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Abstract 

Sepsis is a life-threatening state that arises due to a hyperactive inflammatory response stimulated by infection 
and rarely other insults (e.g., non-infections tissue injury). Although changes in several proinflammatory cytokines 
and signals are documented in humans and small animal models, far less is known about responses within affected 
tissues of large animal models. We sought to understand the changes that occur during the initial stages of inflamma-
tion by administering intravenous lipopolysaccharide (LPS) to Yorkshire pigs and assessing transcriptomic alterations 
in the brain, kidney, and whole blood. Robust transcriptional alterations were found in the brain, with upregulated 
responses enriched in inflammatory pathways and downregulated responses enriched in tight junction and blood 
vessel functions. Comparison of the inflammatory response in the pig brain to a similar mouse model demonstrated 
some overlapping changes but also numerous differences, including oppositely dysregulated genes between spe-
cies. Substantial changes also occurred in the kidneys following LPS with several enriched upregulated pathways 
(cytokines, lipids, unfolded protein response, etc.) and downregulated gene sets (tube morphogenesis, glomerulus 
development, GTPase signal transduction, etc.). We also found significant dysregulation of genes in whole blood 
that fell into several gene ontology categories (cytokines, cell cycle, neutrophil degranulation, etc.). We observed 
a strong correlation between the brain and kidney responses, with significantly shared upregulated pathways 
(cytokine signaling, cell death, VEGFA pathways) and downregulated pathways (vasculature and RAC1 GTPases). In 
summary, we have identified a core set of shared genes and pathways in a pig model of systemic inflammation.

Highlights 

•	 Robust inflammatory response in  pig brain following  LPS, with  significant differences from  a  similar mouse 
model.

•	 Shared genes and pathways in the brain and kidneys following LPS in a pig model.

Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecom-
mons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Journal of Neuroin�ammation

*Correspondence:
Leslie F. Thomas
thomas.leslie@mayo.edu
John D. Fryer
fryer.john@mayo.edu
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12974-023-03002-6&domain=pdf


Page 2 of 20Olney et al. Journal of Neuroinflammation            (2024) 21:9 

Introduction
Sepsis is a life-threatening condition, stimulated most 
commonly by bacterial and other infections, character-
ized by the host’s dysregulated inflammatory response 
which involves the evolution of complex, time-depend-
ent processes including both proinflammatory cytokines 
and a compensatory anti-inflammatory response [1–5]. 
Sepsis may be viewed as one potential stage along a con-
tinuum of immune adaptations with the broader range 
of responses including systemic inflammatory response 
syndrome (SIRS), sepsis, severe sepsis, and septic shock 
[6]. Sepsis is characterized by impaired cellular oxygen 
utilization despite adequate oxygen delivery with cyto-
pathic hypoxia recognized as a mechanism of resulting 
organ dysfunction [7, 8].

Systemic inflammation commonly results in acute kid-
ney injury (AKI). Systemic inflammation-associated AKI 
plays a substantial role in the morbidity and mortality of 
sepsis [9, 10]. The comorbidity of sepsis is high among all 
cases of AKI; up to 50% of AKI instances are associated 
with sepsis, and up to 60% of patients with sepsis also 
have AKI [11–13]. While the pathophysiologic mecha-
nism remains incompletely understood, recent studies 
have suggested that the deleterious inflammatory cascade 
of sepsis may contribute to AKI [14], and septic AKI is 
increasingly being recognized as a heterogenous syn-
drome, consisting of sub phenotypes [12].

In addition to the kidneys, multiple tissues, including 
those of the central nervous system (CNS), may be dam-
aged by the complex milieu arising from sepsis condi-
tions [4, 15, 16]. While activation of innate immunity is 
necessary to combat pathogens, over-activation is dam-
aging [17–19]. Several proinflammatory cytokines (e.g., 
IL-1 β , IL-6, TNF-α ) are observed during the progression 
from systemic inflammatory response syndrome to sep-
tic shock [6, 20]. This sepsis-associated “cytokine storm” 
often induces significant CNS dysfunction, producing 
altered mentation acutely. Sepsis survivors often develop 
chronic cognitive and behavioral impairments, indicating 
that sepsis may produce significant and lasting neurologi-
cal consequences [3, 21–25].

Multiple studies have investigated endotoxemia 
response in large mammals [26–28]. Terenina et al. con-
ducted a longitudinal survey of LPS response in pigs, 

assessing blood transcriptomic, hormonal, and metabolic 
reactions, and identified an overall immune response in 
swine with cortisol levels reaching peak 4  h post-LPS 
injection [27]. Bush et al. compared the gene expression 
response of sheep bone marrow-derived macrophages to 
LPS at various time points and found a conserved tran-
scription factor network shared with humans [28]. Gene 
expression profiles of sheep bone marrow-derived mac-
rophages at 0 and 7  h post-LPS treatment were com-
pared across different large mammals, revealing a shared 
macrophage functional transcriptome [28]. Bush et  al. 
(2020) further showed that large mammals differed from 
rodents in the inducible expression of genes related to 
arginine metabolism and nitric oxide production [28]. 
Although these studies have enhanced our understanding 
of endotoxemia response in large mammals, much of our 
understanding of the molecular and cellular changes in 
affected tissues during the septic response has come from 
mouse models [29, 30]. Relative to rodents, pigs demon-
strate a more greatly shared physiology to that of humans 
(especially including renal physiology) [31], more similar 
immune system to that of humans [32], and large gyren-
cephalic brain anatomy which more closely approxi-
mates that found in humans [33, 34]. Thus, we developed 
a porcine model to advance our understanding of how 
systemic inflammation impacts molecular and cellular 
changes in specific tissues, including kidney, brain, and 
blood.

We administered intravenous (IV) lipopolysaccharide 
(LPS), a component of bacterial cell walls commonly 
used to model the inflammatory aspects of sepsis [17, 
35], to female Sus scrofa Yorkshire pigs and profiled the 
prefrontal cortex of the brain, kidney, and whole blood 
by bulk RNAseq. We applied a gene-level and isoform-
level analysis to identify transcriptional alterations post-
LPS challenge. Compared to saline controls, pigs that 
received LPS exhibited numerous known and novel 
genes and pathways impacted in these early stages of the 
hyperinflammatory response, with striking differences 
between the brain response and published data from a 
similar mouse model. We identified a core set of changes 
in both brain tissue and kidneys that implies a shared 
organ response that was not observed in whole blood. 
Additionally, many genes without differences in gene 

•	 Characterization of gene-level and isoform-level transcriptional alterations in blood, brain, and kidney post-LPS 
challenge in a pig model.
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expression showed significant isoform switching. These 
data collectively identify a core set of changes among tis-
sue types in a large animal model of septic-like injury.

Results
Intravenous infusion of LPS induces clinical 
and pathological signs of systemic inflammation in swine
We administered IV the endotoxin LPS to female York-
shire pigs (n = 4) compared to saline controls (n = 6) and 
monitored for clinical signs of systemic inflammation. 
No baseline differences were observed between groups 
(Additional file 2: Table S1). LPS administration resulted 
in elevated heart rates and body temperatures, increased 
arterial lactate concentration, elevated serum creati-
nine, and reduced urine output (Fig. 1a, b and Additional 
file 2: Table S1), similar to human septic cases. Pigs that 
received LPS demonstrated hemodynamic instability, 
with clinically relevant systemic hypotension defined by 
mean arterial pressure (MAP) less than 60 mmHg (Addi-
tional file  2: Table  S1). Animals were given a constant 
infusion of phenylephrine and norepinephrine in escalat-
ing doses to maintain MAP equal to 60 mmHg to control 
hypotension (Additional file  2: Table  S1). Finally, com-
pared to saline controls, histological analysis revealed 
that brain and kidney tissues from LPS-injected pigs had 
significant edema and vascular congestion, consistent 
with severe sepsis in other sepsis-like models and human 
cases (Fig. 1c–f) [36, 37].

