof. Luis
Tadeu Moraes Figueiredo (Universidade de São Paulo,
SP, Brazil). BeH 355964 stocks were generated by pas-
sage in C6/36 mosquito cell monolayers, cultivated in
Leibovitz-15 supplemented with 10% v/v fetal bovine
serum (FBS) (Cultilab, Brazil) and antibiotics. Clarified
supernatants containing virus were titrated by plaque
assay in Vero cells, and viral titers were expressed in
plaque forming units (PFU)/mL of supernatant. SLEV
BeH 355964 complete genome sequence is available at
GenBank under accession number KM267635 [5].

In vivo experimental infection
Mice were inoculated intracranially (i.c.) or intraperito-
neally (i.p.) with different inocula of SLEV or saline, as
mock-infected control. Inocula were prepared by dilut-
ing viral stocks (as L-15 clarified supernatants) in saline.
Viral dilutions in saline were at least 1000-fold, resulting
in a solution that contained negligible amounts of the
original L-15 culture supernatant. Injected volumes were
20 and 100 μL for i.c. and i.p. routes, respectively. For the
i.c. inoculation, mice were anesthetized using Isoflurane
(Biochimico, Brazil) 5% v/v inhalation. A syringe contain-
ing the inoculum was positioned perpendicularly to the
head on the intersections of medial and sagittal planes,
following insertion of the needle into the cranial cavity, in-
jection and perpendicular removal from within the cranial
cavity. Mice were observed twice a day for 14 days or up
to determined time points for sample collection, at which
mice were anesthetized with ketamine/xylazine (Syntec,
Brazil) before collection of blood and organs, or
euthanized by CO2 inhalation. All tissue samples were
stored at −80 °C until analysis. On survival experiments,
mice presenting with severe disease signs (such as
complete paralysis) were euthanized by CO2 inhalation
and considered dead in data analysis.

Quantification of viral load
SLEV load in cell culture and tissue samples was deter-
mined by plaque assay and/or reverse transcriptase
quantitative PCR (RT-qPCR). Tissue samples were proc-
essed into 10% w/v homogenates in DMEM prior to
analysis by both techniques. Briefly, the plaque assay
consisted in the serial dilution of samples for adsorption
in Vero cell monolayers, for an hour. Samples were
removed, following the addition of an overlay media
containing 1.5% w/v carboxymethylcellulose (Synth, SP,
Brazil) in 2% fetal bovine serum (FBS) v/v DMEM. After
7 days, plates were fixed with formaldehyde, washed and
stained with methylene blue (Synth, SP, Brazil) 1% w/v.
Results were expressed as plaque forming units (PFU)/mL
of supernatant or PFU/100 mg of tissue. For the RT-qPCR
reaction, samples were submitted to RNA extraction
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(QIAamp viral RNA extraction kit, QIAgen) and cDNA
synthesis using random primers (Promega) and SuperScript
Reverse Transcriptase III (Invitrogen), according to the
companies’ specifications. The qPCR reaction was per-
formed in the 7500 Fast platform using SYBR green re-
agents (Applied Biosystems) and primers targeting SLEV
NS5 gene (primer forward FG1 TCAAGGAACTCCACA
CATGAGATGTACT, primer reverse nSLE ATTCTT
CTCTC AATCTCCGT), as described elsewhere [31]. All
PCR reactions were accompanied by a standard curve of
the 232 bp NS5 amplicon. Results were expressed as rela-
tive number of genome copies of SLEV per sample.

Quantification of cytokines and chemokines
Concentrations of Interferon (IFN) γ, CCL5, CXCL-1,
IL-6, IL-1β, IL-10, IL-17, and TNF-α were quantified in
cell culture or processed tissue samples by ELISA (R&D
Systems, USA), following the manufacturer instructions.
The detection limit of quantitative ELISA was in the
range of 4–8 pg/mL or picogram per 100 mg of tissue.
Results are expressed as picogram per 100 mg of tissue,
picogram per milliliter of supernatant or by absorbance
at 490 nm. Type I IFN (IFNα and IFNβ) levels were
determined in processed samples by RT-qPCR using
specific primers (IDT, USA). Cycle threshold (Ct) values
of target genes were normalized to the housekeeping
gene 18S and analyzed according to the ΔΔCt
method: 2−ΔCt (sample)−ΔCt (housekeeping). Results are expressed
as fold increase over the mock-infected WTgroup.

Determination of enzymatic activity from leukocytes
Assays to detect the activity of myeloperoxidase (MPO), eo-
sinophil peroxidase (EPO), and N-acetil-β-D-glucosaminidase
(NAG) were performed in tissue samples as a measure of
leukocyte recruitment into target organs. To measure
MPO and EPO activity, tissue homogenates were prepared
in 1 mL of PBS containing 0.5% hexadecyltrimethyl
ammonium bromide (HTAB) and 5 mM EDTA. Saline/
Triton X-100 0.1% v/v was used to process tissues for
NAG activity measurement. Test protocols were per-
formed as already described [32]. Briefly, samples were
evaluated for their ability to convert the substrates
p-nitrophenyl-β-glycosamine (for NAG), 3,3′ 5,5′ tetra-
methylbenzidine (for MPO) or o-phenylenediamine (for
EPO) to generate a colored solution proportional to the
amount of enzyme in the sample. Plates for each assay
were read at 405, 450, and 495 nm, respectively, and re-
sults expressed as absorbance.

