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Abstract

Alzheimer’s disease (AD) has been reconceptualized as a dynamic pathophysiological process, where the
accumulation of amyloid-beta (Aβ) is thought to trigger a cascade of neurodegenerative events resulting in
cognitive impairment and, eventually, dementia. In addition to Aβ pathology, various lines of research have
implicated neuroinflammation as an important participant in AD pathophysiology. Currently, neuroinflammation
can be measured in vivo using positron emission tomography (PET) with ligands targeting diverse biological
processes such as microglial activation, reactive astrocytes and phospholipase A2 activity. In terms of therapeutic
strategies, despite a strong rationale and epidemiological studies suggesting that the use of non-steroidal
anti-inflammatory drugs (NSAIDs) may reduce the prevalence of AD, clinical trials conducted to date have proven
inconclusive. In this respect, it has been hypothesized that NSAIDs may only prove protective if administered early
on in the disease course, prior to the accumulation of significant AD pathology. In order to test various hypotheses
pertaining to the exact role of neuroinflammation in AD, studies in asymptomatic carriers of mutations deterministic
for early-onset familial AD may prove of use. In this respect, PET ligands for neuroinflammation may act as surrogate
markers of disease progression, allowing for the development of more integrative models of AD, as well as for the
measuring of target engagement in the context of clinical trials using NSAIDs. In this review, we address the
biological basis of neuroinflammatory changes in AD, underscore therapeutic strategies using anti-inflammatory
compounds, and shed light on the possibility of tracking neuroinflammation in vivo using PET imaging ligands.
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Background
Research advances over the past decade have led to the
reconceptualization of Alzheimer’s disease (AD) as a
progressive pathophysiological process in which the ac-
cumulation of amyloid-beta (Aβ) is thought to trigger a
cascade of neurodegenerative events, including the intra-
cellular accumulation of hyperphosphorylated tau [1,2].
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From a clinical standpoint, AD is viewed as a continuum,
comprising a clinically silent phase [3] (characterized by
cognitive normality in the presence of AD pathology), a
prodromal mild cognitive impairment (MCI) phase [4]—
during which individuals exhibit cognitive dysfunction,
but of insufficient severity to meet criteria for dementia—
and, finally, a dementia phase [5].
In addition to the pathological hallmarks of AD, Aβ

and hyperphosphorylated tau, a growing body of literature
points to neuroinflammation as an important player in the
pathogenesis of AD. Following a set of classic studies im-
plicating the complement factors C1q, C4 and C3 in the
formation of amyloid plaques [6,7], activated microglia
and the inflammatory cytokine IL-1 were found to be
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elevated in AD patients [8,9]. In addition to its role in
the promotion of astrogliosis [10,11], IL-1 is known to
induce marked expression of the amyloid precursor
protein (APP) gene [12] and α1-antichymotrypsin [13],
both known components of amyloid plaques [14,15].
Further exploration of complement activation showed
that while the opsonizing components were in proxim-
ity to amyloid plaques, the terminal components were
associated with dystrophic neurites [16,17]. The import-
ance of the complement system in AD was established
shortly after, following the discovery that C1q possessed
the ability to bind Aβ and its N-terminal fragments and
thus to initiate neuroinflammation via activation of the
classical complement pathway [18]. Since this early work,
numerous post-mortem immunohistochemical, biochem-
ical, and molecular studies have confirmed the presence
of neuroinflammation in the brain of AD subjects (for
review, see [19]).
A key issue regarding neuroinflammation in AD is

whether this response is beneficial or detrimental in na-
ture. While acute neuroinflammation seems to be an
adaptive reaction aiming to restore brain integrity [20],
chronic inflammation appears to be an injurious process,
resulting in progressive neurodegeneration [21,22]. Clin-
ical trials using non-steroidal anti-inflammatory drugs
(NSAIDs) - initiated on the basis of numerous epidemio-
logical studies suggesting that systemic use of NSAIDs can
prevent or delay the onset of AD [23,24] - have yielded
mixed or inconclusive results [25]. However, preliminary
results from the Alzheimer's Disease Anti-inflammatory
Prevention Trial (ADAPT) may suggest that NSAIDs can
Table 1 Positron emission tomography imaging agents for ne