Increased inflammatory response and decreased 
regulation of tight junctions and blood vessel pathways 
in brain
We identified numerous differentially expressed genes 
(DEGs) in the brain following LPS, with a generally 
stronger response in upregulated genes compared to 
downregulated genes (Additional file 3: Table S2). Using a 
conservative adjusted p < 0.05, we found 422 upregulated 
and 147 downregulated genes in the brain. Several genes 
had more than a 20-fold increase in expression (Fig.  2a 
and Additional file 3: Table S2). Activating transcription 
factor 3 (ATF3), a negative regulator of inflammation [38, 
39], was among the top upregulated genes. Suppressor 
of Cytokine Signaling 3 (SOCS3) showed a greater than 
30-fold increase in expression (Fig.  2a and Additional 
file  3: Table  S2); SOCS3 downregulates cytokine signal-
ing due to binding to both the Janus Kinase (JAK) and 
the cytokine receptor, which results in the inhibition of 
STAT3 activation [40]. It has been shown that SOCS3 
expression is correlated with the severity of inflamma-
tion, suggesting that over-activation may be damag-
ing [41]. Gene enrichment analysis showed significant 
enrichment in several inflammatory response pathways 
among upregulated genes and significant alteration of 

tight junction pathways in downregulated genes (Fig. 2b 
and Additional file  4: Table  S3). Additional enrichment 
of upregulated genes was found in cytokine signaling in 
the immune system, positive regulation of cell death and 
migration, vasculature development, and regulation of 
DNA-binding transcription factor activity (Fig.  2c–g). 
Downregulated genes were enriched in pathways related 
to immune system development, organic acid trans-
port, tight junction assembly, blood vessel endothelial 
cell migration, and positive regulation of angiogenesis 
(Fig. 2h–l). One of the downregulated genes in pig brains 
with a 4.92-fold decrease in expression was T-Box Tran-
scription Factor 1 (TBX1), a transcription factor that reg-
ulates several developmental processes [42, 43]. We also 
found a strong downregulation of GATA2, a zinc finger 
transcription factor with known roles in the immune and 
hematopoietic systems [44], which showed a 7.67-fold 
decrease in expression. Interestingly, we found a mas-
sive 9.44 fold decrease in the level of occludin (OCLN), a 
key player in the maintenance of the blood–brain barrier 
[45, 46]. Previous research has identified that the blood–
brain barrier is affected by sepsis and may lead to lifelong 
impairment among survivors [46, 47].

We additionally performed isoform-level differential 
expression analyses in the brain and found eight genes 
with multiple isoforms showing opposite expression (iso-
form switching) patterns (Additional file  1: Fig S1a, b) 
which can result in distinct biological functions. These 
oppositely expressed isoforms in the brain include the 
Proteasome 26S Subunit, ATPase 3 (PSMC3), a core pro-
teasome subunit. Five isoforms of PSMC3 are expressed 
in the pig brain, one isoform (ENSSSCT00000100718) 
is significantly upregulated with over a 30-fold increase 
in expression in LPS pigs compared to saline control 
(Additional files 1, 5 and 6: Fig S1c, Tables S4 and S5). 
In contrast, isoform ENSSSCT0000091007 of PSMC3 
is significantly downregulated with a 15.67-fold change 
decrease in expression (Additional files 1, 5 and 6: Fig 
S1c, Tables S4 and S5). TSC Complex Subunit 2 (TSC2) 
is another gene with multiple isoforms where not all 
isoforms show the same expression pattern within LPS 
pig brains (Additional files 1, 5 and 6: Fig S1c, Tables 
S4 and S5). TSC2 has been implicated to be involved in 
regulation of the mammalian target of rapamycin com-
plex 1 (mTORC1) which controls cell growth [48]. It 
has been suggested decreased protein synthesis medi-
ated by inhibition of mTOR (mammalian target of rapa-
mycin) may result in sepsis-induced muscle atrophy 
[49]. Both PSMC3 and TSC2 are not called as differen-
tially expressed when using standard gene-level analysis 
(see Materials and methods and Additional files 3 and 6: 
Tables S2 and S5), thus highlighting the importance of 
examining the data using different processing pipelines.
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Comparison of LPS response in pig brain significantly 
differs from mouse models
We re-processed mouse LPS brain data from our pre-
vious publication to match our pig pipeline ([17], see 
Materials and methods). We focused our analysis on the 
expressed genes from both pig and mouse that had clear 

human orthologs (Additional file 7: Table S6). In compar-
ing the differentially expressed genes (DEGs) found in 
mouse brains versus pig brains following LPS, we identi-
fied some overlapping changes but many distinct or even 
oppositely regulated transcripts (Fig.  3a and Additional 
file  7: Table  S6). Although there were several hundred 
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Fig. 1  Pigs that received lipopolysaccharide (LPS) show increased heart rate, body temperature, and vascular congestion. a Baseline heart rate 
was not different between pigs assigned to control (saline) vs. LPS groups, but at the final clinical readings before killing, pigs that received LPS 
showed an increased heart rate p = 0.002. The same holds true for b body temperature, p = 0.038. Histological analysis of c control saline brain, d LPS 
brain, e control saline kidney, and f LPS kidney reveals significant edema and vascular congestion in the LPS tissues compared to saline controls
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significantly dysregulated genes in mouse brains, there 
was a striking paucity of overlapping changes in LPS 
pig brains (Fig.  3a). To visualize this further, we plotted 
the log2 fold change of the significant DEGs from each 
dataset against each other (Fig. 3b). This correlation plot 
shows many robustly and commonly upregulated genes 
in both species from LPS (upper right pink quadrant 
in Fig. 3b) such as CXCL10, CCL2, and CSF3, as well as 
commonly downregulated genes such as SLC38A5, TEK, 
and USHBP1 (lower left teal quadrant in Fig.  3b). The 
shared upregulated DEGs between pig and mouse brains 
showed strong enrichment of inflammatory pathways 
such as cytokine signaling, response to bacteria, defense 
response, etc. (Fig.  3c and Additional file  4: Table  S3). 
Among the commonly downregulated DEGs, we found 
less overall enrichment but still shared responses in vas-
cular-related pathways such as organic acid transport, 
vascular process/development, etc. (Fig.  3c and Addi-
tional file 4: Table S3).