Hematological parameters
Blood was collected from the brachial plexus of anesthe-
tized mice in heparinized tubes for total and differential
leukocyte count, platelet count, measurement of the
hematocrit index, and, separately, for serum. Platelets

and leukocytes were quantified in an optical micro-
scope (Zeiss ICS Standard 25) using a Neubauer
chamber or mounted microscope slides, containing
Diff-quik-stained samples (Laboclin, Brazil). The hema-
tocrit index was determined on centrifuged blood
samples in heparinized glass capillaries. Results are as
counts/mm3, per milliliter of blood (leukocytes), or per-
centage (hematocrit).

Flow cytometry
Mice were euthanized and perfused with 15 mL of PBS.
The brains were collected, homogenized individually, and
centrifuged against Percoll gradients (35 and 70%) for sep-
aration of leukocytes/microglia. Collected cells were
washed, counted, and stained with antibodies against
leukocyte surface markers (CD3, CD4, CD8, CD19, CD69,
GR-1, F4/80, NK1.1) (all purchased from BD Biosciences).
Cells were fixed in buffered 4% v/v formaldehyde and ac-
quired in a FACS Canto II cytometer (BD Biosciences).
Analyzed cell populations included lymphocytes, granulo-
cytes, and macrophages/microglia, initially gated by size/
granularity and subsequently by the expression of surface
markers, and compared to negative and isotype-stained
controls. Data were analyzed using FlowJo (Tree Star),
and results expressed as total cell number of positive cells
per brain/animal.

Histopathology
Mice were euthanized and perfused with 15 mL of PBS
and 15 mL of buffered 4% v/v formaldehyde, for the col-
lection of brains. Sections (5 μm thick) were made in a
rostral to caudal fashion, mounted and stained in H&E.
Sections were then analyzed for signs of brain pathology
and inflammation, focusing on the regions of the hippo-
campus and the cortex/meninges. Images were obtained
at ×200–400 magnification using an Olympus BX51 op-
tical microscope equipped with a camera.

Behavioral assessment
Behavioral changes induced in mice by SLEV infection
were first assessed using the SHIRPA battery of tests [33].
Briefly, mice are submitted to 40 quick tests individually,
observed and evaluated semi-quantitatively on their
performance. The SHIRPA battery was performed in the
laboratory animal facility, and results were expressed as a
score for each animal in experimental groups. Mice were
also assessed for alterations on the spontaneous locomotor
activity, using the open-field method. Mice are placed indi-
vidually in a transparent acrylic cage for 20 min. Their
movement was recorded with a video camera and analyzed
for total traveled distance, using the software Any-Maze
(Stoelting Company). Results are expressed as traveled dis-
tance per mouse in a given experimental group.
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In vitro experimental infections
N1E-115 mouse neuroblast cell line was kindly provided
by Josiane Piedade (FUNED, Belo Horizonte, Brazil) and
maintained in DMEM supplemented with 5 mM HEPES,
10% v/v SFB, and antibiotics. Primary neuronal cell cul-
tures were obtained from the cortex and striatum areas
of C57BL/6 embryos at 15 days post coitum. After
dissection, the tissue was digested with trypsin and
dissociated. Cells were plated into poli-L-ornitine-coated
plaques with Neurobasal medium supplemented with
2nM Glutamax, B-27, and antibiotics (all purchased
from Gibco, Thermo Fisher Scientific, USA). Cell cul-
tures were incubated in 37 °C at 5% CO2 for 5–7 days
until use. Primary mixed glia cultures were obtained by
collecting the brains of newborn mice (1–2 days old).
Brains were minced and digested in 0.1% w/v trypsin
(Gibco) for 15 min under agitation. Brain homogenates
were washed in DMEM twice and plated in cell culture
flasks containing DMEM supplemented with 10% FBS.
Mixed glial cell cultures were harvested after 9–14 days.
Briefly, cell cultures were infected with SLEV at a MOI of
0.1 for 1 h, washed in DMEM and incubated at 37 °C 5%
CO2 until sample collection (24–96 h post infection). Col-
lected samples included cell culture supernatants for meas-
urement of cytokine levels and viral load. Neuronal death
was assessed in primary cultures using the LIVE/DEAD
Viability/Cytotoxicity kit for mammalian cells (Molecular
probes, Thermo Fisher Scientific, USA) and observed using
a FLoid Cell imaging station (Life Technologies).

