Skip to main content


Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Fig. 2 | Journal of Neuroinflammation

Fig. 2

From: Unveiling anti-oxidative and anti-inflammatory effects of docosahexaenoic acid and its lipid peroxidation product on lipopolysaccharide-stimulated BV-2 microglial cells

Fig. 2

Effects of DHA, 4-HHE, and 4-HNE on LPS-induced NO production in BV-2 microglial cells. BV-2 microglial cells (106) were subculture in 96-well plates to 80% confluent. At the time of experiment, cells were serum-starved for 3 h and pre-treated with DHA (12.5–100 μM), 4-HHE (1.25–10 μM), and 4-HNE (1.25–10 μM) for 1 h, and followed by stimulation with LPS (100 ng/mL) for 16 h. Data in ac represent inhibition of LPS-induced NO production by DHA, 4-HHE, and 4-HNE using the Griess reagent. Results were obtained from triplicate assay from each cell passage. Concentrations of NO in μM ± SE (n = 5) were as follows: DHA 9.75 ± 1.8, 4-HHE 9.30 ± 0.10, and 4-HNE 10.43 ± 0. 52. Data in df represent cell viability after 16-h incubation using the WST-1 assay. Results are expressed as the mean ± SEM (n = 3–5) and analyzed by one-way ANOVA followed by Bonferroni post-tests; “a” represents significant differences (p < 0.05) comparing test compounds with control (Ctrl) with LPS treatment alone. IC50 values for each test compound were determined using the formula for regression analysis in Microsoft Excel 2016

Back to article page