However, because several DEGs were not shared 
between pig and mouse LPS brains, we next focused on 
understanding the nature of these distinct or even oppo-
sitely regulated responses (Fig. 3a, b and Additional file 7: 
Table  S6). Of the shared significant DEGs in each spe-
cies, several were significantly upregulated in pigs but 
significantly downregulated in mice (Fig.  3b, upper left 
quadrant). Notably, many of these genes were highly 
enriched in NGF-stimulated transcription and are known 
immediate-early response transcription factors, includ-
ing FOS, FOSB, JUN, EGR1, EGR2, and EGR3 (Fig.  3d). 
Conversely, several DEGs were also significantly down-
regulated in pigs but upregulated in mice (Fig. 3b, lower 
right quadrant) that showed some pathway enrichment 
for negative regulation of binding and tube morphogen-
esis (Fig.  3d). Additionally, we expanded our analysis to 
include all genes, regardless of significance. In this analy-
sis, we identified numerous substantially up or down-
regulated genes in one species but no change or even an 
opposite change in the other species (Fig. 3e). One nota-
ble example is Lipocalin 2 (LCN2), a gene that we previ-
ously published [17] as the single most upregulated gene 
and protein in mouse brains following LPS, was not sig-
nificantly altered in our pig LPS data (in fact, it is slightly 

decreased) (Fig. 3e and Additional file 7: Table S6). Taken 
together, these data indicate that significant and impor-
tant differences exist between rodents and our pig model 
of systemic inflammation, at least in the response in brain 
tissue.

Substantial alternations in the kidney following LPS 
challenge are enriched in cytokine signaling and tube 
morphogenesis
We next analyzed changes that occur in kidneys in 
response to LPS since this organ is among the earli-
est impacted by septic insult. There were consider-
able alterations in the kidney following LPS, with 1,839 
upregulated and 716 downregulated DEGs (adjusted 
p < 0.05) (Fig.  4a and Table  S2). Several genes had more 
than a 128-fold increase in expression (Fig. 4a and Addi-
tional file 3: Table S2). CD274 was among the most sig-
nificantly upregulated genes observed in the kidney 
(adjusted p < 0.0001 and 111-fold increase in expression) 
(Fig.  4a and Additional file  3: Table  S2). During infec-
tion or inflammation, CD274 encodes an immune inhibi-
tory receptor ligand that hinders T cell activation and 
cytokine production—an essential reaction for main-
taining homeostasis of the immune response [50]. Other 
highly upregulated genes include TNF-α induced pro-
tein 3 (TNFAIP3), Interferon Regulatory Factor 1 (IRF1), 
and C-X-C Motif Chemokine Ligand 11 (CXCL11), all of 
which have known roles in regulating immune responses 
(Fig.  4b–d, f and Additional file  4: Table  S3). TNFAIP3 
protein is suggested to inhibit NF-kappa B activation and 
TNF-mediated apoptosis (Fig.  4d). The negative regula-
tion of the NF-kappa B signaling pathway is critical for 
dampening excessive immune responses and, thus, tissue 
damage [51, 52]. IRF1 is a known transcriptional regula-
tor and tumor suppressor involved in innate and adap-
tive immune responses, playing a key role in apoptosis, 
cell proliferation, and DNA damage response [53]. The 
chemokine gene CXCL11 is fundamental to the devel-
opment and function of the immune system, and higher 
serum levels of CXCL11 have been associated with bet-
ter kidney recovery [54]. CXCL11 is highly upregulated 
in the kidney following LPS challenge in our pig model, 

(See figure on next page.)
Fig. 2  Upregulation of proinflammatory pathways and downregulation of blood–brain barrier maintenance in the brain following systemic 
LPS challenge. a Volcano plot of differentially expressed genes for LPS (n = 4) versus control saline (n = 6). Genes that are differentially expressed, 
with an adjusted p < 0.05, are indicated in blue for downregulated (log2 fold change < 0) and red for upregulated (log2 fold change > 0). Genes 
that are not differentially expressed, adjusted p ≥ 0.05, are shown in gray. b Gene ontology (GO) analysis showed an upregulation of cytokine 
signaling and downregulation of immune system signaling and homeostasis. The x-axis is the gene count contributing to the enrichment pathways 
listed on the y-axis. The color of the bar indicates the − log10 p-value. c–g Heatmaps showing gene expression, log2 counts per million (CPM), 
for each individual pig for the top upregulated genes sorted by greatest to least log2FC within selected enrichment functions. h–l Heatmaps 
showing gene expression for the top fifteen downregulated genes for each individual pig within selected enrichment functions
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with a 222-fold increase in expression compared to saline 
control (Fig. 4a and Additional file 3: Table S2).

A gene set enrichment analysis of the 1839 upregu-
lated genes further confirms an overwhelming upregu-
lation of pathways involved in cytokine signaling in the 
immune system, TNF signaling pathway, and regulation 
of apoptotic signaling pathway (Fig.  4b–d, f and Addi-
tional file  4: Table  S3). Enrichment of lipid and athero-
sclerosis and response to unfolded protein pathways were 
also observed in the kidney (Fig.  4e, g and Additional 
file 4: Table S3), which have been previously observed in 
acute inflammatory response and sepsis [55, 56]. The 716 
downregulated genes in the kidney are enriched in tube 
morphogenesis, kidney development, GTPase-mediated 
signal transduction, regulation of TORC1 signaling, and 
glomerulus vasculature (Fig.  4a, b, h–l and Additional 
file  4: Table  S3)—suggesting vascular functions are dys-
regulated in inflammation [57–59]. In summary, these 
data support the concept that over-activation of cytokine 
signaling and dysregulation of tube morphogenesis are 
evident in the kidney following infection and inflamma-
tory response.

As with the brain dataset, we also performed isoform-
level differential expression analyses in the kidney and 
observed 16 genes with multiple isoforms showing oppo-
site expression patterns (Additional files 1, 5, 6: Fig S2a, 
b, Tables S4 and S5). Ankyrin Repeat And Sterile Alpha 
Motif Domain Containing 1A (ANKS1A), a regulator of 
ephrin receptor signaling, has five isoforms expressed in 
the kidney. Isoform ENSSSCT00000068005 of ANKS1A 
is upregulated with a 27-fold change increase in expres-
sion, and isoform ENSSSCT00000048052 is down-
regulated with a 1.87-fold decrease in expression; the 
remaining three other isoforms are not differentially 
expressed (adjusted p > 0.05) (Additional file  1, 5, 6: Fig 
S2c, Tables S4 and S5). At the standard gene-level analy-
sis, ANKS1A is significantly downregulated (2.64 fold 
decrease in expression and adjusted p < 0.02) (Additional 
files 3, 6: Table S2 and S5). Bromodomain Containing 4 
(BRD4) is upregulated at the gene-level analysis (2.1 fold 
increase in expression and adjusted p < 0.0024), but at the 
isoform level, this gene shows an up and downregulated 

isoform (Additional file 6: Table S5). BRD4 is thought to 
be involved in regulating gene transcription by chroma-
tin targeting, and recent reports have linked BRD4 as a 
regulator of inflammation and immune response during 
sepsis [60]. These oppositely expressed isoforms in the 
kidney further demonstrate the importance of imple-
menting multiple processing pipelines so as not to miss 
any potential transcriptional changes and to understand 
possible tissue-specific alterations better.