Statistical analysis
Results are expressed as mean plus standard error of
mean, unless otherwise stated. Raw data were first ana-
lyzed for the presence of outliers (GraphPad quickCalcs)
and checked for Gaussian distribution. Data sets were
compared using ANOVA, followed by Tukey or Sidak
post-tests. Differences between survival curves were ana-
lyzed using the log-rank test. Results with P < 0.05 were
considered significant. All data are representative of at
least two experiments (n = 4 to n = 12 replicates or n = 7
to n = 17 mice).

Results
Wild-type adult mice are susceptible to intracranial
inoculation of SLEV BeH 355964 in an
inoculum-dependent manner
Our studies were initiated by the inoculation of SLEV
BeH 355964, henceforth referred to as SLEV, in adult
(8–12 weeks) wild-type (WT) BALB/c mice. Mice were
inoculated with 105 PFU of SLEV via the intraperitoneal
(i.p.) or intracranial (i.c.) routes and followed for signs of
disease and mortality for 14 days (Fig. 1a). The majority
of mice inoculated with SLEV via the i.c. route presented
disease signs such as ruffled fur and hunched back at 6

to 7 days after infection (p.i.), which developed into
complete paralysis and death. Mice inoculated with
SLEV via the i.p. route or injected with saline (Fig. 1a,
Mock i.c., Mock i.p.) did not present with disease signs
or death. We also performed an experiment in which
mice were inoculated with SLEV via intraplantar or sub-
cutaneous (s.c.) routes, in addition to i.p. and i.c. routes
already tested. We observed that mice infected by per-
ipheral routes (intraplantar, s.c. and i.p.) did not present
disease signs or mortality, whereas mice inoculated with
SLEV via the i.c. route manifested disease and mortality
at 6-7 days p.i. (Additional file 1: Figure S1).
To investigate if SLEV-induced mortality was inoculum-

dependent, we infected groups of BALB/c (Fig. 1b) with
different inocula of SLEV and followed for signs of disease
and need for euthanasia. This experiment was performed
in parallel with other commonly used laboratory mouse
strains (SV129, Fig. 1c) (C57BL/6, Fig. 1d) to test SLEV
infection reproducibility. Infected mice of all strains mani-
fested severe disease and death in an inoculum-dependent
fashion, although strains had different degrees of suscepti-
bility to SLEV infection. SV129 mice (Fig. 1c) were found
to be more resistant to SLEV i.c. infection, followed by
BALB/c mice (Fig. 1b) and finally by the more susceptible
C57BL/6 mice (Fig. 1d). All mock-infected mice (injected
with saline) had no disease signs. In order to minimize
variation and inconsistencies, only female mice were used
in the following experiments.
Our data indicate that SLEV can cause disease and death

in immunocompetent mice when injected directly into the
CNS but not when injected systemically. SLEV-induced
disease and mortality were inoculum-dependent and re-
producible across different commonly used mouse strains.

SLEV infects and replicates in mice brains
In order to characterize the disease induced by the i.c. in-
jection of SLEV in mice and ultimately the events leading
to death in this model, we inoculated female adult C57BL/
6 mice intracranially with 103 PFU of SLEV. This inocu-
lum was selected as it was equivalent to a lethal dose
(LD100) of SLEV in C57BL/6 mice (Fig. 1d). Mice were
euthanized for sample collection at days 3, 5, and 7 after
infection, in time points that precede and include the peak
of mortality observed in previous experiments. Brain sam-
ples were collected, processed, and assessed for viral load
by plaque assay (Fig. 2a) and RT-qPCR (Fig. 2b). Our re-
sults indicated that the number of plaque forming units
(PFU) and SLEV genome copies increase exponentially in
the brains of infected mice during the evaluated time
points (Fig. 2a, b), which are both undetectable in mock-
infected controls. SLEV accumulation in the brain peaked
at day 7 p.i., as indicated by both techniques. Thus, our re-
sults indicate that, upon i.c. inoculation, SLEV infects and
replicates in the mouse brain.
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SLEV infection induces the production of
proinflammatory cytokines and interferons in the
mouse brain
SLEV replication in the brain was accompanied by the
local production of cytokines, chemokines, and interferons
(IFNs). Tissue samples from mock-infected and SLEV-

infected mice euthanized at days 3, 5, and 7 p.i. were col-
lected, processed, and assessed by ELISA or by RT-qPCR
(Fig. 3). The choice of cytokines was based on the known
role of these molecules in the context of neuropathology,
either by mediating inflammation (IL-6, IL-1β, TNFα,
CCL5, CXCL1) and/or by their association to viral infec-
tions (IFNs). All cytokines measured were increased in
infected brains as infection progressed to day 7 p.i., when
compared to levels observed in the mock-infected group.
The cytokines IL-6 (Fig. 3a), CCL5 (Fig. 3d), and CXCL1
(Fig. 3e) were already increased in the brains of SLEV-
infected mice at day 5 p.i. In contrast to IL-6, levels of
CCL5 and CXCL1 continued to increase and reached peak
levels at day 7 p.i.. The cytokines IL-1β (Fig. 3b), TNFα
(Fig. 3c), and IFNs (Fig. 3f, g, h) were increased only at
day 7 p.i.. In summary, SLEV replication in the brain is
associated to the expression of proinflammatory cytokines
and IFNs, which reached peak levels at day 7 p.i.

