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Abstract

Over the past decade the process of inflammation has been a focus of increasing interest in the Alzheimer’s disease
(AD) field, not only for its potential role in neuronal degeneration but also as a promising therapeutic target.
However, recent research in this field has provided divergent outcomes, largely due to the use of different models
and different stages of the disease when the investigations have been carried out. It is now accepted that
microglia, and possibly astrocytes, change their activation phenotype during ageing and the stage of the disease,
and therefore these are important factors to have in mind to define the function of different inflammatory
components as well as potential therapies. Modulating inflammation using animal models of AD has offered the
possibility to investigate inflammatory components individually and manipulate inflammatory genes in amyloid
precursor protein and tau transgenics independently. This has also offered some hints on the mechanisms by
which these factors may affect AD pathology. In this review we examine the different transgenic approaches and
treatments that have been reported to modulate inflammation using animal models of AD. These studies have
provided evidence that enhancing inflammation is linked with increases in amyloid-beta (Aβ) generation, Aβ aggregation
and tau phosphorylation. However, the alterations on tau phosphorylation can be independent of changes in Aβ levels
by these inflammatory mediators.
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Background
During the last 10 years, interest in research related to
Alzheimer’s disease (AD) and inflammation has grown
significantly. Ageing is the greatest risk factor for devel-
opment of AD and this is thought, in part, to be due to
enhanced chronic inflammation associated with increas-
ing age [1]. In addition, it has been recognised that
amyloid-beta (Aβ) is able to initiate an inflammatory re-
sponse, which implicates the activation of microglia and
the recruitment of astrocytes, and therefore the release
of cytokines, chemokines, reactive oxygen species and
neurotoxic products that have been involved in neuronal
and synaptic damage [2]. Mice expressing mutant amyl-
oid precursor protein (APP) or tau do not present sig-
nificant neuronal loss; therefore, it has been theorised
that the addition of the inflammatory component of AD
would result in a more appropriate model to investigate
the disease. Due to the well-documented changes in
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inflammatory markers detected in the AD brain and the
inflammatory risk factors associated with the disease,
targeting these processes has become increasingly attract-
ive and the use of anti-inflammatory drugs has shown po-
tential as a preventive treatment. In this review we aim to
describe different genetic and drug manipulations that
have been carried out in AD animal models and that have
allowed the identification of mechanisms by which inflam-
mation is a relevant factor to incorporate as a hallmark for
AD pathology.
Modelling Alzheimer’s disease
It is now widely accepted that Aβ induces glial activation
and therefore mouse models of Alzheimer’s disease over-
expressing the human APP with familial AD mutations,
such as the Tg2567 and the APP23 (both carrying the
Swedish mutation, APPSWE), have been shown to present
microglial and astrocytic activation [3,4]. In addition,
their brains display enhanced levels of cytokines such as
TNFα, IFNγ, IL-1β, IL-1α, chemoattractant protein-1,
cyclooxygenase (COX)-2 and complement component
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1q [2,3,5]. The characterisation of inflammatory processes
in the APPV717I mouse model has demonstrated that
focal glial activation occurs before amyloid plaque forma-
tion, already at 3 months of age [6], in parallel with de-
creased LTP (long-term potentiation) [7]. However, there
have been some issues on how well these mouse models
mimic human pathology because they do not show the ro-
bust tauopathy and neuronal death that is evident in the
human disease unless additional human transgenes such as
tau are added [8]. The triple-transgenic model (3×Tg-AD),
which harbours APPSWE, presenilin-1 (PS1M146V) muta-
tion, and tau mutation (tauP301L), offers the advantage of
developing progressive plaque deposition and tangle forma-
tion together with microglial activation and an upregulation
of the pro-inflammatory cytokine TNFα and chemokine
MCP-1 (CCL2), although this is limited to the entorhinal
cortex [9].
Mouse models of tauopathy such as the P301S tau

transgenic (Tg) mouse also exhibit neuroinflammatory
changes, exemplified by the co-localisation of aggregated
tau, IL-1β and COX-2, reactive astrocytosis and the
accumulation of activated microglial cells around tau-
positive neuronal cells [10]. Interestingly, microglial acti-
vation precedes tangle formation in 3-month-old P301S
Tg mice [11], and therefore neuroinflammation has been
proposed to be the link between Aβ deposition and the
formation of neurofibrillary tangles.
Perhaps one of the more promising advances in mod-