Kidney and brain share a core set of transcriptional 
changes from LPS
We identified more differential expressed genes (DEGs) 
in the kidney (2555 DEGs) than in the brain (569 DEGs), 
adjusted p < 0.05 (Fig. 5a and Additional file 3: Table S2); 
however, upon further investigation, most of the kidney 
DEGs have a similar response in the brain and vice versa 
(Additional file  8: Table  S7). For DEGs that are com-
mon between the kidney and brain (281 upregulated and 
38 downregulated, adjusted p < 0.05) (Additional file  9: 
Table  S8), the kidney generally shows the greatest fold 
change (Fig.  5b and Additional file  8: Table  S7). Several 
genes show similar fold changes in expression in the kid-
ney and the brain, including upregulated genes SOCS3, 
CXCL10, CCL2, CXCL2, CXCL11, UBD, IL6, DUSP2, and 
downregulated genes GATA2, TBX1, CD43, VIM, SOX18, 
TEK (Fig.  5b). Genes commonly upregulated in kidney 
and brain tissues are enriched in cytokine signaling in the 
immune system, interferon signaling, positive regulation 
of cell death, and the VEGFA–VEGFR2 signaling pathway 
(Figs.  5d–g, 6 and Additional file  4: Table  S3). The kid-
ney shows the greatest fold change for upregulated genes 
with a few exceptions—such as FOS and IL15, which 
show a greater fold change response in the brain than in 
the kidney (Fig.  5d and Additional file  8: Table  S7). Fos 
Proto-Oncogene, AP-1 Transcription Factor Subunit 
(FOS) is thought to regulate cell proliferation, differen-
tiation, and transformation, and increased expression 
of Fos in a rat model has been suggested to mediate the 
release of norepinephrine which may impact limbic and 
hypothalamic function [61]. Interleukin 15 (IL15) also 
shows a greater fold change response in the brain than in 

Fig. 3  Significant differences in LPS response in the brain between pigs and mice. a Upset plot comparing differentially expressed genes (adjusted 
p < 0.05) in pig brain (this paper) and previously published similar mouse brain study from Kang et al. 2018 (adjusted p < 0.05 & absolute log2FC > 0.5) 
[17]. Rows correspond to the gene sets up or downregulated in each species. Columns indicate the intersection between those gene sets. Nineteen 
down and 78 upregulated genes are shared between pigs and mice. b Scatter plot of significantly (adjusted p < 0.05) differentially expressed genes 
common between pig and mouse. The log2(FC) of LPS vs. control saline genes in pig (y-axis) versus log2(FC) of LPS vs. control in mouse (x-axis) 
reveals species-specific alterations. The teal box indicates negative log2(FC), and the red box indicates a positive log2(FC) in both species. c Gene set 
enrichment analysis of genes commonly up and downregulated in pigs and mice. d Gene set enrichment analysis of genes oppositely regulated 
between pigs and mice. e Scatter plot of all differentially expressed genes (adjusted p < 1) between pig and mouse, regardless of fold change 
direction or significance value

(See figure on next page.)
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the kidney (Fig. 5d and Additional file 8: Table S7). IL15 
is a cytokine that regulates T and natural killer cell pro-
liferation and activation; it has been suggested that IL15 
becomes upregulated after neuroinflammation [62]. IL15 
may modulate gamma-aminobutyric acid (GABA), a 
neurotransmitter inhibitory and serotonin transmission, 
ultimately disrupting anxiety, mood, sleep, and memory 
[62]. Thirty-eight genes are commonly downregulated 
in the kidney and the brain following LPS (Fig. 5a, b and 
Additional file 9: Table S8). These genes are enriched in 
angiogenesis, lymph vessel development, endothelium 
development, and RAC1 GTPase cycle (Figs.  5h–k, 6 
and Additional file 4: Table S3). Again, the kidney shows 
the greatest absolute fold change compared to the brain, 
with a few exceptions, including GATA2 (Fig. 5h–k). As 
noted earlier, GATA2 has known roles in the immune 
and hematopoietic systems [44] and is strongly down-
regulated in the LPS pig brains (7.67-fold decrease in 
expression, Additional file  3: Table  S2). Very few genes 
(nine total) had an opposite expression pattern between 
the kidneys and the brain (Fig. 5a and Additional file 8: 
Table  S7). In summary, there are numerous transcrip-
tional alterations following LPS challenge, and a core set 
of these alterations are common between the brain and 
kidney, suggesting a shared response among organs.

Robust transcriptional alterations in the blood 
following LPS
Blood showed numerous transcriptional alterations with 
2192 upregulated and 1295 downregulated genes in 
LPS compared to saline control pigs (Additional files 1, 
3: Fig S3 and Table S2). Upregulated genes are involved 
in cytokine signaling in the immune system, cellu-
lar responses to stress, cell cycle checkpoints, signal-
ing by Rho/Miro GTPases & RHOBTB3, and apoptosis. 
Downregulated genes are involved in neutrophil degran-
ulation, signaling by Rho GTPases, regulation of vesicle-
mediated transport, inflammatory response, and small 
GTPase-mediated signal transduction (Additional files 
1, 4: Fig S3b and Table S3). Interestingly genes involved 
in signaling by Rho/Miro GTPases and RHOBTB3 are 
upregulated, while another set of genes involved in 
signaling by Rho GTPases and small GTPase-mediated 

signal transduction are downregulated (Additional files 
1, 4: Fig S3 and Table S3). Bacterial toxins interfere with 
RhoGTPases resulting in modifications of epithelial and 
endothelial barriers that contribute to the dispersal of 
bacteria within the host [63, 64]. Rho protein inhibition 
or activation has been associated with sepsis dysfunction 
according to the cellular system being evaluated [64].

We additionally performed isoform-level differential 
expression analyses in the blood and observed 53 genes 
with multiple isoforms showing opposite expression pat-
terns (Additional files 1, 5 and 6: Fig S4a, b, Tables S4 and 
S5). Rho Guanine Nucleotide Exchange Factor 10-Like 
Protein (ARHGEF10L) belongs to the RhoGEF subfam-
ily and is involved in signal transduction. In the blood, 
ARHGEF10L has three isoforms expressed, of which one 
is downregulated with a sevenfold decrease in expres-
sion, and the other two isoforms are upregulated with 
a 21- and 2.7-fold increase in expression compared to 
saline control (Additional files 1, 5, 6: Fig S4a, b, Tables 
S4 and S5). ARHGEF10L is not differentially expressed 
at the gene level (Additional file 6: Table S5). C–C Motif 
Chemokine Receptor 2 (CCR2) protein is a receptor 
for monocyte chemoattractant protein-1, which may 
play a role in monocyte infiltration [65, 66]. Within pig 
blood, CCR2 expresses four isoforms, two of which are 
significantly upregulated, and the other two are signifi-
cantly downregulated (Additional files 1, 6: Fig S4d and 
Table  S5). Interestingly, CCR2 at the gene level is sig-
nificantly downregulated (12-fold decrease and adjusted 
p < 0.0005) (Additional file  6: Table  S5). In summary, 
numerous oppositely expressed isoforms are observed 
in the blood, further demonstrating that a gene-level 
only analysis is inadequate to capture the transcriptional 
expression patterns following LPS exposure.