SLEV infection leads to the recruitment of lymphocytes
and neutrophils into the brain of the infected mice
The observation that SLEV caused the production of
chemokines led us to investigate whether there would be
influx of circulating leukocytes into the brain after infec-
tion. Blood samples collected from mice inoculated with

Fig. 2 SLEV infects and replicates in the brains of mice. Adult female
C57BL/6 mice were inoculated i.c. with 1 LD100 of SLEV and euthanized
at days 3, 5, and 7 p.i. for brain collection. Viral load in brains was
measured by plaque assay (a) and by RT-qPCR (b). Results are
expressed as a PFU/100 mg of brain or b relative number of SLEV
genome copies, including the median for each experiment group.
Mock = injected with saline

Fig. 1 Intracranial inoculation of SLEV BeH 355964 causes disease and mortality in adult wild-type mice in an inoculum-dependent manner.
a Eight- to 12-week-old BALB/c mice were inoculated intracranially (i.c.) or intraperitoneally (i.p.) with 105 PFU of SLEV BeH 355964 and observed for
14 days post infection (p.i.). b, c, d Eight- to 12-week-old BALB/c (b), SV129 (c), and C57BL/6 (d) were infected i.c. with different inocula of SLEV BeH
355964 and observed for 14 days p.i.. Results are expressed as percentage of survival in each group and are representative of two experiments.
Mock = injected with saline. N = 6–9 mice. ***P < 0.001 compared to the respective Mock-infected group
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saline (Mock) or 1 LD100 of i.c. inoculated SLEV, at days
3, 5, and 7 p.i., were used for total and differential count-
ing of leukocytes (Fig. 4a, b). Our results showed that
SLEV-infected mice present reduced numbers of circulat-
ing leukocytes already at day 3 p.i., which is maintained
during day 5 and further reduced at day 7 p.i. (Fig. 4a).
The differential leukocyte count showed that the leukopenia
presented by infected mice was due to lymphopenia, as in-
fected mice had a significant decrease in lymphocyte num-
bers at all time points evaluated, when compared to
uninfected controls (Mock) (Fig. 4b). In addition to
leukocyte counts, blood samples were also evaluated for
platelet counts and for the hematocrit index. SLEV infection
could not alter the numbers of platelets or the hematocrit
index, which remained similar to levels presented by saline-
injected controls (Mock) (Additional file 2: Figure S2).
To continue our analysis, brain homogenates from

infected and control mice were tested for the presence of
infiltrating leukocytes through detection of the enzymatic

activity of MPO, NAG, and EPO, present in neutrophils,
macrophages, and eosinophils, respectively (Fig. 4c, d, e).
Our results showed an increase in MPO activity (Fig. 4c)
and a minor increase in EPO activity (Fig. 4e) in the brains
of SLEV-infected mice at day 7 p.i., relative to the respect-
ive Mock controls. No differences were observed for the ac-
tivity of NAG in mock and SLEV-infected groups (Fig. 4e).
These data indicate that neutrophils, and to lesser extent
eosinophils, are recruited to SLEV-infected mice brains.
In order to confirm our previous results and to investi-

gate the recruitment of lymphocytes in SLEV in vivo
infection, flow cytometry experiments were performed
(Fig. 5). Groups of mice were injected with saline i.c. or
inoculated i.c. with 1 LD100 of SLEV. Brains were per-
fused, collected at days 5 and 7 p.i., and processed for
the isolation of leukocytes. Recovered cells were com-
posed mainly of neutrophils and lymphocytes (Fig. 5a)
and increased in number as infection progressed
(Fig. 5b). Neutrophils were the most prevalent leukocyte

Fig. 3 SLEV infection induces the production of cytokines and interferons in the brain of mice. Adult female C57BL/6 mice were inoculated i.c.
with 1 LD100 of SLEV and euthanized at days 3, 5, and 7 p.i. for brain collection. Levels of the cytokines IL-6 (a), IL-1β (b), TNF-α (c), CCL5 (d),
CXCL1 (e), and IFN-γ (f) were quantified by ELISA in 10% w/v brain homogenates. IFNα4 (g) and IFNβ (h) levels were quantified by RT-qPCR in
RNA extractions from brain samples. The limit of detection of the test is 4–8 pg/mL. Results are expressed as mean plus standard error of the
mean (SEM) and are representative of two independent experiments (N = 7–14). *P < 0.05, **P < 0.01, ***P < 0.001 compared to the respective
Mock-infected group. Mock = injected with saline
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Fig. 4 SLEV infection causes leukopenia characterized by lymphopenia in mice and causes the recruitment of granulocytes to the brain. Adult
female C57BL/6 mice were inoculated i.c. with 1 LD100 of SLEV and euthanized at days 3, 5, and 7 p.i. for collection of blood and brain. Blood
samples were used for total (a) and differential (b) leukocyte counts. Brain samples were processed and used in assays for detection of enzymatic
activity of MPO (c), NAG (d) and EPO (e). Results are expressed as mean plus standard error of the mean (SEM) and are representative of two
independent experiments (N = 6–15). *P < 0.05, ***P < 0.001 compared to the respective Mock-infected group. Mock = injected with saline