elling AD comes from the development of a rat model
that coexpresses the human APPSWE and PS1ΔE9 [12].
These TgF344-AD rats develop all the hallmarks typic-
ally seen in Tg-AD mice (age-dependent cerebral amyl-
oidosis, glial activation, and memory impairments) but
additionally exhibit tauopathy and neuronal death and
therefore more closely mimic human AD pathology.
This model provides further support for the amyloid
cascade hypothesis and it is hoped that it will provide a
next step in translational therapeutic studies for AD and
further enhance understanding of the basic neuropathol-
ogy and the underlying causes of this disease.
Activated glial cells can be imaged in vivo in animal

models of AD using positron emission tomography. The
development of tracers for activated microglia is based
on the observation that the peripheral benzodiazepine
receptor is upregulated in activated microglia. Ligands
such as [11C](R)-PK11195 bind to this receptor, also
known as the translocator protein (TSPO). A significant
age-dependent increase in specific [3H](R)-PK11195 bind-
ing was demonstrated in a transgenic mouse model of AD
by autoradiography (TASTPM: APPswxPS1M146V; [13]).
However, [11C]-(R)-PK11195 positron emission tomog-
raphy could not demonstrate differences between wild-
types and transgenic APP/PS1 mice [14]. This tracer has
some limitations, such as high non-specific binding and
high binding to plasma proteins. These issues have conse-
quently led to the development of new radiotracers target-
ing TSPO including [18F]-PBR111, 11C-radiolabelled and
18F-radiollabeled versions of PBR06 and PBR28 as well as
[18F]-FEPPA [15]. In fact, radiolabelling of TSPO with
[11C]AC-5216 was linearly proportional to the amount of
phospho-tau immunolabelling in transgenic PS19 mice
carrying the P301S tau mutation [16]. The results of that
study indicated that TSPO immunoreactivities are more
likely to be associated with neurofibrillary tangles rather
than Aβ deposits.

Modulation of inflammatory processes in models
of Alzheimer’s disease
Modulation in amyloid precursor protein transgenic
models
Genetic manipulation of several immune and inflamma-
tory pathways in mouse models of AD has been carried
out during the past decade to explore how increasing or
decreasing neuroinflammation may affect AD progression
(see Table 1). Unfortunately, most of these reports have fo-
cused only on the effect on amyloid deposition and there
is a general lack of cognitive and longitudinal live imaging
studies. These investigations have provided some indica-
tions to potential mechanisms by which inflammation
may trigger changes in AD pathology. However, there has
been some variability in the results obtained from these
studies, which are largely dependent upon in which
transgenic mouse model the studies have been carried
out. For example, deletion of inducible nitric oxide syn-
thase (iNOS) in an APP/PS1 background resulted in dif-
ferent outcomes on Aβ load compared to iNOS knockout
in the Tg2576 mouse model [17,18]. In general it is ex-
pected that overexpression of pro-inflammatory mediators
will enhance progression of the disease and therefore
treatments should follow an anti-inflammatory approach.
For example, blocking signaling of the pro-inflammatory
cytokines IL-12 and IL-23 via ablation of the common
subunit p40 in APP/PS1 mice has been shown to reduce
glial activation and amyloid burden [19]. Furthermore,
IFNγ signaling loss in APP mice knockout for IFNγ recep-
tor type I (GRKO mice) reduced gliosis and amyloid
plaques in Tg2576 mice [20]. Interestingly, a significant
reduction in the number of BACE1-positive astrocytes
was seen in APP/GRKO mice as compared with APP
littermates. In line with this, deletion of TNFRI in APP23
mice has been reported to reduce BACE1 protein levels
and activity as well [21]. These studies in animal models
support our in vitro observations, which showed that
inflammation enhances BACE1 expression [22,23].
Another potential way by which inflammation may

contribute to AD pathology is by increasing Aβ aggrega-
tion. Nitration of Aβ has been shown to accelerate its
aggregation and was detected in the core of Aβ plaques



Table 1 Modulation of inflammatory mediators in Alzheimer’s disease mouse models

AD mouse model Genetic manipulation Effect on Alzheimer-like pathology Reference

APP231 TNF-RI−/− ↓Aβ, ↓amyloid plaques, ↓microglial activation, ↓BACE1, ↓neuronal loss, ↑memory [21]