Consistent upregulation of genes involved in NF‑kappaB 
signaling and downregulation of genes involved in RHO 
GTPase cycle within pigs that received LPS, regardless 
of tissue type.
A comparison of DEGs among the brain, kidney, and 
blood show 149 upregulated and 11 downregulated 
genes that are common among all three tissues (Addi-
tional files 1, 9: Fig S5 and Table S8). The 149 commonly 

(See figure on next page.)
Fig. 4  Upregulation of cytokine signaling in the immune system and downregulation of tube morphogenesis in the kidney following LPS 
challenge. a Volcano plot of differentially expressed genes (adjusted p < 0.05) for LPS (n = 4) versus control saline (n = 6) showed numerous 
differentially expressed genes. b Downregulated and upregulated pathways showed enrichment for cytokine signaling in the immune system, 
response to virus, tube morphogenesis, and kidney development, among others. c–g Heatmaps showing gene expression, log2 counts per million 
(CPM), for the top upregulated genes, sorted by greatest to least log2FC, within selected enrichment functions reveals potential gene targets 
and the corresponding pathway(s). h–l Heatmaps showing gene expression for the top downregulated genes within selected enrichment 
functions
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upregulated genes are significantly enriched in cytokine 
signaling, TNF signaling pathway, PID IL12 2PATHWAY, 
and regulation of I-kappaB kinases/NF-kappaB signaling 
(Additional files 1, 4: Fig S5b, d–g and Table S3). Nuclear 
factor kappa B (NF-κB) is a transcription factor [67] that 
regulates the expression of inflammatory mediators and 
defensive response [68, 69]. Upregulation of NF-kappaB 
has been noted to occur within septic individuals, and 
over-activation has been associated with poorer clini-
cal outcomes and a higher mortality rate [70]. Upreg-
ulation of I-kappaB kinases/NF-kappaB signaling is 
observed within the brain, kidney, and blood of our LPS 
pig model. Furthermore, we observed eleven genes that 
are commonly downregulated among the brain, kidney, 
and blood, of which three genes (ARHGAP25, VIM, and 
ARAP3) are involved in the RHO GTPase cycle—indicat-
ing a general response to bacterial toxins that could be 
used as potential targets for therapies.

Discussion
Sepsis results from an exaggerated inflammatory 
response due to a known or suspected pathogen. When 
left unchecked, the cytokine storm and release of proin-
flammatory mediators are harmful to the host and lead 
to acute and chronic damage to several organs, includ-
ing the brain [6]. Though sepsis can impact individu-
als of all ages, the majority of individuals are elderly. 
Survivors of sepsis, in particular the elderly, are at high 
risk for lasting organ dysfunction. The kidney is among 
the earliest organs impacted [71], and sepsis commonly 
results in acute kidney injury (AKI) and the development 
of chronic kidney disease in survivors [9]. Sepsis survi-
vors are additionally at high risk of new onset cognitive 
and behavioral dysfunction [4, 15, 16, 24]. We set out 
to identify early tissue-level changes that arise subse-
quent to LPS administration and promotion of a highly 
dysregulated immune response with the goal to better 
understand the transcriptional cascades that occur and 
may be targeted to protect and preserve organ func-
tions. The National Institute of Health (NIH), specifi-
cally the National Institute of General Medical Sciences 
(NIGMS), has encouraged the use of novel sepsis mod-
els to help discern pathways that are associated with 

the pathophysiology and resolution of sepsis in humans 
(https://​grants.​nih.​gov/​grants/​guide/​notice-​files/​NOT-​
GM-​19-​054.​html). We chose the Yorkshire pig as this 
large (70–74 kg, Additional file 2: Table S1) animal model 
shares closer physiological and anatomical similarities to 
humans compared to rodents.

The pathophysiology of acute kidney injury (AKI) in 
almost any setting is complex. Sepsis-induced AKI can, 
in part, occur secondary to sepsis-induced hemody-
namic instability. Hemodynamic instability, as tradition-
ally defined, may or may not be present in the setting of 
sepsis initially. In the experiment presented here, LPS 
was infused slowly and produced a clinical syndrome 
in which multi-organ system failure occurred, leading 
inevitably to acute kidney injury and other organ injuries 
despite maintaining systemic blood pressure via pressor 
agents (see Materials and Methods and Additional file 2: 
Table  S1). We sought to assess the early transcriptional 
alterations in the kidney, brain, and blood following LPS 
challenge to better understand multi-organ failure in a 
large animal model of systemic inflammation.

We identified robust transcriptional alterations in 
the brain, kidney, and whole blood following LPS. In 
the brain, upregulated responses are highly enriched in 
inflammatory pathways, and downregulated responses 
are enriched in tight junction and blood vessel functions. 
Substantial changes also occurred in kidneys follow-
ing LPS with several enriched pathways for upregulated 
gene sets (cytokines, lipids, unfolded protein response, 
etc.) and downregulated gene sets (tube morphogenesis, 
glomerulus development, GTPase signal transduction, 
etc.). We also found significant dysregulation of genes in 
whole blood that fell into several gene ontology catego-
ries (cytokines, cell cycle, neutrophil degranulation, etc.). 
We observed a very strong correlation in the responses 
between the brain and kidney, with significantly shared 
pathways in both upregulated genes (cytokine signaling, 
cell death, and VEGFA pathways) as well as downregu-
lated genes (vasculature and RAC1 GTPases). In brief, we 
have identified a core set of shared genes and pathways in 
a pig LPS-induced systemic inflammation model.

We found several interesting isoform switching events 
in all tissues profiled. The majority of transcriptome 

Fig. 5  Robust transcriptional alterations and pathways are similar between the kidney and brain following LPS challenge. a Upset plot 
of commonly up and downregulated genes between the kidney and brain, with more DEG’s in the kidney than in the brain, and a few oppositely 
regulated genes. b Scatter plot of log2(FC) of LPS vs. control saline genes in the kidney (y-axis) versus log2(FC) of LPS vs. control in the brain (x-axis) 
shows that most of the DEG’s in the brain and kidney are in the same direction. c Protein–protein interaction networks demonstrates that these 
commonly dysregulated genes between brain and kidney likely interact functionally. d–g Scatter plot of log2(FC) of LPS vs. control saline genes 
in the kidney (y-axis) versus log2(FC) of LPS vs. control in the brain (x-axis) of genes enriched in upregulated GO pathways shows the kidney 
has the greatest transcriptional response compared to the brain for most genes. h–k Scatter plot of genes enriched in downregulated GO pathways 
again shows the kidney has the greatest transcriptional response compared to the brain for most genes

(See figure on next page.)

https://grants.nih.gov/grants/guide/notice-files/NOT-GM-19-054.html
https://grants.nih.gov/grants/guide/notice-files/NOT-GM-19-054.html
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analyses compresses all transcript-level changes into a 
single isoform for any one gene. The conventional gene-
level analysis did not detect most of the genes with sig-
nificant isoform switching. Low expression levels of 
isoforms or inverse changes in other isoforms of the 
same gene, canceling the net change at the gene expres-
sion level, may explain why these differentially expressed 
isoforms are missed by standard gene-level analysis. Our 
isoform-level analysis revealed several instances of only a 
single isoform changing or even oppositely regulated iso-
forms for the same gene. Another interesting finding was 
that isoform switching showed substantial heterogeneity 
across the brain, kidney, and whole blood, suggesting a 
tissue-specific isoform response. The choice of meth-
odology plays an important role in assessing transcrip-
tional alterations. The gene-level limma/voom method 
operates with summarized gene-level counts, focusing 
on the expression of entire genes rather than individual 
isoforms [72]. Consequently, it is not suitable for evalu-
ating isoform-level differences. In contrast, the Sleuth 
pipeline was purposefully designed to assess isoform dif-
ferences and necessitates isoform-level quantification 
as input to determine differential expression [73]. Our 
decision to employ both of these independent workflows 
provided several significant insights. Firstly, it enabled 
us to identify a set of transcripts that consistently exhib-
ited differential expression, irrespective of the choice of 
alignment and statistical analysis methods. Secondly, our 
approach underscored the critical importance of evalu-
ating isoform-level differences, as some genes might be 
overlooked when solely utilizing a gene-level approach. 
Lastly, our findings emphasize the need for research-
ers to consider the isoforms of a gene when expand-
ing upon the results presented in this study, particularly 
when pursuing the identification of potential biomark-
ers. This consideration should encompass an assessment 
of how various isoforms are expressed in different tissue 
types, recognizing the potential impact of isoform diver-
sity on the overall understanding of gene function and 
regulation.