Fig. 5 Neutrophils, T lymphocytes, and NK cells are recruited to the brain of SLEV-infected mice. Adult female C57BL/6 mice were inoculated i.c. with 1
LD100 of SLEV and euthanized at days 5 and 7 p.i. for collection of brains and extraction of leukocytes. a Representative image of Diff-Quik-stained
leukocytes recovered from the brains of SLEV-infected mice. b Average number of leukocytes recovered from mock and SLEV-infected
mice. c–h Recovered leukocytes were stained with antibodies against leukocyte surface markers and analyzed at a flow cytometer. Results
are expressed as mean plus standard error of the mean (SEM) and are representative of one experiment (N = 3–6). *P < 0.05, **P < 0.01,
***P < 0.001 compared to the respective Mock-infected group. Mock = injected with saline
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population in SLEV infected brains, with an average of 1.5
million cells recruited at day 7 p.i. (Fig. 5c). Macrophages
and microglia were both evaluated according to the ex-
pression of F4/80 and found to be increased in SLEV-
infected groups, although mock-infected mice present a
significant amount of F4/80+ tissue-resident cells (Fig. 5d).
Activated T CD4+ (Fig. 5e) and T CD8+ lymphocytes
(Fig. 5f) were increased in the brains of infected mice at
both days 5 and 7 p.i., reaching peak numbers at day 7 p.i..
Activated NK cells were also present in infected brains
and also peaked at day 7 after infection (Fig. 5g). B lym-
phocytes were increased in the brains of infected mice
only at day 7 p.i. (Fig. 5h). Mock-injected mice showed no
evidence of leukocyte recruitment above basal levels.
Altogether, data presented in this section indicate that

SLEV infection leads to lymphopenia and to significant
leukocyte recruitment to the brain, composed of neutro-
phils and lymphocytes. Leukocyte recruitment in SLEV
experimental infection follows chemokine production
and viral replication.

SLEV infection does not affect the spleen and does not
cause systemic production of cytokines
Next, we examine whether i.c. SLEV infection would
also induce systemic inflammation, as it inflamed the
brain. Spleen and sera were collected from SLEV-
infected and mock-infected mice at different time points
p.i. and assessed for viral load and or signs of inflamma-
tion (Additional file 3: Figure S3). Spleens of both mock
and SLEV-infected mice were negative for SLEV, as
assessed by plaque assay (Additional file 3: Figure S3A),
and showed no evidence for neutrophil or macrophage
recruitment, as measured by the activity of MPO and
NAG in tissue samples, respectively (Additional file 3:
Figure S3B, C). Levels of CCL5, TNFα, and IFNγ, which
are increased in the brains of infected mice, were similar be-
tween infected and non-infected mice (mock) in the spleen
(Additional file 3: Figure S3D, E, F). Accordingly, CCL5,
TNFα, and IFNγ could not be detected in the sera infected
or non-infected mice throughout the evaluated time points
(Additional file 3: Figure S3G, H, I). In summary, we found
no evidence suggesting that SLEV i.c. infection becomes sys-
temic in this model or induces systemic inflammation.

SLEV infection causes CNS tissue damage and results in
behavioral alterations
Because i.c. SLEV infection in mice caused brain inflam-
mation and because human infection with SLEV is asso-
ciated with significant morbidity, we assessed whether
SLEV infection induced brain damage and/or functional
alterations. Our results showed that SLEV causes pro-
gressive pathological alterations in the mouse brain, as
compared to normal saline-injected brains (Fig. 6a, b).
On day 3, a discrete sign of meningitis is observed (Fig. 6c,

asterisk), which evolves to severe meningoencephalitis at
days 5 (Fig. 6e) and 7 p.i. (Fig. 6g). The hippocampus was
progressively damaged by SLEV infection throughout the
evaluated time points (Fig. 6d, f, h, arrows), which may be
associated with neuronal death, and presented infiltrating
leukocytes at day 7 p.i. (Fig. 6h, asterisk). At day 7 p.i.,
microgliosis is observed in both cortex and hippocampus
(Fig. 6g, h). Histological slides generated in the experiment
were also subjected to semi-quantitative analysis (Additional
file 4: Figure S4). Our data show that SLEV-infected mice
present alterations consistent with meningitis and with
damage to the cerebrum and hippocampus (Additional
file 4: Figure S4A, B, C). In addition, we found that SLEV
infection also caused significant alterations in the brain-
stem (Additional file 4: Figure S4D).
In order to characterize the behavioral alterations

