Skip to main content
Fig. 3 | Journal of Neuroinflammation

Fig. 3

From: Time-dependent effects of CX3CR1 in a mouse model of mild traumatic brain injury

Fig. 3

Quantification of neuronal loss at 15 and 30 days post-TBI. Left panel (a): unbiased stereology quantification showed a significant decrease in the number of Fluoro-Jade B+ cells in the ipsilateral cortex (F = 1, 10; *p = 0.001) of CX3CR1 KO-TBI mice (n = 3; blue bar) at 15 days post-TBI, when compared to CX3CR1 WT-TBI (n = 3; red bar). CX3CR1 sham WT (not detected), CX3CR1 sham KO (not detected). Fifteen days post-TBI, the decrease in the number of Fluoro-Jade B+ cells in CX3CR1 KO-TBI mice was associated with a significant increase in the number of NeuN+ cells (right pane (b); n = 3) compared to CX3CR1 WT-TBI (n = 3 **p = 0.001). Thirty days post-TBI CX3CR1 KO mice showed increased number of Fluoro-Jade B+ cells (n = 3; *p = 0.01) which was associated with decreased NeuN immunoreactivity (n = 5; **p = 0.001; mean ± SE (*WT vs CX3CR1−/− ± 15 vs 30 days). CX3CR1 sham WT (white bar), CX3CR1 sham KO (green bar), CX3CR1 WT-TBI (red bar), and CX3CR1 KO-TBI (blue bar). At 30 days, the number of NeuN+ cells was not determined (nd). Two-way ANOVA performed across genotype, treatment, and time point revealed a significant difference in the number of Fluoro-Jade and NeuN+ cells when compared between 15 and 30 days post-injury

Back to article page