Comparison of the LPS-induced response in the pig 
brain to data in a similar mouse model demonstrated 
some overlapping changes and gene sets but also numer-
ous striking differences. One notable example is Lipoca-
lin 2 (LCN2) which we previously identified as the most 
upregulated transcript and protein in mouse brains fol-
lowing LPS exposure regardless of the sex of the mouse 
[17], but this gene was unaltered in pig brains from LPS. 
There were hundreds of genes uniquely altered in pigs 
compared to mice. Moreover, of the shared significant 
DEGs in each species, several were oppositely regulated, 
and many of these genes were highly enriched in NGF-
stimulated transcription and are known immediate-early 

response transcription factors, including FOS, FOSB, 
JUN, EGR1, EGR2, and EGR3. Though these are not per-
fectly comparable datasets in terms of dose, timing, and 
sex, this analysis does indicate a fundamentally different 
tissue-level response to LPS, at least in brain tissue.

In summary, we have identified several robust and 
shared transcriptional changes that occur in a large ani-
mal model of systemic inflammation, with a specific 
focus on the brain, kidney, and blood. Although blood 
can be profiled in human patients at varying stages of 
sepsis, capturing the tissue-level changes that occur early 
in the septic response would be extraordinarily difficult 
or even impossible. Our study is not without limitations 
as we utilized only female pigs for safety reasons, and 
only a limited number of animals were profiled though 
we still uncovered highly significant and consistent 
transcriptomic alterations. These data nominate several 
important molecular players that are dysregulated in 
systemic inflammation and can be the subject of further 
inquiry as biomarkers or targeted therapeutics.

Materials and methods
In vivo LPS administration
Outbred Yorkshire (Sus scrofa) female swine were 
injected intravenously with the endotoxin lipopolysac-
charide  (LPS/n = 4) or saline (control/n = 6). Pigs were 
aged 5 months and weighed 70–74 kg, a size that is com-
parable to humans. Given the size, the Mayo Clinic ani-
mal facility could not house fully adult male swine as 
they are large and can be aggressive to the point of being 
unsafe to staff; thus, young adult females were used. Ani-
mals had access to water, were fed a diet of Purina Lab 
Porcine Grower Diet 5084, and were group housed. Pigs 
received a five-step anesthetized administration process 
of telazol, xylazine, glycopyrrolate, and plasmalyte, fol-
lowed by LPS or saline injection rates 0.50–1.00  mL/h 
(Additional file 2: Table S1). Cannulas were placed surgi-
cally in the jugular vein and carotid artery for pathogen 
infusion and clinical monitoring. A continuous intra-
venous infusion of LPS (Escherichia coli LPS 026:B6) at 
2  μg/kg/h was initiated. The duration measured from 
injection to killing ranged from 190 to 562  min (Addi-
tional files 2, 10: Tables S1 and S9). Animals were moni-
tored for vital signs including heart rate, respiration rate, 
oxygen saturation (SPO2), blood pressure, mean arterial 
pressure, body temperature, and carbon dioxide (Addi-
tional files 2, 10: Tables S1 and S9). Urine output rate 
(via bladder catheter) and serum creatinine (via femoral 
artery) measures were performed (Additional files 2, 10: 
Table  S1 and S9). Before LPS or saline administration, 
three serum creatinine measures were obtained (base-
line serum creatinine). Following LPS or saline admin-
istration, urine output rate and serum creatinine were 
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measured every 20 min until the end of the experiment 
(Additional file 2: Table S1). Designated by the veterinar-
ian, a priori termination humane endpoints were exces-
sive or uncontrolled bleeding or uncorrectable clinical 
deterioration as evidenced by dramatic changes in vital 
signs or cardiac rhythms (Additional files 2, 10 Tables S1 
and S9). Euthanasia was initiated upon the occurrence 
of multi-organ dysfunction unresponsive to supportive 
measures. We monitored for indications such as vascu-
lar collapse (MAP < 60), heart rate exceeding 60 beats per 
minute, or absence of urine output at three time points. 
The LPS-treated pigs varied in their individual euthanasia 
time points due to individual pig variation of multi-organ 
dysfunction. In contrast, all saline control pigs were 
euthanized at 300 min as they did not exhibit any organ 
dysfunction. Blood samples were collected  using EDTA 
tubes. Whole blood samples were frozen at − 80 °C. Brain 
(prefrontal cortex) and kidney (medulla and cortex) sam-
ples were collected immediately after death and frozen at 
− 80 °C for sequencing experiments.

Histological evaluation
The brain was excised, and tissue was collected for his-
tologic analysis. The tissue was fixed in neutral-buffered 
10% formalin, embedded in paraffin wax, and sectioned 
at 4  µm. Sections were mounted on glass slides and 
stained with H&E stain. Tissues were reviewed by a 
board-certified veterinary pathologist (NMG).

Bulk RNA‑sequencing (RNAseq) library construction 
and sequencing
We collected prefrontal brain cortex, kidney, and whole 
blood from pigs after IV administration of LPS (n = 4) 
compared to saline controls (n = 6); for a total of 30 
RNAseq samples. In 5-mL Eppendorf tubes, 100  mg 
of each sample received 500  μL of RNAlater (Invitro-
gen cat # AM7021) and were stored at – 80 ℃. Frozen 
brain and kidney samples were dissociated using Pow-
erBead Tubes (Qiagen cat # 13114–50) in a Qiagen Tis-
sueLyser at full speed for three minutes. Total RNA was 
isolated from homogenized brain and kidney samples 
using Qiagen’s RNeasy Mini Kit (cat # 74104). RNA was 
extracted from blood samples using the Paxgene Blood 
RNA protocol CMG1084 on a Chemagic 360 instru-
ment (PerkinElmer cat # 2024-0020). Approximately 
200  ng of total RNA was used for mRNA purification 
and library preparation using the Kapa mRNA Hyper 
Prep Kit (cat # KR1352). 1.2 nM cDNA was loaded onto 
Illumina NovaSeq 6000 S4 flow cells for each sample. 
Samples were sequenced over three runs to 50 million 
(M) 2 × 100 base paired-end reads and demultiplexed 
by the Yale School of Medicine sequencing core. Some 

samples had a low number of sequences and thus were 
re-sequenced, resulting in technical replicates (Addi-
tional file 2: Table S1).