caused by SLEV infection, we used the SHIRPA battery
of tests and the open-field test (Fig. 7). For the SHIRPA
test, mock-infected and SLEV-infected mice at day 6 p.i.
were subjected to a series of quick tests, to measure as-
pects of murine neurological function. The time point
chosen (day 6 p.i.) is due to the fact that infected mice
at day 7 p.i. are mostly incapacitated and thus, not able
to perform any tests. Our results showed that SLEV-
infected mice present a reduction in neuropsychiatric
(Fig. 7a) and motor function (Fig. 7b) scores when com-
pared to mock-infected mice, indicating that these
neurological functions are affected by SLEV infection.
The open-field test measures the spontaneous move-

ment of a mouse in a defined area. For this experiment,
groups of mice were inoculated with saline (Mock), 1
LD100 or 1 LD50 of SLEV i.c., to compare mice that re-
ceive lethal or sublethal inocula of SLEV, and to study
mice that survive the infection among those receiving a
sublethal inoculum. We observed that at day 6 p.i., mice
from control and infected groups traveled similar dis-
tances (Fig. 7c), indicating that these mice had the same
rate of spontaneous movement. At day 12 p.i., 4–5 days
after the onset of severe disease/mortality, surviving mice
present reduced spontaneous movement, as observed by
reduction in the distances traveled during the open-field
test in comparison to the mock control group (Fig. 7d).
In summary, we observed that SLEV i.c. infection

causes progressive brain damage in mice, likely including
neuronal loss, that is characterized by meningoencephal-
itis. The extent of tissue damage correlates SLEV load
and inflammation, suggesting that these processes are
associated. The onset of experimental St. Louis enceph-
alitis is preceded and followed by neurological alter-
ations, especially in motor function.

SLEV is pathogenic to neurons and glial cells in vitro
In order to identify the main cell types infected by SLEV,
we performed a series of in vitro infections of cells
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representing the main cell populations present in the
CNS: neurons and glia (Fig. 8). The murine neuroblast
cell line N1E-115 was first tested and found to be per-
missive to SLEV infection and replication (Fig. 8a).
When infected with SLEV at a multiplicity of infection
(MOI) of 0.1, N1E-115 cells released infective SLEV in
the culture supernatant at all time points evaluated
(24–96 h p.i.), reaching peak levels at 72 h p.i.. We next
performed a primary culture of murine neurons isolated
from C57BL/6 mice, which were infected with SLEV at a

MOI of 0.1 and assessed for neuronal death (Fig. 8b). We
observed that primary murine neurons are very suscep-
tible to SLEV infection, as SLEV-infected cultures pre-
sented 50% cell death already at 24 h p.i.. Neuronal death
increased to 80% at 48 and 72 h p.i. and resulted in
complete death at 96 h p.i., when compared to mock-
infected controls, which received culture medium.
Primary glial cultures were obtained from newborn

C57BL/6 mice and consisted in a confluent mixed
culture of astrocytes, oligodendrocytes, and microglia.

Fig. 6 SLEV infection causes brain damage in mice. Adult female C57BL/6 mice were inoculated i.c. with 1 LD100 of SLEV and euthanized at
days 3, 5, and 7 p.i. for perfusion and collection of brains. Histological sections were stained in H&E and analyzed under an optical microscope.
Images of the cerebral cortex/meninges are shown on the left (a, c, e, g) (magnification ×400) and the hippocampus on the right (b, d, f, h)
(magnification ×200). a, b Brain histological sections representative of a Mock-infected mouse, followed by images from infected animals at day 3
(c, d), day 5 (e, f), and day 7 p.i. (g, h). Images show the development of meningitis (asterisk, c, e, g) and meningoencephalitis with microgliosis
(g). Tissue damage/degeneration (arrows) and (asterisk) inflammation in the hippocampus are observed in (f, h). N = 3 mice per group. Mock = injected
with saline
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Cultures were again infected with SLEV at a MOI of 0.1
and maintained for up to 120 h for supernatant collec-
tion (Fig. 8c, d). Samples were assessed for their viral
content and results showed that SLEV replicates in glial
cells, reaching peak levels in cultures at 72 h p.i. (Fig. 8c).
SLEV replication was associated to the release of
proinflammatory cytokines in the culture supernatant
(Fig. 8d–g). Cytokines CCL5, IL-6, and CXCL1 were de-
tected in glia culture supernatants and increased along
the time points evaluated in SLEV-infected cultures.
CCL5 was detected earlier in glial cultures, increasing in
infected cultures at 48 h p.i. in comparison to Mock,
and increasing further at 72, 96, and 120 h p.i. (Fig. 8d).
IL-6 was increased in cell cultures at 72 and 96 h p.i.
and reached peak levels at 120 h p.i. (Fig. 8f ). CXCL1
was increased in comparison to Mock controls only at
120 h p.i. (Fig. 8g). Notably, IFNγ (Fig. 8e) was not
detected in control or SLEV-infected cultures at any of
the evaluated time points.
In conclusion, we suggest that SLEV is able to infect

and replicate in cultures of both neuronal and glial cells
of mice. In vitro SLEV infection is pathogenic, capable
of inducing neuronal cell death and cytokine release by
glial cells, which correlates with SLEV pathogenicity in

vivo and suggests that SLEV may interact with more
than one cell type in the brain.

