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Chronic oral administration of minocycline to
sheep with ovine CLN6 neuronal ceroid
lipofuscinosis maintains pharmacological
concentrations in the brain but does not suppress
neuroinflammation or disease progression
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Abstract

Background: The neuronal ceroid lipofuscinoses (NCLs; or Batten disease) are fatal inherited human neurodegenerative
diseases affecting an estimated 1:12,500 live births worldwide. They are caused by mutations in at least 11 different genes.
Currently, there are no effective treatments. Progress into understanding pathogenesis and possible therapies depends on
studying animal models. The most studied animals are the CLN6 South Hampshire sheep, in which the course of
neuropathology closely follows that in affected children. Neurodegeneration, a hallmark of the disease, has been
linked to neuroinflammation and is consequent to it. Activation of astrocytes and microglia begins prenatally,
starting from specific foci associated with the later development of progressive cortical atrophy and the
development of clinical symptoms, including the occipital cortex and blindness. Both neurodegeneration and
neuroinflammation generalize and become more severe with increasing age and increasing clinical severity. The
purpose of this study was to determine if chronic administration of an anti-inflammatory drug, minocycline, from
an early age would halt or reverse the development of disease.

Method: Minocycline, a tetracycline family antibiotic with activity against neuroinflammation, was tested by
chronic oral administration of 25 mg minocycline/kg/day to presymptomatic lambs affected with CLN6 NCL at
3 months of age to 14 months of age, when clinical symptoms are obvious, to determine if this would
suppress neuroinflammation or disease progression.

Results: Minocycline was absorbed without significant rumen biotransformation to maintain pharmacological
concentrations of 1 μM in plasma and 400 nM in cerebrospinal fluid, but these did not result in inhibition of
microglial activation or astrocytosis and did not change the neuronal loss or clinical course of the disease.

Conclusion: Oral administration is an effective route for drug delivery to the central nervous system in large
animals, and model studies in these animals should precede highly speculative procedures in humans.
Minocycline does not inhibit a critical step in the neuroinflammatory cascade in this form of Batten disease.
Identification of the critical steps in the neuroinflammatory cascade in neurodegenerative diseases, and
targeting of specific drugs to them, will greatly increase the likelihood of success.
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Background
The neuronal ceroid lipofuscinoses (NCLs; or Batten
disease) are a group of fatal inherited human neurode-
generative diseases affecting about 1:12,500 live births
worldwide [1]. NCLs are caused by over 360 mutations
in at least 8 different genes responsible for childhood
forms [2] and another 3 recently suggested to be associated
with adult forms [3-5] (see http://www.ucl.ac.uk/ncl/).
Affected children become blind, subject to fits and sei-
zures and bed-ridden, and they die prematurely. Cur-
rently, there are no effective treatments for any form of
the disease. Various naturally occurring or engineered
animal models of the human diseases exist, the most
studied large animal model being the well-characterized
CLN6 South Hampshire sheep model [6]. As in most
forms of NCL, subunit c of mitochondrial ATP synthase
accumulates in lysosome-derived organelles in most
cells, but the biochemical mechanism of this storage is
unknown [7-10].

The strength of this model is that the disease progres-
sion and course of neuropathology in affected lambs is
similar to that in affected children. Affected lambs are
apparently normal at birth but become blind from 10 to
14 months of age and decline until mature disease when
aged about 2 years. Neurodegeneration, a hallmark of
the disease, has been linked to neuroinflammation and is
consequent to it. Activation of astrocytes and microglia
precedes the loss of cortical neurons and progressive
cortical atrophy, starting from particular neocortical foci
and becoming widespread in more advanced disease [11,12].
This results in the collapse of layers, particularly layers II to
IV. Glial activation is observed perinatally in affected sheep,
with reactive perivascular astrocytes being observable in
the first trimester, reactive astrocytes observable in the
gray matter in the third trimester and activated micro-
glia become apparent shortly after birth [13]. Brain atro-
phy is not apparent until 4 to 6 months after birth, and
clinical symptoms do not develop until some months
later, suggesting a potential window for anti-inflammatory
therapy after birth and before neurodegeneration sets in.