Read quality control
Fastq files were checked for quality using FastQC ver-
sion 0.11.9 [74] and aggregated using MutliQC version 
1.10.1 [75]. Raw RNA-seq reads were trimmed for qual-
ity and removed adapter content using BBDuk as part of 
the BBMap package version 38.90 [76]. The TruSeq sin-
gle read 1 i7_Illumina_UDI_10nt_index & read 2 i5_Illu-
mina_UDI_10nt_index adapter content was removed by 
specifying ref = adapter.fa. Trimming was accomplished 
starting from the 3’ end, ktrim = r, and implementing a 
length of 23-mers to trim both paired reads to the same 
length. A 23-11-mer, mink = 11, was used to look for 
shorter kmers at the ends, and hdist = 1 was used to allow 
one mismatch. Finally, Bushnell, 2014 recommended 
adding the tbo flag for paired-end fragment libraries, 
which trims adapters based on pair overlap detected 
using BBMerge, part of the bbduk BBMap package [76]. 
Post-trimming quality was checked using FastQC [74] 
and MultiQC [75].

Reference genome and transcriptome assembly
The top-level Ensembl Sus scrofa reference genome ver-
sion 11.1 was downloaded from ensembl.org, Sus_scrofa.
Sscrofa11.1.dna.toplevel.fa version 107 [77]. The refer-
ence genome includes 1–18 autosomes, mtDNA, the X 
chromosome, the Y chromosome, and contigs. All pigs 
in this study are reported as (38, XX) female and do 
not contain a Y chromosome. To avoid mis-mapping of 
homologous X–Y sequence reads, it has been shown that 
aligning samples that do not contain a Y chromosome 
to a Y-masked reference genome improves expression 
estimates on the X chromosome [78]. We hard-masked 
the Y chromosome by changing all Y chromosome 
nucleotides [ATGC] to N using a re.sub command in a 
custom python script (see GitHub page https://​github.​
com/​fryer​lab/​LPS_​pigs). After creating the Y-masked 
Sus scrofa reference genome, we indexed the reference 
genome using STAR version 2.7.8a [79] with the option 
–genomeFastaFiles to indicate the reference genome, 
Sus_scrofa.Sscrofa11.1.dna.toplevel.Ymask.fa and –sjb-
dGTFfile to indicate the gene annotation file, Sus_scrofa.
Sscrofa11.1.107.gtf improve alignment among known 
splice junctions [79]. The above was repeated for the ref-
erence transcriptome, Sus_scrofa.Sscrofa11.1.cdna.all.
fa, version 107 for pseudo-alignment of RNAseq reads 
implementing Kallisto version 0.46.2 with default param-
eters [80].

https://github.com/fryerlab/LPS_pigs
https://github.com/fryerlab/LPS_pigs


Page 16 of 20Olney et al. Journal of Neuroinflammation            (2024) 21:9 

RNAseq alignment and gene‑level expression 
quantification
Quantification estimates for each sample were obtained 
using STAR version 2.7.8a [79] following the twopass-
Mode alignment and quantMode to get the read counts 
for each geneID. Each sample’s resulting geneID-level 
count file was combined into a matrix of counts where 
each row represents a geneID, and each column is a 
sample.

Isoform quantification estimates
In addition to gene-level quantification, transcript-level 
estimates were obtained using Kallisto version 0.46.2 
[80]. RNAseq reads will often align to multiple tran-
scripts of the same gene, and thus multi mapping of reads 
is part of the Kallisto algorithm to properly determine the 
abundances of gene isoforms [80]. Transcript-level quali-
fication estimates per sample were obtained from run-
ning Kallisto quant with the following parameters: –bias 
to correct abundance estimates from a learned param-
eter model of the sequence bias in the data, and -b 25 to 
specify the number of bootstrap quantification estimates 
to perform.

Quantifying technical and biological variation in RNA‑seq 
expression data
Utilizing variancePartition version 1.20.0, a linear mixed 
model was employed to quantify transcriptome expres-
sion variation that can be explained by a trait attribute 
[81]. Variation within-group (LPS or control), weight 
(kg), minutes from injection till killing (mins), age (days), 
and dose (mL/h) were examined for each tissue. We 
conducted a comparative analysis between the control 
group and LPS-treated pigs, examining various param-
eters, including body weight, age, dose, heart rate, tem-
perature, and time from injection to killing. To assess 
the differences, we utilized either a two-sample t-test 
or a Wilcoxon rank-sum test, when appropriate (Addi-
tional file  2: Table  S1). Specifically, a two-sample t-test 
was applied when the assumptions of both homogeneity 
of variance and normality were met. We formally evalu-
ated these assumptions using Levene’s test for homoge-
neity of variance and the Shapiro–Wilk test for normality. 
In cases where either the assumption of homogeneity of 
variance or normality was not satisfied, we employed the 
Wilcoxon rank-sum test to determine differences in the 
distributions between the saline and LPS-treated pigs. 
We utilized both a t-test and a Wilcoxon rank-sum test 
to compare the control and LPS-treated pigs across the 
various clinical parameters. The p-values obtained from 
these tests closely resembled each other, indicating that 

the choice of statistical test in this context has minimal 
influence on the resulting conclusions of the analysis (see 
Additional file 2: Table S1).

Inference of differential gene expression
Gene-level differential expression analysis between con-
trol (n = 6) and LPS (n = 4) pigs for frontal brain cortex, 
kidney, and whole blood was performed using the limma/
voom pipeline [72, 82]. Using the DGEList function in 
the limma package, the counts matrix, annotation infor-
mation, and the clinical attributes for each sample were 
read into R. Technical replicates from within a tissue 
were summed together using sumTechReps function in 
edgeR version 3.30.3 [83]. Counts were then normalized 
for library size differences using counts per million (cpm) 
and log-transformed (lcpm) part of the edgeR package 
[83]. Next, the normalized counts were filtered to remove 
lowly expressed genes using the function filterByExpr 
[84]; see Additional file  11: Table  S10 for the filtered 
gene-level counts table for each tissue (Additional file 11: 
Table  S10). Normalization factors were calculated using 
the calcNormFactors function with the trimmed mean of 
M-values method (TMM) [83, 85]. The counts were then 
voom transformed using the function voomWithQual-
ityWeights, which combines observational-level weights 
with estimated sample-specific weights [72, 82, 86]. A 
model was created to compare LPS and saline where 
each coefficient corresponds to a group mean and min-
utes from injection till the killing was added as a covari-
ate. Genes were deemed differentially expressed between 
control and LPS pigs when the adjusted p < 0.05 using the 
Benjamini–Hochberg false discovery rate (FDR) method 
[82] (Additional file  3: Table  S2). The term “adjusted 
p-value” is utilized throughout the paper, following the 
toptable definition in the limma package [82]. This defini-
tion clarifies that the adjusted p-values represent bounds 
on the FDR, not conventional p-values associated with 
significance levels, and are sometimes referred to as 
"q-values", directly related to FDR [82].

Isoform differential expression analysis
Isoform-level differential expression analysis between 
control (n = 6) and LPS (n = 4) pigs for frontal brain cor-
tex, kidney, and whole blood was performed using the 
Sleuth pipeline with the Kallisto bootstrap quantifica-
tion estimates [73]. Sleuth models the technical vari-
ability using the bootstraps calculated from Kallisto to 
distinguish technical variability from biological vari-
ability. The observed abundance estimates are the sum 
of counts and the technical noise; see Additional file 12: 
Table  S11 for transcript-level counts data used for the 
Sleuth differential expression analysis (Additional file 12: 
Table  S11). Sleuth estimates the biological variance 
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when determining whether transcripts are differentially 
expressed using the variance from the technical and bio-
logical estimates [73]. A model was created to compare 
LPS and saline; minutes from injection till the killing was 
added as a covariate. Transcripts are defined as being dif-
ferentially expressed between control and LPS pigs when 
the Wald test adjusted p-value is < 0.05 using a Benja-
mini–Hochberg false discovery rate [73, 82] (Additional 
file 5: Table S4).