Discussion
In this manuscript, we presented a robust model of St.
Louis encephalitis in mice, characterized by viral replica-
tion, inflammation, brain damage, neurological alterations,
and death. Importantly, these are main characteristics of
severe disease caused by SLEV in humans [13, 18, 30, 34]
that are reproduced in this experimental model. In
addition, the observation that SLEV infects and replicates
in murine neuronal cells correlates with the presence of
SLEV in human neurons [35].
Up to now, mouse models of St. Louis encephalitis

have focused on infection indices and mortality rates
[25, 26, 28] and lacked insights into the contribution of
inflammation to severe disease pathogenesis. Inflamma-
tion is a major feature of flaviviral disease, as extensively
demonstrated for dengue, West Nile, and Japanese en-
cephalitis [36–41]. In our model, the majority of disease
parameters evaluated reach peak levels at day 7 p.i. and
immediately preceded the manifestation of severe dis-
ease and death. Altogether, we suggest that day 7 p.i. is
the peak of infection/disease in this model.

Fig. 7 SLEV infection causes neurological alterations in mice. Adult female C57BL/6 mice were inoculated with SLEV or saline i.c. and tested at
days 6 or 12 p.i. for neurological alterations. a, b Mice inoculated with 1LD100 of SLEV or saline were submitted to the SHIRPA battery of tests at
day 6 p.i., to evaluate neurological scores on neuropsychiatric (a) and motor functions (b). c, d Mice inoculated with 1 LD100, 1LD50, or saline were
submitted to the open field test to evaluate mice spontaneous locomotor activity at day 6 or 12 p.i., through measurement of the distance traveled in
a defined area for 20 min. Results are expressed as mean plus SEM and are representative of two experiments (N = 7–8). Mock = injected with saline
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The SLEV strain BeH 355964 was chosen to establish
this in vivo model because of key features: SLEV BeH
355964 was originally isolated from a symptomatic pa-
tient in Brazil [30], and thus it is associated to disease
occurrence in humans; SLEV BeH 355964 is a reference
SLEV strain used for research purposes [11, 31, 42, 43],
and its entire genome sequence was recently published
[5]. Also, adult immunocompetent mice were chosen
because their immune and inflammatory responses are
intact, contrary to the biased response of knockout or
young mice, which are known to be more susceptible to
other routes of virus inoculation [15, 25, 27, 44]. Thus,
we designed our experimental SLEV model to prioritize
the study of the host immunological response to a
clinically relevant virus isolate. Unfortunately, our
model was limited by the fact that BeH 355964 was
unable to cause disease in adult immunocompetent
mice when injected peripherally. By injecting virus
i.c., we skip initial phases of infection at the skin and
lymphoid tissues, which are believed to precede flavivirus
invasion of the CNS [45]. Therefore, we consider our ani-
mal model to better represent SLEV-induced severe dis-
ease, where SLEV has already invaded the CNS, and
causes meningoencephalitis.

We observed by different techniques that i.c. SLEV
inoculation in mice results in acute brain inflammation,
corroborating previous reports [22, 24]. We suggest that
SLEV replication in the brain triggers the local production
of proinflammatory cytokines that ultimately causes SLEV-
induced meningoencephalitis. We have performed prelim-
inary experiments using mice deficient in the platelet-
activating factor receptor (PAFR−/−) or deficient in the
complement C5a receptor (C5aR−/−) and found that these
molecules were not involved in the pathogenesis of experi-
mental St. Louis encephalitis. Among the cytokines evalu-
ated in this study, the chemokines CCL5 and CXCL1
(Fig. 3) are known to mediate the recruitment of lympho-
cytes [46] and neutrophils [47] and are likely to mediate
the infiltration these leukocyte populations into the SLEV-
infected brain [45]. Clinical or post mortem studies in indi-
viduals diagnosed with St. Louis encephalitis frequently
showed meningitis associated with lymphocytic and gran-
ulocytic infiltration, as well as pleocytosis [13, 34, 48]. The
observation that glial cells are activated during SLEV infec-
tion and release proinflammatory cytokines in vitro (shown
in Fig. 8) is suggestive that these cells may initiate the
inflammatory response to SLEV in vivo [43]. Moreover, we
observed an increase in a F4/80+ population, presumably

