Skip to main content
Fig. 5 | Journal of Neuroinflammation

Fig. 5

From: Cyclic AMP is a key regulator of M1 to M2a phenotypic conversion of microglia in the presence of Th2 cytokines

Fig. 5

Synergistic immuno-modulatory effects of cyclic AMP and IL-4 in the M1 to M2a phenotypic conversion of microglia. Subjecting resting (M0) microglia to a pro-inflammatory stimulus, TNF-α or LPS, drives the cells to a classically activated (M1) phenotype. The M1 form displays high expression of cytokines and chemokines, such as TNF-α and IP-10, as well as iNOS and free radicles, ROS and RNS, that are key in cytotoxicity and tissue injury. In addition, the production of tissue reparative and remodeling enzymes, such as ARG-1, YM1, RELM-α, and TG, are suppressed. In contrast, the concurrent exposure of M0 or M1 microglia to IL-4 and cyclic AMP induces M0/M1 phenotype conversion to a robust reparative M2a form. The M2a phenotype exhibits strong expression of ARG-1, TG2, RELM-α, and YM1, an augmented phagocytic ability and the absence of pro-inflammatory cytokine and toxic reactive radical production that are associated with the M1 form. When M0- or M1-activated microglia are exposed to IL-4 alone, there is a transition to an intermediate M2a form. The M2a phenotype retains partial characteristics of M1 while acquiring some beneficial characteristics of the M2 phenotype, though exhibits impaired phagocytic function

Back to article page