Gene function and enrichment analysis
We examined gene enrichment terms from the differen-
tially expressed genes for the brain, kidney, and whole 
blood (Additional file  4: Table  S3). We used the Metas-
cape web tool, which utilizes a hypergeometric distribu-
tion to identify enriched gene ontology (GO) terms [87], 
with an adjusted Fisher exact p-value cutoff < 0.05 to 
select significantly enriched terms.

Reprocessing of previously published LPS mouse data
We obtained RPKM (Reads Per Kilobase Million) counts 
data from previously published male mouse brain data 
for saline control (n = 4) and LPS challenge (n = 4) [17]. 
RPKM values were log-transformed to counts per million 
(lcpm) part of the edgeR package [83]. Similar to the pig 
data, the normalized counts were filtered to remove lowly 
expressed genes using the function filterByExpr [84]. 
Normalization factors were calculated with the trimmed 
mean of M-values method (TMM) [83, 85]. Counts were 
voom transformed, and a model was created to compare 
LPS and saline. Genes were defined as being differentially 
expressed between the control and LPS mice when the 
adjusted p is < 0.05 using a Benjamini–Hochberg false 
discovery rate and an absolute log2FC > 0.5 (Additional 
file 7: Table S6).

ARRIVE guideline compliance
The project is in accordance with the Animal Research: 
Reporting of In  Vivo Experiments (ARRIVE) guide-
lines to help aid in transparent reporting. The study 
design compares pigs that received LPS (n = 4) to pigs 
that received saline (n = 6). Only female pigs were used 
in the experiment as male pigs are too aggressive. Pigs 
were randomly selected to receive either LPS or saline. 
Experimenters were not blinded to the group allocation. 
Pig vitals were measured throughout the experiment, and 
comparisons between saline and LPS were noted (Addi-
tional file 2: Table S1). Statistical methods are described 
in detail under various Materials and Methods sections; 
specific software information and reproducible code are 
available on the git repository;  https://​github.​com/​fryer​
lab/​LPS_​pigs.

Significance
Sepsis results from an overwhelming immune response 
to a pathogen and is a tremendous clinical problem with 
nearly 1–3 million new cases each year in the US alone. 
We have good treatments that clear the pathogen, but 
very few therapies exist to prevent long-term organ dam-
age, primarily because we lack an understanding of the 
tissue-level changes that occur during the initial stages 
of inflammation. Here, we modeled the acute inflamma-
tory aspects of systemic inflammation by administering 
the endotoxin lipopolysaccharide (LPS) to Yorkshire pigs 
and assessing responses in brain, kidney, and blood with 
RNAseq and have identified commonly dysregulated 
genes and pathways.
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Additional file 1: Fig S1. Isoform-specific alterations in the brain reveal 
eight genes with opposite expression patterns. Fig S2. Multiple gene iso-
forms show opposite expression patterns in the kidney and are involved 
in neuron remodeling. Fig S3. Genes involved in the signaling by Rho 
GTPases are upregulated and downregulated in the blood of LPS chal-
lenged pigs. Fig S4. Numerous isoform alterations in the blood following 
LPS challenge. Fig S5. Differentially expressed genes shared among the 
brain, kidney, and blood reveal consistent upregulation of cytokine signal-
ing, TNF signaling pathway, and PID IL12 2PATHWAY, and downregulation 
of genes involved in the RHO GTPase cycle following LPS challenge. 

Additional file 2: Table S1. Clinical differences between control saline 
and LPS-treated pigs. Clinical data for each pig sample. Clinical data 
include weight, age, dose, the timing of the experiment, and vital signs

Additional file 3: Table S2. Differentially expressed genes by RNAseq 
after LPS challenge in pigs for brain, kidney, and blood. Differentially 
expressed genes in the brain, kidney, and blood, adjusted p < 1.00 follow-
ing processing with the star/limma-voom gene-level pipeline (see Materi-
als and methods). Each tab contains the genes that met the minimum 
expression threshold for that tissue and are included in the differential 
expression analysis. Genes are considered differentially expressed if the 
adjusted p-value is < 0.05.

Additional file 4: Table S3. Metascape.org gene ontology enrichment 
analysis for up and downregulated genes in the brain, kidney, and blood 
following LPS challenge. Enrichment analysis was performed individually 
for up and downregulated genes within each tissue utilizing Metascape.
org. Enriched GO terms are clustered into summaries. Log p-value and 
q-value are reported for each term, along with the corresponding gene 
symbols within each term

Additional file 5: Table S4. Differentially expressed isoforms after LPS 
challenge in pigs by RNAseq for brain, kidney, and blood. Differentially 
expressed isoforms in the brain, kidney, and blood, adjusted p < 1.00 fol-
lowing the kallisto/sleuth isoform-level pipeline (see Materials and meth-
ods). Each tab contains the isoforms that met the minimum expression 
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threshold for that tissue and are included in the differential expression 
analysis. Isoforms are considered differentially expressed if the adjusted p 
< 0.05

Additional file 6: Table S5. Isoforms of the same protein-coding gene 
show opposite expression patterns. Showing results for when there are at 
least two isoforms for a gene and one isoform is reportedly upregulated 
(log2FC > 0 & adjusted-p < 0.05), while at least one other isoform is report-
edly downregulated (log2FC < 0 & adjusted-p < 0.05).

Additional file 7: Table S6. Differentially expressed genes between 
mouse and pig brains following LPS challenge reveal oppositely expressed 
genes between species. Inference to determine if genes are consistently 
up or downregulated among the pig and mouse species challenged 
with LPS compared to saline controls. To compare which differentially 
expressed genes are shared or unique between pig and mouse, the gene 
ids were first converted to human gene symbols following gprofiler2 
gorth function (see Materials and methods)

Additional file 8: Table S7. Analysis of differentially expressed genes 
between tissues reveals largely consistent expression patterns of genes 
among tissues and a few tissue specific gene expression alterations. 
Inference of differentially expressed genes between tissues to determine if 
genes are consistently up or downregulated or show an opposite expres-
sion pattern between tissues.

Additional file 9: Table S8. Differentially expressed genes shared and 
unique among the brain, kidney, and blood. Differentially expressed 
genes, adjusted p < 0.05, which are shared and unique among the brain, 
kidney, and blood following LPS challenge. Showing results for the sam-
ples were processed following the star/limma-voom pipeline.

Additional file 10: Table S9. Sample information. Sample information 
including sample ID, group (control or LPS), weight, age, and various start 
and end clinical values.

Additional file 11: Table S10. Gene-level counts per million (CPM) data 
for each tissue. Filtered to remove lowly expressed and keep only protein 
coding genes, gene-level counts per million (CPM) data for each tissue. 
This is the counts data used for the gene-level differential expression 
analysis with limma/voom pipeline.

Additional file 12: Table S11. Isoform-level transcripts per million (TPM) 
data for each tissue. Filtered to remove lowly expressed and keep only 
protein coding transcripts, isoform-level transcripts per million (TPM) data 
for each tissue. This is the counts data used for the isoform-level differen-
tial expression analysis with Kallisto/Sleuth pipeline.
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