Fig. 8 SLEV is pathogenic to murine neurons and glial cells in vitro. Mouse brain cell cultures were prepared and infected with SLEV at a MOI of
0.1, or incubated with medium (Mock). Samples were collected and/or cell cultures were assessed at 24–120 h p.i. a SLEV load in the supernatant
of N1E-115 murine neuroblast cell cultures, measured by plaque assay. b Percentage of dead neurons in a primary murine neuron culture infected
with SLEV, measured by the percentage of positive cells for calcein and Ethidium homodimer-1 (EthD-1) staining. c SLEV load in the supernatant of
primary murine mixed glial cell cultures, measured by plaque assay. d–g Primary murine glial cells were assessed for the release of proinflammatory
cytokines CCL5 (d), IFNγ (e), IL-6 (f), and CXCL1 (g) into the culture supernatant, by ELISA. Results are expressed as mean plus SEM and are representative
of two experiments (N= 4–12). Mock = not infected, incubated with medium. ND not detectable
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microglia, and identified microgliosis in histological ana-
lysis of SLEV-infected brains which support the involve-
ment of microglia in the infection.
IFNγ was not expressed by SLEV-infected glial cells in

vitro. However, IFNγ levels increase in mice brains at the
peak of SLEV infection, together with cytokines that were
found to be produced by glia, such as CCL5 and IL-6. We
suggest that recruited leukocyte populations could be
source of IFNγ in vivo, most likely NK and T lymphocytes.
These lymphocyte populations are activated and abundant
in the brains of infected mice at day 7 p.i. and are known
to produce IFNγ in response to flaviviral infection [49].
Moreover, IFNγ was pathogenic in a murine model of Japa-
nese encephalitis by causing blood-brain barrier disruption
[40]. The correlation of IFNγ expression in SLEV-infected
brains and the onset of severe neurological disease and
mortality indicate that IFNγ could be involved in the
pathogenesis of experimental St. Louis encephalitis, but
this contention clearly deserves further experimentation.

Conclusions
The association of SLEV infection with a major inflam-
matory response in the brain, and to severe neurological
damage and dysfunction, suggests that inflammation
plays a major role in St. Louis encephalitis pathogenesis.
More studies are necessary to fully elucidate the mecha-
nisms by which SLEV causes this pathogenic host re-
sponse to infection in the CNS, resulting in tissue
damage and in death. We suggest that therapeutic strat-
egies to reduce CNS inflammation may be beneficial in
the context of St. Louis encephalitis.

Additional files

Additional file 1: Figure S1. Adult immunocompetent mice are resistant
to SLEV when inoculated through peripheral routes. Eight- to 12-week-old
female C57BL/6 mice were inoculated with 103 PFU of SLEV BeH 355964
through different routes (intraperitoneal, intraplantar, subcutaneous, and
intracranial) and observed for 14 days post infection. Results are expressed
as percentage of survival in each group and is representative of one
experiment. N = 5 mice. (TIF 40 kb)

Additional file 2: Figure S2. Experimental SLEV infection does not
change platelet counts or the hematocrit index. Adult female C57BL/6
mice were inoculated i.c. with 1 LD100 of SLEV and euthanized at days 3,
5, and 7 p.i. for blood collection. Platelet counts (A) and the hematocrit
index (B) were quantified in heparinized samples. Results are expressed as
mean plus SEM and are representative of one experiment (N = 3–8).
Mock = injected with saline. (TIFF 120 kb)

Additional file 3: Figure S3. Intracranial SLEV infection does not affect
the spleen or causes systemic inflammation. Adult female C57BL/6 mice were
inoculated i.c. with 1 LD100 of SLEV and euthanized at days 3, 5, and 7 p.i. for
collection of spleens and sera. Spleen samples were processed and assessed
for SLEV load (A) by plaque assay and enzymatic activity of MPO (B) and NAG
(C). Levels of the cytokines CCL5, TNFα, and IFNγ were measured in spleen
(D, E, F) and serum samples (G, H, I). Results are expressed as dot plot or
mean plus SEM and are representative of two experiments (N = 6–12). Mock
= injected with saline. ND = not detectable. (TIFF 360 kb)

Additional file 4: Figure S4. Histopathological alterations in SLEV-infected
mice are quantifiable in the meninges, brain, hippocampus, and brainstem.
Adult female C57BL/6 mice were inoculated i.c. with 1 LD100 of SLEV and
euthanized at days 3, 5, and 7 p.i. for collection of brains for a histological
semi-quantitative analysis. Slides were scored on up to four points, with four
corresponding to maximum tissue damage. Scores were set based on the
histological aspect of samples from the mock-infected group. Brain regions
analyzed included the meninges (A), the cerebrum (B), the hippocampus (C)
and the brainstem (D). Results are expressed as dot-plot and the median for
each experiment group. *P < 0.05, **P < 0.01 compared to the respective day
3 p.i. group. Mock = injected with saline. (TIFF 122 kb)
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