Skip to main content
Figure 4 | Journal of Neuroinflammation

Figure 4

From: Anti-tat Hutat2:Fc mediated protection against tat-induced neurotoxicity and HIV-1 replication in human monocyte-derived macrophages

Figure 4

Protection of the conditioned medium containing Hutat2:Fc against HIV-1 Tat 86 -mediated neurotoxicity in primary mouse neurons. Mouse cortical neurons cultured in 24-well plates were treated with HIV-1 Tat86 (Clade B, 500 nM) alone, or Tat with conditioned mediums from HR-Hutat2-transduced hMDM or HTB-11 (1:5 dilution) on day 6 in vitro (DIV 6) for 3 days. Treatment with Tat plus anti-Tat monoclonal antibody was used as a positive control, while Tat plus the conditioned medium from HR-A3H5 transduced HTB-11 was used as a negative control, respectively. (A) Representative images of primary mouse cortical neurons which were treated with HIV-1 Tat86 or Tat86 plus the conditioned medium from HR-Hutat2-transduced hMDM. Cells were counterstained with anti-MAP2 (MAP2), FITC-dUTP (TUNEL), and DAPI (Nuclei). Images of MAP2, TUNEL, and Nuclei were merged together (Merge). The survived neurons were the cells which were positive for MAP2 and DAPI but negative for TUNEL staining. Tat, Neurons treated with HIV-1 Tat86 alone; Tat/hMDM-Hutat2 medium, Neurons treated with HIV-1 Tat86 plus the conditioned medium of transduced hMDM; Normal control, Untreated neurons. Images were acquired as described in Figure 1. (B) Comparison of relative rates of neuron survival after treatment. The neuron survival rate of untreated neurons was defined as 100%. The relative neuron survival rate was increased by about 10% by adding Hutat2:Fc containing medium from transduced hMDM (*P <0.05 vs. treatment with Tat alone). However, the rate was still lower than normal neurons, neurons treated with Tat86 plus HTB-Hutat2 medium, and Tat86 plus anti-Tat antibody (# P <0.01). Each value is the mean obtained from five random fields of three independent experiments using a 20 × objective. Error bars denote the s.e.m. Scale bar = 100 μm.

Back to article page