Process of interest Biological target

Microglial activation 18-kDa translocator protein

Reactive astrocytes Monoamine oxidase B

Phospholipase A2 activity Metabolism of arachidonic acid
be beneficial only if administered early in the disease
course, before any symptoms are evident [22]. While this
Janus face of neuroinflammation in AD has yet to be fully
understood, it is clear that neuroinflammation is an early
and continuous process, present from preclinical through
late stage AD [26-28].
Recently, positron emission tomography (PET) imaging

agents targeting neuroinflammatory processes have been
developed and offer the opportunity for non-invasive
in vivo tracking of diverse brain inflammatory events
(Table 1). Specifically, microglial activation, reactive astro-
cytosis and increased phospholipase activity are neuroin-
flammatory events amenable of quantification using PET
imaging agents [29-31]. In addition to tracking the pro-
gression of AD as a function of neuroinflammatory re-
sponse, the use of PET imaging agents may help shed light
on the interplay between Aβ, hyperphosphorylated tau,
and neuroinflammation, possibly leading to improved
modeling of AD pathophysiology.
In this review, we describe some of the most import-

ant insights provided by PET imaging agents targeting
neuroinflammation in AD, revise the evidence provided
by preclinical and clinical trials using NSAIDs, and
underscore the role that PET biomarkers may play in
terms of the development of novel therapeutic strategies,
monitoring of disease progression, as well as biomarkers
of target engagement.

Imaging microglial activation using PET
Comprising approximately 10% of the cells within the cen-
tral nervous system [46], microglia constitute the first line
uroinflammation

Radiopharmaceutical Reference

[11C]PK11195 [32]

[11C]AC5216 [33]

[11C]PBR2806 [34]

[11C]DPA-713 [35]

[11C] DPA-714 [36]

[11C]MBMP [37]

[11C]DAC [38]

[11C]DAA1106 [39]

[11C]vinpocetine [40]

[18 F]PBR06 [41]

[18 F]FEAC [42]

[18 F]FEDAC [42]

[18 F]DAA1106 [43]

[11C]-DED [30]

[11C]Sch225336 [44]

1-[11C]-AA [31]

[18 F]FAA [45]
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of defense against invading pathogens and other harm-
ful agents. Under pathological conditions, microglial
cells proliferate and migrate to the site of injury, acquiring
phagocytic abilities and releasing various pro-inflammatory
mediators [47-50]. In AD, reactive microglia in the vicinity
of Aβ plaques have been repeatedly observed in both clin-
ical [51,52] and experimental studies [53,54], with experi-
mental models confirming Aβ-mediated release of various
neurotoxic molecules by microglia [55-58]. In keeping
with the biphasic hypothesis of neuroinflammation, how-
ever, additional studies have shown activated microglia to
release neuroprotective cytokines such as transforming
growth factor-β1, and there may be worsening of AD
pathology following microglial inhibition [59].
Currently, PET imaging of microglial activation is

possible using molecular agents targeting the 18 kDa
translocator protein (TSPO), formerly named the per-
ipheral benzodiazepine receptor (PBR) [60,61]. Located
mainly in parenchymal glial cells, TSPO is present at
low concentrations under normal physiological condi-
tions [62], save for the ependyma, choroid plexus, and
olfactory nerve layer of the olfactory bulb, which display
high densities of TSPO receptors [63,64]. In response to
neuroinflammation, however, TSPO levels undergo a dra-
matic increase, making it well-suited for assessment of
microglial activation [62]. Indeed, numerous studies indi-
cate TSPO to be a sensitive marker of reactive microglia
and inflammation secondary to neurodegeneration, in-
cluding of the AD type (for review see [65,66]).
Preclinical studies using PET ligands binding TSPO