3xTg-AD2 TNF-RI/RII−/− ↑Aβ, ↑amyloid plaques, ↑PHF, ↓IBA1, ↓microglial phagocytosis, ↓LTP [24]

3xTg-AD2 TNFα−/− ↑Aβ, ↔memory improvement [25]

3xTg-AD2 TgIL-1βXAT ↓Aβ, ↑p-tau, ↑glial activation [26]

APP/PS13 TgIL-1βXAT ↓Aβ, ↑glial activation, ↑cytokines [27]

APP/PS13 TgIL-1βXAT ↓Aβ, ↓amyloid plaques [28]

APP/PS14 IL-12α−/− ↓Aβ [19]

APP/PS14 IL-12β−/− ↓Aβ, ↓glial activation [19]

APP/PS14 IL-23−/− ↓Aβ [19]

PDGF-APPSweInd line J95 GFAP-TGFβ1 ↓Aβ, ↑cerebrovascular Aβ, ↑glial activation [29]

PDAPP6 GFAP-TGFβ1 ↑cerebrovascular Aβ, ↑CAA, ↑perivascular astrocytes [30]

Tg25767 CD11c-DNR(TGF-β) ↓Aβ, ↓memory impairment, ↓CAA [31]

Tg25767 IFNγRI−/− ↓Aβ, ↓glial activation [20]

APP/PS13 Mrp14−/− ↓Aβ, ↓BACE1, ↓cytokines, ↑microglial activation, ↑Aβ phagocytosis [32]

Tg25767 NOS2−/− ↑Aβ,↑p-tau, ↑neuronal death [17]

APP/PS13 NOS2−/− ↓Aβ, ↓plaques, ↑LTP, ↑memory [18]

APP/PS13 NOS2−/− ↑IDE [33]

Tg-SwDI/B8 NOS2−/− ↔Aβ, ↑p-tau, ↑CAA, ↑neuronal loss, ↑memory impairment [34]

PDGF-APPSweInd line J95 PDGF-RAGE ↑Aβ, ↑glial activation, ↓LTP [35]

PDGF-APPSweInd line J95 GFAP-α1-ACT ↑Aβ [36]

PDAPP6 GFAP-α1-ACT ↑Aβ, ↑plaques [37]

PDAPP6 GFAP-α1-ACT ↑p-tau [38]
1hAPP Swedish mutation under the murine Thy1.2 promoter. 2hAPP Swedish, hPS1 knock-in with M146V mutation, htau P301L mutation. APP and Tau are under
the Thy1 promoter. 3hAPP Swedish and hPS1dE9 mutations under the murine Thy1.2 promoter. 4hAPP Swedish and hPS1 L166P mutations under the murine Thy1
promoter. 5hAPP Swedish and Indiana mutations under the PDGF promoter. 6hAPP Indiana mutation under the PDGF promoter. 7hAPP Swedish mutation under
the hamster prion promoter. 8hAPP Swedish, Dutch and Iowa mutations under the murine Thy1.2 promoter. Aβ, amyloid-beta; ACT, antichymotrypsin; AD, Alzheimer’s
disease; APP, amyloid precursor protein; CAA, cerebral amyloid angiopathy; GFAP, glial fibrillary acidic protein; IBA, ionized calcium binding adaptor molecule-1; IDE, insu-
lin degrading enzyme; IFN, interferon; IL, interleukin; LTP, long-term potentiation; NOS, nitric oxide synthase; PDAPP, amyloid precursor protein under control of platelet-
derived growth factor promoter; PDGF, platelet-derived growth factor; PHF, Paired helical filament; RAGE, Receptor for Advanced Glycation End; Tg, transgenic; TGF,
transforming growth factor; TNF, tumor necrosis factor.
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of APP/PS1 mice and AD brains. Studies carried out in
nitric oxide synthase (NOS)2 knockout mice have shown
strongly decreased 3NTyr(10)-Aβ, overall Aβ deposition
and cognitive dysfunction in APP/PS1 mice [18].
A recently studied and significant factor in immune re-