Chronic inflammation is thought to be detrimental to
neurons [14-16], and neuroinflammation has also been
indicated as a contributing factor to various other neu-
rodegenerative conditions [17], including multiple scler-
osis, Alzheimer disease [18], Parkinson disease [19],
HIV-associated dementia, scrapie, trauma and ischemia.
A possible therapeutic option is treatment with minocycline,
a second-generation antibiotic belonging to the tetracyc-
line family, which also has anti-inflammatory activity,
including activity against neuroinflammation [20,21], and
targets microglia [22].

Minocycline is easily absorbed when administered orally
and crosses the blood–brain barrier readily. Treatment tri-
als in both animal models and human patients have been

carried out for a number of neurodegenerative diseases,
including multiple sclerosis, spinal cord injury, amyo-
trophic lateral sclerosis, Huntington disease, Parkinson
disease and Alzheimer disease, with encouraging results
in a number of cases. For example, recent rodent model
trials have indicated efficacy against hypoxic-ischemic
brain injury [23], blast-induced traumatic brain injury
[24], Alzheimer disease-like amyloid pathology [25] and
Huntington disease-like symptoms [26]. However, results
from rodent model studies have not been very good in-
dicators of human studies, indicating that larger animal
models would be preferred, and there have also been
some concerns about chronic treatment in some cases
[20,21]. Given the interaction of glial activation and
neurodegeneration in the NCLs outlined above, minocycline
is an obvious therapeutic candidate to be explored for
treatment of the NCLs. The sheep affected by CLN6 pro-
vide a good model for this investigation, but as they are
ruminants with a very active microbial rumen flora, two
additional factors need to be considered, namely, the
effect of the antibacterial activity on rumen function
and possible rumen biotransformation of minocycline
that might affect the penetration of the drug into the
sheep plasma and cerebrospinal fluid (CSF).

The aims of this investigation were to determine condi-
tions that allowed chronic administration of minocycline
to a ruminant, find out if pharmacologically effective
plasma and CSF concentrations of minocycline could be
obtained and ascertain whether these would affect glial
inflammation and the course of neurodegeneration in
CLN6 Batten disease.

Materials and methods
Sheep
South Hampshire heterozygous carrier ewes were mated to
homozygous affected rams and lambs genotyped as carrier
or affected using the disease-associated A/G polymorphism
[6]. All animals used were healthy and apparently clinically
normal at the commencement of the trials. They were
housed indoors in individual pens and fed a balanced
commercial pelleted ration (800 g/day) and lucerne chaff
(400 g/day). Age-matched heterozygous sheep were used
as controls. All procedures were approved by the Lincoln
University Animal Ethics Committee in compliance with
the New Zealand Animal Welfare Act (1999) and in ac-
cordance with US National Institutes of Health guidelines.

Minocycline administration and animal monitoring
Minocycline hydrochloride (100 to 150 g; Archimica S.r.L.,
Origgio, Italy) was dissolved in 100 ml of dimethyl sulf-
oxide, then diluted in 30% animal feed grade molasses
to 200 mg/ml. Aliquots were stored at −20°C. This
solution was sprayed onto daily rations to deliver the
required dose.
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In the therapy trial, three 3-month-old affected rams
began receiving minocycline in molasses at 2 mg/kg/day
and two controls received molasses only. The minocycline
dosage was increased stepwise to 25 mg/kg/day over
6 weeks, which was maintained for a further 5 months,
then lowered to 16 mg/kg/day for a further 4 months,
after which the animals were killed.