have been performed in transgenic (Tg) rodent models
harboring human APP or tau pathogenic mutations. In
the case of [11C]PK11195 - the prototypical TSPO ligand -
the number of available binding sites (Bmax) was found to
be significantly increased in the frontal cortex of AD
post-mortem tissue, as compared to controls, while
[3H](R)-PK11195 binding correlated significantly with
immunohistochemically labeled activated microglia
[67]. Likewise, an age-dependent increase in [3H](R)-
PK11195 was noted in APP/PS1 Tg mice, in keeping
with increased retention of [11C](R)-PK11195 assessed
using microPET, which was again correlated with the
presence of activated microglia, as determined via
histopathological assessment [67]. Similar work con-
ducted using [11C]AC-5216 [33], and [18F]FEDAA1106
[68] - TSPO ligands which are optimized for improved
blood-brain barrier permeability, affinity and, in the
case of [11C]AC-5216, kinetics - revealed increased
TSPO signals in living Tg mice overexpressing human
APP (APPE6993Δ) [69]. Importantly, the APPE6993Δ model
displays high levels of Aβ in the absence of fibrillary
amyloid plaques [70], suggesting that amyloid dysmeta-
bolism per se is sufficient to induce upregulation of TSPO-
positive microglia.
Clinical studies using [11C](R)-PK11195 in patients
with mild-to-moderate AD have shown increased reten-
tion in the entorhinal, temporoparietal and posterior
cingulate cortices, areas that show decreased glucose
use, as measured with [18F]DG-PET [71]. Furthermore,
elevated microglial activation, as indexed by high [11C]
(R)-PK11195 binding within cortical association and
striatal regions (see Figure 1), was noted in a group of
AD subjects with high Pittsburgh compound B ([11C]
PIB) retention, whose mini mental state examination
(MMSE) scores were correlated negatively with micro-
glial activation, but not with [11C]PIB binding [29].
Additional studies have provided conflicting results
[72]; however, it is possible that [11C](R)-PK11195 sen-
sitivity might be insufficient for detecting microglial ac-
tivation present in mild-to-moderate AD [73]. In MCI,
findings with [11C](R)-PK11195 are inconclusive, with
one study showing a small increase in PIB-positive pa-
tients relative to controls [74], but others studies reporting
no increase, even among patients who subsequently con-
verted to AD [72,73].
Among second generation TSPO radioligands, increased

binding of [11C]DAA1106 has been observed in AD, as
compared to controls, though no correlation was found
with respect to disease severity [75]. In a follow-up study
among patients with MCI, the increased binding was asso-
ciated with progression to AD over a 5-year follow-up
period [39]. In the case of [11C]PBR28, increased binding
was noted in AD, but not MCI, despite the latter display-
ing cerebral amyloidosis and hippocampal atrophy using
PIB-PET and magnetic resonance imaging (MRI) volume-
try [76]. Furthermore, [11C]PBR28 binding was shown to
correlate with clinical severity and gray matter loss, par-
ticularly within regions exhibiting the highest density of
TSPO [76] (see Figure 2). Finally, [11C]PBR28 binding was
found to be higher among patients with early-onset AD
(<65 years), particularly within frontal and parietal regions,
in keeping with studies showing greater frontoparietal
atrophy in patients with early-onset AD [77-80]. Col-
lectively, these findings with [11C]PBR28 suggest that
the increased expression of TSPO by activated micro-
glia occurs after progression to AD, and continues as a
function of disease progression, in those who develop
disease symptoms at an early age.

Second-generation 18-kDa translocator protein ligands
and the rs6971 polymorphism
In contrast to PET studies using [11C]PK11195 - which
binds with similar affinity across subjects [81] - inter-
pretation of studies using second-generation ligands for
the TSPO has been rendered difficult by substantial
inter-individual variability in binding affinity, ranging
from 4- to 50-fold [82]. Recently, a common single-
nucleotide polymorphism (rs6971) in exon 4 of the



