Skip to main content
Fig. 4 | Journal of Neuroinflammation

Fig. 4

From: Hypercapnia induces IL-1β overproduction via activation of NLRP3 inflammasome: implication in cognitive impairment in hypoxemic adult rats

Fig. 4

Hypercapnia enhances the release of IL-1β in the hypoxic hippocampus (n = 4). a The immunoreactive bands of IL-1β (17 kDa) and GAPDH (36 kDa). b There is a significant interaction effect between hypercapnia treatment and hypoxia treatment (P < 0.01). c Simple effects analyses show that the protein expression levels of IL-1β in hypercapnia group have no significant difference compared with S group (ns P > 0.05). The protein expression levels in hypoxemia group are significantly increased compared with S group (**P < 0.01). HH group has the highest levels of the protein in comparison with hypercapnia group (**P < 0.01) and hypoxemia group (**P < 0.01). d Immunofluorescence images show the expression of IL-1β (B, E, H, K, red), Iba1+ microglia (A, D, G, J, green), and the co-localization of IL-1β and microglia (C, F, I, L). The results also show that hypercapnia alone is not enough to increase the expression of IL-1β. The expression of IL-1β in activated microglia in the hypoxic hippocampus is markedly increased. Additionally, the expression of IL-1β is further enhanced following treatment of hypercapnia in the hypoxic hippocampus. Scale bars: (A-L), 20 μm. e The average fluorescence (red) density of one single microglia in hypoxemia group and HH group was analyzed by an image analysis system (Image-Pro Plus software). Statistical significance was examined by t test. The fluorescence density in HH group is significantly increased compared with hypoxemia group (**P < 0.01). ns non-significant, IL-1β interleukin-1 beta, S group sham-operated group, HH group hypercapnia + hypoxemia group. The concentrations of CO2 and O2 in the air are 0.03 and 21%, respectively

Back to article page