Skip to main content
Fig. 5 | Journal of Neuroinflammation

Fig. 5

From: Inhibition of HMGB1 reduces rat spinal cord astrocytic swelling and AQP4 expression after oxygen-glucose deprivation and reoxygenation via TLR4 and NF-κB signaling in an IL-6-dependent manner

Fig. 5

Effects of either inhibiting high mobility group box-1 (HMGB1) or toll-like receptor-4 (TLR4) on oxygen-glucose deprivation/reoxygenation (OGD/R)-induced astrocytic swelling, TLR4, myeloid differentiation primary response gene 88 (MyD88), aquaporin-4 (AQP4) upregulation, and nuclear factor-kappa B (NF-κB) activation as well as levels of interleukin-6 (IL-6) released into the surrounding medium. a Inhibiting HMGB1 (using either HMGB1 shRNA or ethyl pyruvate (EP)) or TLR4 (using CLI-095 or C34) significantly reduced the increase in cellular volume of spinal cord astrocytes at 24 h during the reoxygenation process after OGD when compared with those in the OGD/R group. *P < 0.05 vs. OGD/R group (three replicates). b Inhibiting HMGB1 or TLR4 significantly suppressed the increased levels of TLR4, MyD88, and AQP4 in both the plasma membrane and cytoplasm of spinal cord astrocytes at 24 h during the reoxygenation process after OGD. *P < 0.05 vs. OGD/R group (three replicates). c Inhibiting HMGB1 or TLR4 significantly suppressed the increased nuclear levels of NF-κB and the upregulation of cytoplasmic p-IκBα in spinal cord astrocytes after 24 h of the reoxygenation process after OGD. *P < 0.05 vs. OGD/R group (three replicates). d Immunofluorescence results showed that either inhibiting HMGB1 or TLR4 decreased membrane and cytoplasmic TLR4 and AQP4 upregulation and attenuated the increases of nuclear NF-κB when compared with the OGD/R group at 24 h during reoxygenation (× 200, bar equal to 100 μm). *P < 0.05 vs. OGD/R group (three replicates). e Inhibiting HMGB1 or TLR4 reduced increased levels of IL-6 in the surrounding medium when compared with those of the OGD/R group after 24 h of the reoxygenation process after OGD. *P < 0.05 vs. OGD/R group (three replicates)

Back to article page