Figure 1 PET biological targets for measuring neuroinflammation in AD. Amyloid-beta (Aβ)1–42 and neurofibrillary tangles (NFTs) - the classic
hallmarks of Alzheimer’s disease (AD) - can trigger neuroinflammatory changes, which induces the release of complement factors, cytokines and
others inflammatory factors. Positron emission tomography (PET) uses biological surrogates for measuring neuroinflammation. Microglial activation
is estimated by the expression of the 18-kDa translocator protein (TSPO), which is mainly found on the outer mitochondrial membrane of the
microglial cells under inflammatory conditions. Monoamine oxidase-B (MAO-B), an enzyme usually located on the outer mitochondrial membrane
of astrocytes, is proposed as an index of reactive astrocytosis. Radiolabeled arachidonic acid (AA), a phospholipid present in the cell membrane
and cleaved by phospholipase A2 (PLA2), can estimate the AA metabolism. AA is the precursor of eicosanoids - prostaglandins and leukotrienes - which
are potent mediators of the inflammatory response.
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TSPO gene has been identified as the key determinant
of TSPO ligand affinity [83,84]. Based on the rs6971
polymorphism, subjects are currently divided in three
groups: high-affinity binders (HAb), mixed-affinity
binders (MAb) and low-affinity binders (LAb), with
Figure 2 Illustrative [11C](R)PK11195 PET imaging. Representative
[11C](R)PK11195 images in a healthy control (age 65 years) and in a
patient with Alzheimer’s disease (AD) dementia (age 68 years). The
brain axial view shows increased [11C](R)PK11195 binding in the AD
subject (yellow-red spots) in comparison to the healthy control subject.
Standardized uptake value (SUV) defined by the ratio of brain to
reference region (supervised reference tissue extraction) radioactivity
was used for estimating [11C](R)PK11195 binding. Image provided by
Dr Paul Edison of the Division of Brain Sciences, Department of
Medicine, Imperial College London, UK.
binding class determined on the basis of the number of
high- versus low-affinity sites [81,82]. While the binding
variation between HAb and MAb is around 30% [85], a
difference approaching 80% has been observed between
between HAb and LAb [76]. Adjusting for the rs6971
polymorphism - either via genotyping or by leucocyte
binding assay - has been shown to result in more accurate
quantitation of TSPO availability [76], as well as offering
potential benefits of increased statistical power and
smaller required sample size in the case of clinical
studies (see Figure 3).

Cannabinoid receptor type 2: a potential target for
imaging microglial activation using PET
Under physiological conditions, the cannabinoid recep-
tor type 2 (CB2) is expressed in very low concentrations
in the brain [86,87]. Recent studies, however, have dem-
onstrated microglial overexpression of CB2 in AD fol-
lowing Aβ deposition [88,89]. An attractive alternative to
TSPO ligands, CB2 radiopharmaceuticals, such as [11C]
Sch225336 [44] and [11C]A-836339 [90], are potential
imaging biomarkers for estimating activated microglia in
the brain. Indeed, work using [11C]A-836339 has pro-
vided the first in vivo evidence of CB2 upregulation in
APPswe/PS1dE9 mice [90], an animal model presenting
Aβ deposition similar to that seen in AD. Moreover, pre-
liminary findings highlight the CB2 receptor as a poten-
tial therapeutic target, with use of selective CB2 agonist



Figure 3 Illustrative [11C]PBR28 PET imaging. Representative [11C]
PBR28 images in a healthy control (age 61 years) and in a patient
with Alzheimer’s disease (AD) dementia (age 57 years). The brain
axial view show increased [11C]PBR28 binding in the AD subject
(yellow-red spots) in comparison to the healthy control subject. Of
note, both subjects are high-affinity binders. Distribution volume
corrected for free fraction of the radioligand in plasma (VT/fP) was
used for estimating [11C]PBR28 binding values. Image provided by
Drs William Kreisl and Robert Innis of the Molecular Imaging Branch,
National Institute of Mental Health-NIMH, USA.
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shown to reduce microgliosis, promote Aβ clearance, and
improve cognitive performance in both Tg APP 2576 mice
[91] and in rats with cognitive impairment following bilat-
eral microinjections of Aβ at the level of the hippocampus
[92]. In addition, Tg amyloid mice lacking the CB2 re-
ceptor have been shown to exhibit significantly in-
creased levels of soluble Aβ1–42 and plaque deposition
[93]. Though the use CB2 imaging agents may play a
role in monitoring the effectiveness of CB2-specific in-
terventions, more studies are needed. The link between
TSPO and CB2 expression, however, remains elusive.