Animals were weighed weekly during their growth
phase and then at 2- to 3-week intervals, and minocycline
dosages adjusted accordingly. Every 6 to 8 weeks,
sheep were anesthetized with intravenously adminis-
tered 1:1 ketamine:diazepam (ketamine, Phoenix Ketamine,
Auckland, NZ; and diazepam, Pamlin, Parnell Laboratories,
East Tamaki, NZ) before taking cerebrospinal fluid (CSF)
samples from the cisterna magnum, jugular blood samples
and computed tomography (CT) scans for brain volume
determinations. After 3 months of drug administration,
possible liver damage was assessed from the serum ac-
tivities of γ-glutamyltransferase and glutamate dehydro-
genase, determined by Gribbles Veterinary Pathology,
Auckland, NZ.

Minocycline high-performance liquid chromatography
Minocycline extracted from plasma and CSF was analyzed
by high-performance liquid chromatography (HPLC) [27].
Aliquots (500 μl) of plasma, CSF and standards (0.08 to
10.12 μM minocycline in plasma or CSF) were diluted
with 750 μl of sodium phosphate sulfite buffer (2.4 M
disodium hydrogen phosphate, 4.0 M sodium sulfite,
pH 6.5) and thoroughly mixed with 4 ml of ethyl acetate.
After centrifugation to separate the phases, the aqueous
phase was frozen and the organic phase was poured off
into 50 μl of 0.2% ascorbic acid and 0.1% cysteine in
methanol. Samples were dried at 39°C under nitrogen,
and the residue was dissolved in 250 μl of running buffer,
an 85:12:3 mixture of a solution of 0.1 M potassium ni-
trite, 0.05 M citric acid and 0.033 M sodium citrate:
dimethylformamide:ethyl acetate. After centrifugation,
10,000 rpm, 2 min, 50-μl aliquots were injected onto a
Brava BDS C8 column W 100 (4.6 mm × 3 μm; Grace
Davison Discovery Sciences, Deerfield, IL, USA) in an
Agilent HPLC fitted with a diode display array detector
(Agilent 1100 Series; Agilent Technologies, Walbronn,
Germany) and eluted with running buffer at 0.5 ml/min.
Minocycline, retention time 8.2 to 8.4 min, was detected
at 350 nm (Figure 1). The mean ± SD extraction efficiency
for minocycline was 64.2 ± 4.5%. All elution peaks with a
retention time of 6 min or more were scanned from 250
to 450 nm, and the spectra were compared to plasma and
CSF standards to detect any minocycline metabolites.

Clinical assessment of vision
Vision was scored weekly by awareness of hand move-
ment on a scale of apparent normal awareness = 15,

Figure 1 High-performance liquid chromatography of minocycline.
High-performance liquid chromatography elution of minocycline
extracted from plasma (A) and cerebrospinal fluid (B) taken from the
same animal after chronic treatment with minocycline at 25/kg/day.
The minocycline peak eluted consistently between 8.2 and 8.3 min.
Scanning this peak from 250 to 450 nm yielded a single absorbance
peak at 355 nm (C).
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subnormal awareness = 10, marginal awareness = 5 and
no awareness = 0.

Assessment of brain atrophy
CT scans were performed under anesthesia in a GE
ProSpeed CT Scanner (GE Healthcare, Hyogo, Japan).
Coronal slices 1 mm thick were scanned at 5-mm inter-
vals, 120 kV, 160 mA, 2 s, and brain volumes were deter-
mined by using the Cavalieri method from the areas of
each slice. Volumes from the experimental animals,
determined every 6 to 8 weeks, were compared with
those of a cohort of normal, unaffected sheep.