Imaging reactive astrocytes using PET
Astrocytes are the most prevalent cells in the central ner-
vous system, outnumbering neurons by at least five-fold
[94]. These specialized glial cells dynamically interact with
neurons modulating diverse signaling pathways as well as
synapse formation [95-97]. Similar to microglia, astrocytes
become reactive in response to a variety of detrimental
stimuli [98]. In AD, increased expression of glial fibrillary
acidic protein (GFAP) is typically observed in immunohis-
tochemical studies of post-mortem brain tissue, indicating
an increased number of reactive astrocytes [99], with
GFAP-positive astrocytes noted at the margins of amyloid
deposits [100]. Though the astrocytic network is thought
to exert a neuroprotective role via the sequestration/
degradation of Aβ [101-105], its involvement is likewise
believed to extend in deleterious directions, including
the amplification of cortical amyloid deposition via propa-
gation of intercellular calcium waves [106].
In PET imaging, the enzyme monoamine oxidase B

(MAO-B) has been proposed as a biomarker for in vivo
quantification of astrocytosis in AD [107]. Located on
the outer mitochondrial membrane, MAO-B occurs pre-
dominantly in astrocytes [108,109], and can be imaged
using 11C-deuterium-L-deprenyl ([11C]-DED), a radio-
pharmaceutical exhibiting high affinity and specificity for
MAO-B [110,111]. Catalyzing the oxidative deamination
of catecholamines, MAO-B density has been shown to
be highly expressed in astrocytes surrounding amyloid
plaques [112] and seems to contribute to neurodegener-
ation by disrupting oxidative homeostasis [113].
Clinical studies using [11C]DED have demonstrated in-

creased tracer retention in MCI and AD, with binding
highest among PIB +MCI individuals [30]. These findings
suggest that reactive astrocytosis may be present early on
in the course of AD, in keeping with previous hypotheses
[99,114], as well as with findings of increased [11C]DED
binding in the earliest Braak stages of AD post-mortem
tissue [115]. Several important factors remain unanswered
with respect to this study, however. First, [11C]DED bind-
ing may be underestimated since it is highly dependent on
cerebral blood flow [111,116,117], a parameter known to
be reduced in AD [118-121]. Moreover, it is unclear the
degree to which the [11C]DED signal represents reactive
astrocytosis, since MAO-B is also found within serotoner-
gic neurons and non-reactive astrocytes [108,109]. An-
other confounder that needs to be addressed is the fact
that MAO-B seems to increase with age in almost all brain
regions (with the exception of the cingulate gyrus) in
healthy human subjects [111].

Imaging phospholipase A2 using PET
Microglia derived inflammatory cytokines are capable of
binding astrocytic cytokine receptors that are coupled
to cytosolic phospholipase A2 (cPLA2), and secretory
phospholipase A2 (sPLA2) [122]. Activation of these
Ca2+-dependent enzymes results in the hydrolysis of
membrane phospholipids, liberating arachidonic acid
(AA) [123,124], itself a precursor of pro-inflammatory
eicosanoids including prostaglandins and leukotrienes
[125,126]. Moreover, nitric oxide, released as part of this
reaction, can likewise promote AA hydrolysis via cPLA2

via postsynaptic ionotropic N-methyl-D-aspartate glutam-
ate receptors [127,128], as can Aβ [129,130]. Such me-
chanisms have been noted in AD, including increased
expression of cPLA2 and sPLA2, elevated cytokine levels,
increased glutamatergic markers and different forms of ac-
cumulated Aβ [129-131], as well as increased cerebro-
spinal fluid (CSF) levels of AA metabolites [132]. On the
basis of these markers, AA metabolism has been hypothe-
sized to be elevated in AD [31].
Preliminary results obtained using radiolabeled AA

(1-[11C]-AA) support this hypothesis, with elevated in-
corporation coefficients noted in neocortical areas shown
to have high densities of neuritic plaques with activated
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microglia [31]. To the extent that the elevated binding of
1-[11C]-AA represents the upregulation of AA metabol-
ism, PET with 1-[11C]-AA may prove of use in the assess-
ment of investigations in patients with AD.

Neuroinflammation as a therapeutic target in AD
Following an initial report of unexpectedly low prevalence
of AD among patients with rheumatoid arthritis [133], nu-
merous epidemiological studies have indicated a reduced
incidence of AD among users of NSAIDs (for a review,
see [134]). A systematic review suggests that duration of
NSAID use of at least 2 years is required to reduce risk
estimates [135], while the apparent protective effects of
NSAIDs is diminished among older individuals, even to
the point of disappearance [136,137] or, in one study,
reversal [138]. The apparent protective effect may also
be more pronounced among carriers of the apolipoprotein
E (APOE) ε4 allele [24,137,139,140]. In general, non-aspirin
compounds have been associated with greater protect-
ive effects, relative to aspirin compounds [134], and no
protective effects have been suggested among users of
acetaminophen [141].
Several mechanisms have been proposed to explain the

possible protective effects of NSAIDs in AD, including the
reduction of brain inflammation by inhibition of cyclooxy-
genase (COX)-mediated synthesis of pro-inflammatory
prostaglandins [101]. Indeed, the beneficial effects of
NSAIDs on memory performance in transgenic mouse
models of AD have been proposed to relate directly to
their blockade of COX activity [102-105,142,143], and
not to their ability to lower levels of inflammatory cyto-
kines, TNF-α or IL-1β [144]. A second proposed mechan-
istic hypothesis pertains to the ability of NSAIDs to inhibit
processing of the APP or the production or aggregation of
Aβ. A subset of NSAIDs (including ibuprofen and indo-
methacin) have been shown in vitro and in APP-Tg mouse
models to preferentially lower levels of amyloidogenic
Aβ1–42, independently of their COX-inhibiting activity
[145]. These NSAIDs are thought to stimulate non-
amyloidogenic processing of APP via enhancement of
α-secretase activity [146], to decrease secretion of Aβ in
cell lines stimulated with pro-inflammatory cytokines [147],
and to decrease the expression of α1-antichymotrypsin, an
acute phase protein known to accelerate the development
of amyloid pathology in APP-Tg mice [148]. It is note-
worthy, however, that a large meta-analysis of NSAID
use in human samples has failed to show a distinction
between those NSAIDs that modulate γ-secretase activ-
ity in vitro and others, and between ibuprofen and na-
proxen in particular [149]. Finally, NSAIDs that are
known to inhibit the multimerization of Aβ in vitro
[150] may also inhibit the aggregation of Aβ via direct
interaction [151], although human neuropathological
studies have failed to show this [152,153].
The hypothesis that neuroinflammation plays a role in
the pathogenesis of AD - and that its suppression via the
use of anti-inflammatory compounds may prevent or
delay the onset of AD - provided the rationale for a series
of clinical trials utilizing various anti-inflammatory drugs
[154]. While initial pilot studies using indomethacin
(a COX-1 preferential inhibitor) and diclofenac (a
non-selective COX inhibitor) combined with the gas-
troprotective agent misoprostol, suggested benefits in
mild-to-moderate AD [155,156], gastrointestinal prob-
lems (a side effect commonly associated with inhibition of
COX1) resulted in a high drop-out rate. Follow-up studies
with nimesulide [157], celecoxib [158] or rofecoxib
[159,160] - selective COX-2 inhibitors - showed no
therapeutic effect [157-160]. Likewise, despite encour-
aging results in animal models, a 1-year clinical trial
using the non-selective COX inhibitor ibuprofen showed
no significant overall effects on cognitive and clinical out-
comes in patients with mild-to-moderate AD (although
positive results were seen in APOE ε4 carriers, with the
opposite pattern observed in non-carriers) [161]. A pri-
mary prevention trial (ADAPT) using naproxen (mixed
COX-1/COX-2 inhibitor) and celecoxib (selective COX-2
inhibitor) in individuals at risk for AD was terminated
early due to perceived cardiovascular side effects [162],
but with results that suggested that these NSAIDs may
in fact accelerate disease progression if initiated in indi-
viduals already displaying MCI or substantial AD patho-
physiology without symptoms. Their use among individuals
without AD pathophysiology may prove beneficial, how-
ever; a hypothesis supported by CSF biomarker values
obtained at 21 to 42 months follow-up [134].
Though the failure of clinical trials using NSAIDs has