Assessment of brain pathology
Brains were perfusion fixed in 10% formalin immediately
post-mortem, divided down the midline, equilibrated in
cryoprotectant solution (10% ethylene glycol and 30%
sucrose in saline) at 4°C and stored frozen. Serial sagittal
sections 50 μm thick were cut on a sliding freezing
microtome (Microm GmbH, Walldorf, Germany) and
stored individually at –20°C in 100 μl of cryoprotectant in
96-well plates as described previously [12,13]. Nissl staining
and immunostaining were done on floating sections. Micro-
glia and astrocytes were detected using biotinylated α-D-
galactose-specific isolectin I-B4 from Griffonia simplicifolia
(GSB4; Vector Laboratories, Peterborough, UK) and anti-
glial fibrillary acidic protein (anti-GFAP; Dako, Carpinteria,
CA, USA), respectively, and diluted in 0.2% Triton X-100
in phosphate-buffered saline (PBST) containing 1% normal
goat serum. Biotinylated anti-rabbit secondary antibody
(Sigma-Aldrich, St Louis, MO, USA) was diluted 1:1,000
in the same buffer. Sections were washed three times
with PBST solution containing 1% normal goat serum
for 3 h, and antibody and lectin binding were detected
using horseradish peroxidase (ExtrAvidin; Sigma-Aldrich)
and diaminobenzidine tetrahydrochloride in 0.1 M acetate
buffer at pH 6.0.

Layer thickness measurements on the brain sections
were determined using SPOT software (SPOT Imaging
Solutions, Sterling Heights, MI, USA). All analyses and
images were of the visual cortex and occipital lobe, the
regions first and most affected by neurodegeneration
[12]. Measurements were made from the pial surface of
the cortex to the layer V–VI boundary since sheep layer
VI is difficult to define in affected brains and measure-
ments from layers I to V cover the entire gray matter
apart from this difficult-to-see layer. The distances from
layers II to V were also measured since layer I is the least
affected by neurodegeneration [12] so comparisons of
layers II to V offer the most sensitive measure of any
protective effect of minocycline on neuronal layers.

GSB4 and GFAP immunoreactivities in the cortical re-
gion encompassing neuronal layers II to V in sections of
the visual cortex of affected treated and untreated animals

were captured for image analysis by using a Nikon Digital
Sight DSFi1 camera attached to a Nikon Eclipse 50i
microscope (Nikon Instruments, Tokyo, Japan). Data were
analyzed after threshold analysis using NIS-Elements
Advanced Research version 3.0 software (Nikon Instru-
ments). Three different fields per section per animal were
analyzed (pixel classifier), and the results are expressed as
percentage per unit area.

Results
Drug delivery
An effective dosing regimen was developed that gave
the rumen flora time to adjust to the antibiotic activity
of minocycline and resulted in pharmacologically sens-
ible plasma and CSF concentrations of untransformed
minocycline. This regimen involved increasing dietary
minocycline from an initial dose of only 2 mg/kg/day. A
higher initial dosing of 4 mg/kg/day caused a sharp drop
in feed intake and was halted. For the therapy trial, three
3.4-month-old affected ram lambs accustomed to mo-
lasses began receiving minocycline at 2 mg/kg/day. The
dosage was then increased stepwise to 25 mg minocycline/
kg/day at 4.5 months of age, which was maintained for
5 months and then lowered to 16 mg/kg/day for a fur-
ther 5 months, at the end of which time the brains were
perfusion-fixed for sectioning and microscopy.

This treatment did not affect liver function, with the
serum activities of the liver enzymes γ-glutamyltransferase
and glutamate dehydrogenase of both the treated and con-
trol affected sheep being within the normal ranges for
healthy sheep after 3 months of chronic treatment. Drug
treatment did not alter feed consumption, and the in-
crease in body weight of the treated animals of 1.7 kg/mo
was not significantly different from 2.1 kg/mo for un-
treated animals.

Easily measurable plasma and CSF concentrations of
the drug resulted, with the 8.2- to 8.3-minute retention
time HPLC elution peak being separated from other
absorbing components. It had the 250- to 450-nm ab-
sorption spectrum of minocycline and was identical in
both plasma and CSF samples from the experimental
sheep and plasma and CSF spiked with unmodified
minocycline (Figure 1), indicating that pharmacologic
amounts of the untransformed drug passed through the
rumen, were absorbed into serum and were partitioned
into the CSF. Rises in plasma and CSF concentrations of
minocycline lagged behind the dosing program, and plat-
eau concentrations were not reached until week 25 of
treatment while the dose was 25 mg/kg/day. The highest
concentrations detected, 2,563 nM and 700 nM, respect-
ively, dropped subsequent to the daily dietary dose being
lowered from 25 to 16 mg/kg/day. Mean ± SEM minocycline
concentrations over the entire treatment period were 1,000 ±
223 nM in plasma and 390 ± 61 nM in CSF.
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CSF concentrations of minocycline were always lower
than those of matching plasma samples, suggesting that
the minocycline entered the brain via the plasma and left
via the CSF, but the relationship between them was not
linear and a logarithmic function best fitted the data
(Figure 2). The CSF-to-plasma concentration ratio was
high, up to 0.78, at low plasma concentrations (less than
500 nM) and low, 0.2 to 0.3, at plasma concentrations
greater than 1,500 nM. Minocycline distribution was
widespread throughout the animals, with the bones, par-
ticularly the skull and ribs, being noticeably yellow post-
mortem.

Clinical and pathological effects
Year-long treatment at these pharmacologically relevant
concentrations of minocycline in plasma and CSF had
no observable effect on the development of symptoms
or pathology in the affected sheep. Treatment did not
alter the development of blindness. Both the treated and
untreated affected sheep scored maximum points for
visual awareness up to the age of 9 months, then visual
awareness declined to zero in both groups by 15 months
of age. The rate of gross brain atrophy was not altered
by minocycline treatment either. Brain volumes of both
the treated and untreated affected sheep, determined by
regular CT scanning, were almost static. At the beginning
of the experiments, the brain volume for the treated group
was 90.7 ± 6 ml (mean ± SD) compared with 88.5 ± 3 ml
for the untreated animals, and these volumes remained
virtually unchanged, being 89.6 ± 2 ml and 88.6 ± 2 ml re-
spectively after 15 months. These data are in contrast to

the increase in normal sheep brain volumes, from 90 ml
to 104 ml, over the same age span.

Neurodegeneration was also assessed by measurements
on Nissl-stained sections of the thickness from the pia
and the neuron-rich boundary of layers I and II to the
easily identifiable boundary between layer V pyramidal
neurons and layer VI multiform neurons. These distances
were chosen because the layer V–VI is easy to locate,
whereas the bottom of layer VI is difficult to identify.
Because layer I is the least affected [12], a second meas-
urement, of layers II to V, was also made. These distances
were similar in both treated and untreated affected ani-
mals and were about 20% less than in normal control
brains (Table 1).

There was also no indication that the chronic minocycline
treatment reduced neuroinflammation. Numerous acti-
vated amoeboid single microglial cells or clusters of
microglia were densely concentrated in bands incorpor-
ating cortical layers II and III and layers V and VI of
both treated and untreated affected brains (Figure 3).
Similar neurodegeneration was also indicated by the
similar widths of the GBS4 immunopositive band of
cells in the cortex (Table 1). Normal control brains
contained no GSB4-reactive microglia. GFAP-positive
activated astrocytes bearing thickened and intensely im-
munostained processes were distributed fairly evenly
across the six cortical layers in both the treated and un-
treated affected brains, but not in unaffected control
brains. Quantitative threshold analyses of GSB4 and
GFAP confirmed that the treatment had no effect on
microglial activation or astrocytosis. Immunoreactivities
in the cortical region encompassing neuronal layers II
to V in the visual cortex of minocycline-treated and un-
treated affected animals (± SD, n = 3) were 38.0 ± 8.7%
and 36.6 ± 6.9%, respectively, for GSB4, and 67.9 ±
12.7% and 63.7 ± 5.4%, respectively, for GFAP.