been ascribed to timing of intervention, duration of
treatment, dosage, and drug class, the underlying prob-
lem remains the lack of consensus surrounding whether
neuroinflammation causes neurodegeneration in AD, or
is simply a protective response to primary pathological
processes. At present, these findings offer only limited
data making it difficult to evaluate the therapeutic utility
of NSAIDs in AD. However, piecing together findings
from preclinical work in AD-like Tg models, the finding of
protective effects in APOE ε4 carriers and the overall re-
sults of the ADAPT trial, it seems likely that NSAIDs
may exert a protective effect but only if administered
early on in the disease course. Further studies are required
to provide support for this idea.

Potential role of PET in monitoring responsivity to
anti-inflammatory therapies in AD
The literature suggests that neuroinflammation occurs
early in the course of AD, likely as a response to Aβ and
pathologically phosphorylated forms of tau, and that
early use of NSAIDs may prove effective in individuals
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with minimal AD pathology and/or carriers of the APOE
ε4 allele. Indeed, results from a masked long-term
follow-up of the ADAPT cohort seemed to confirm this
idea. The difficulty with early initiation of treatment,
however, lies in recognizing those who have already ex-
perienced pre-symptomatic disease onset. In this respect,
studies in asymptomatic carriers of mutations determin-
istic for early-onset familial AD may prove helpful, given
the recent suggestion of the order in which biomarkers
reach abnormal levels in this population [163], and that
the clinical evolution of early-onset familial AD is highly
predictable within a kindred, especially for age at onset
[164]. Imaging of neuroinflammation in this population
using PET, alongside CSF and plasma markers, may allow
for a more integrative AD biomarker model [2,165], par-
ticularly with respect to the interplay between glial activa-
tion, seeding of Aβ and hyperphosphorylated tau species,
and cognitive decline. Moreover, TSPO ligands may prove
sensitive to early AD pathophysiological changes in the
form of toxic Aβ oligomers [166], changes that lie below
the detection threshold of current in vivo AD biomarkers
[2]. In the context of clinical trials using NSAIDs (com-
pounds that retain therapeutic potential despite the
general failure of trials conducted to date, particularly
since they are relatively safe and highly available), PET
could serve to demonstrate target engagement in addition
to proving topographical information, critical information
lacking from fluid- and plasma-based biomarkers. The re-
producibility of TSPO binding, however, remains under
debate [167,168]. In this respect, clinical trials addressing
this issue are currently underway, and will hopefully
provide results clarifying the test-retest reliability of
TSPO ligands [169,170].

Concluding remarks and future directions
In general, the continued study of inflammatory mecha-
nisms, including in particular the use of PET imaging
for tracking neuroinflammatory changes, seems to have
a promising role in AD. To date, radioisotopic probes
targeting neuroinflammation have demonstrated en-
couraging results in preclinical and clinical studies, with
these radiopharmaceuticals holding promise for inclu-
sion as surrogate markers of disease progression in the
next generation of clinical trials using anti-inflammatory
therapies. Importantly, novel approaches aiming to aug-
ment the sensitivity of these PET imaging agents may be
required, with inclusion of vascular [171] and genetic
[172,173] covariates likely to strengthen the value of PET
outcomes.
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A2; Tg: transgenic; TNF: tumor necrosis factor; TSPO: 18 kDa translocator
protein.
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