Discussion
Sheep became readily accustomed to chronic incremen-
tal oral administration of minocycline without any indi-
cation of intolerance or ill effects, and, once established,
oral administration was simpler and caused fewer con-
cerns than either intraperitoneal or intravenous injec-
tion [28]. Any disturbance to the rumen flora, possibly
caused by the antibiotic activity of this drug, was transi-
ent, and accustomed sheep ate readily and grew at the
same rate as controls. The HPLC elution profile and
ultraviolet-visible spectra of peaks (Figure 1) gave no
indication of minocycline metabolites in either the CSF
or sera, including no evidence of the most likely ones,
9-hydroxyminocycline and N-demethylated minocycline
[29]. Furthermore, sufficient amounts of the drug were
circulating to establish concentrations of about 380 nM
and 1 μM in the CSF and serum, respectively, a ratio seen

Figure 2 Minocycline in plasma and cerebrospinal fluid (CSF).
Relationship between minocycline concentrations in plasma and CSF
samples taken simultaneously from CLN6 affected sheep chronically
treated with minocycline at 25/kg/day.
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in other species [30,31]. On the basis of the brain-to-
unbound plasma minocycline ratios of 2.6 to 2.8
reported previously [32,33], the brain concentrations of
minocycline in treated sheep were likely to be about
670 nM for the year-long treatment.

Prolonged treatment at this dose did not change the
course of the disease, however, despite beginning at an
early preclinical age before neurodegeneration had begun.

Glial activation commences in utero [13] and continues
into adulthood in these sheep [12], but loss of cortical
neurons does not commence until a little later, at about
5 months of age. The experiments were designed to take
advantage of this possible window of opportunity in
which suppression of microglial activation might slow
or halt the onset of the neurodegeneration and associated
disease processes. Treatment started after the animals

Table 1 Neurodegeneration and gross neuroinflammation after a year of treatment

Mean thickness of layers (μm ± SEM)*

Layers Treated affected Untreated affected Normal controls

I–V 1,063 ± 46 995 ± 43 1,285 ± 30

II–V 680 ± 34 728 ± 52 1,043 ± 28

GSB4 positive band 378 ± 29 351 ± 24 –

*For three animals in each group and a minimum of 25 measurements per brain made in the visual cortex using the layer boundaries as defined in Figures 3A
and E. GSB4, biotinylated α-D-galactose-specific isolectin I-B4 from Griffonia simplicifolia.

Figure 3 Glial activation. Microglial activation and astrocytic activation, as shown by GFAP and GSB4 lectin immunohistochemistry, were not
inhibited by chronic minocycline treatment. Sections from the visual cortex of chronically minocycline-treated CLN6 affected sheep stained for
microglia with GSB4 lectin (A) similarly to sections from affected untreated sheep (B), whereas no staining was observed in the visual cortex of
normal brain (F). Sections from the visual cortex of chronically minocycline-treated CLN6 affected sheep stained similarly for astrocytic activation
with GFAP (C) to sections from affected untreated sheep (D), whereas no staining was observed in the visual cortex of normal brain (G). Nissl
staining revealed the cortical layers in the visual cortex of a normal brain (E), indicated by roman numerals and also shown in (A). The pial
surface (ps) is to the left in all images. Scale bars on (A) through to (G) represent 200 μm, and scale bars on the insets represent 50 μm.
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were weaned at about 3 months of age, but all markers
of progress of the disease were unchanged by it. The
loss of visual awareness was similar in the treated and
affected control animals, as was brain atrophy, with
treated and untreated animals losing about 0.4 ml of
brain volume per month compared to a gain of 1 ml per
month in normal animals. Minocycline did not influ-
ence progressive microglial activation or progressive
cortical gray matter loss either (Table 1 and Figure 3).
This is unlikely to be due to a lack of penetration of
minocycline into the brain. It was evident from the
yellowing of the bones that the drug was widely distrib-
uted in the sheep, and, judging from in vitro studies,
concentrations of 60 μM to 200 nM should be sufficient
[33-35]; thus the CSF concentrations of 380 nM achieved
in the current study were expected to be sufficient.

It may be that chronic neuroinflammation does not re-
spond to minocycline inhibition. Normally, reactive gliosis
in response to an insult is acute and associated with a
cascade of proinflammatory cytokines. Microglia num-
bers increase and then return to pre-insult numbers
[36,37]. A number of studies have shown that induced
pro-inflammatory cytokines IL-lα and TNF-α [38-41]
decline with minocycline treatment in these situations,
but the timing of treatment relative to the initial brain
insult may be important. In most instances described,
minocycline treatment was commenced prior to experi-
mental insults, [22,38-40,42-44]. Neuroinflammation
commences in the second half of gestational life in these
sheep [13]; thus, although minocycline treatment began
relatively early at weaning, it may have been too late to
be effective.

Neuroinflammation in the CLN6 affected sheep is wide-
spread and sustained, and there are mixed reports of anti-
inflammatory drugs being effective in these situations
[18,45,46], suggesting that the chronic inflammatory
process is difficult to subdue or that drugs targeted to
the critical steps are required. For instance, high-dose
intraperitoneal administration of minocycline resulted
in an 80% to 90% decline of pro-inflammatory cytokines
after a Staphylococcus aureus insult, but no reduction of
microglial activation [47].

These data highlight the complexity of the neuro-
inflammatory cascade and of targeting suppression of it.
Apart from the observation of microglial activation and
astrocytosis, little is known of the inflammatory pathway
in Batten disease, and it is unclear what triggers neuro-
inflammation in these sheep. It is unlikely that dead and
dying neurons are the trigger, as neuronal loss only
starts at 5 months of age [12], some 6 months after the
first observation of activated cortical glia [13], and the
abnormal accumulation of storage bodies containing
subunit c is also unlikely to be the trigger. These accu-
mulate ubiquitously throughout the brain, whereas the

neuroinflammation is highly regional. Some areas of the
brain, such as the hypothalamus, have extensive storage
body accumulation but exhibit no neuroinflammation,
even at advanced disease stages [48]. It is also now clear
from work in other animal models of different forms of
Batten disease that neuron loss is invariably preceded by
localized glial activation [49], also noted in two canine
NCL models [50] and a mouse model of neuronopathic
Gaucher disease [51]. By extension, it is unlikely that
minocycline treatment alone will be effective for the
treatment of these other forms of Batten disease.

It is clear from the above discussion that more needs
to be known of the mechanism of the glial activation
in the NCLs and which particular parts of the inflam-
mation pathways are critically involved. Studies are under-
way to address this by determining the regional distribution
and activities of cytokines and other inflammation-
linked processes in the brains of affected sheep over
time. Greater knowledge of the mechanism of action of
anti-inflammatory agents would also enhance targeting
of therapies by indicating which drugs might be effect-
ive. Presently, it is not clear where minocycline acts. A
number of studies in mice have shown that induced
proinflammatory cytokines such as TNF-α decline with
minocycline treatment [38,41], perhaps by inhibition of
the p38 mitogen-activated protein kinase (p38 MAPK)
pathway. Among other possibilities suggested for mino-
cycline action are down-regulation of major histo-
compatibility complex II expression through interferon
regulatory factor 1 (IRF-1) and protein kinase C α/βII
(PKCα/βII) inhibition [52], inhibition of secretory phospho-
lipase A2 indicated by structural studies [53], neuro-
protection by direct scavenging of peroxynitrite [54] and
reduction of several other inflammatory factors [55].

Conclusion
This study has established that oral administration is an
effective route for drug delivery to the CNS in ruminants
as well as the utility of large animal model studies, which
should precede highly speculative procedures in already
compromised humans. A case in point is the recent aban-
donment of minocycline treatment of human Huntington’s
disease that had been encouraged by positive results of
murine studies [56]. However, this does not preclude a role
for anti-inflammatory neuroprotection in the treatment
of the NCLs with correctly targeted drugs alone or in
combination with other treatments, such as gene ther-
apy. More precise knowledge of the critical steps in the
neuroinflammatory cascade and targeting of specific
drugs to inhibit them will greatly increase the likelihood
of success.
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