sponse is the NLRP3 inflammasome, which is a multipro-
tein oligomer consisting of caspase 1, PYCARD, NALP
and sometimes caspase 5. It is upregulated in response to
the stimulation of macrophages with pathogen-associated
molecule patterns. APP/PS1 mice crossed with NLRP3−/−
mice have rescued spatial memory, synaptic plasticity and
a reduction in Aβ load when compared with age-matched
APP/PS1 mice. These changes were associated with an
increase in microglial phagocytic activity and increased
insulin degrading enzyme [39]. APP/PS1 mice deficient in
NLRP3 show increased M2 phenotype markers: FIZZ1,
arginase-1, and IL-4, with reduced NOS2 expression. Com-
plementary results were also shown with deletion of caspase
1, an important effector enzyme, in APP/PS1 mice [39].
Yet, intriguingly, many studies that induce an inflam-
matory state by administration of lipopolysaccharide
(LPS) or IL-1β lead to a decrease in Aβ burden. This ef-
fect has been associated with enhanced microglial activa-
tion and subsequent Aβ clearance [27,28,40-42]. This is
a seemingly artificial method of activation of microglia,
however, as acute administration of these strongly acti-
vating factors does not mimic the chronic inflammation
shown in AD and, as IL-1β and LPS induce memory im-
pairments in rodents [43,44], they could never be
thought of as a viable therapy.
In summary, studies in APP models have shown that in-

flammation may potentiate AD pathology in APP trans-
genic mice by increasing Aβ generation, aggregation and
by affecting its clearance.

Modulation in tau models
There is a scarcity of studies directly assessing the effect
of inflammation in tau models of AD. The few that have
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been conducted have led to some intriguing results that
suggest there may be immune responses to APP process-
ing and tau hyperphosphorylation. While APP or APP/
PS1 models do not develop neurofibrillary tangles, they do
show increased tau phosphorylation [45,46]. Products of
inflammation, such as pro-inflammatory cytokines, can
change the substrate specificity of kinases/phosphatases
leading to tau phosphorylation at pathological sites [47].
Unlike the increases in Aβ pathology shown in PDAPP

J20 [48], suppression of inflammation by overexpressing
the complement inhibitory factor sCrry in P301L tau Tg
mice resulted in reduced tau pathology [49]. This sug-
gests that acute activation of the complement activation
pathway is detrimental in tau mice. The 3×Tg-AD mouse
model has also been used to test the effect of manipulating
inflammation on tau pathology. Acute activation of the
immune response in 3×Tg-AD mice by LPS treatment in-
duced tau hyperphosphorylation via a Cdk5-dependent
mechanism [50]; however, no changes were detected in
amyloid pathology. In line with this, viral infection-
induced acute or chronic inflammation in 3×Tg-AD mice
significantly exacerbated tau pathology and led to impair-
ments in spatial memory. In this case, tau phosphorylation
was increased via a glycogen synthase kinase-3β-dependent
mechanism [51]. Other approaches to induce inflammation
in the brain of the 3×Tg-AD mice such as by controlled
cortical impact traumatic brain injury caused acute intra-
axonal Aβ accumulation and increased phospho-tau [52].
Interestingly, and in contrast to that which is observed for
transgenic mice overexpressing only APP, IL-1β overex-
pression in 3×Tg-AD mice resulted in increased tau phos-
phorylation, associated with higher p38 MAPK and GSK3β
activity with reductions in Aβ load [26].
However, other studies have shown controversial re-

sults in this 3×Tg-AD model, reporting reduced tau
phosphorylation after delivery of IFNγ (rAAV1-IFNγ) via
recombinant adeno-associated virus vector [53]. In
addition, disruption of TNFα signaling in 3×Tg-AD ex-
acerbated amyloid and tau pathology [24,54].
With these last few exceptions, the results of modulation

of inflammation in tau transgenics suggest that increased
neuroinflammation leads to enhanced phosphorylation
of tau, and this effect is not necessarily dependent on in-
creased Aβ generation.

Glial modulation in Alzheimer’s disease models
Microglia manipulation in Alzheimer’s disease models
The microglial/macrophage response is a key mediator of
the immune response in the brain. Microglia can be acti-
vated following exogenous or endogenous stimulation by
a variety of receptors. Stimulation of these receptors can
induce activation of microglia into a ‘classical (M1)’ or ‘al-
ternative (M2)’ phenotype. That microglia play a signifi-
cant role in eliciting inflammation and clearing toxic
products and damaged tissue cannot be disputed, but their
direct role in disease progression is unclear. Near com-
plete ablation of microglia, by crossing either APP23 or
APP/PS1 mice with CD11b-TK mice, did not show differ-
ences in plaque formation and only a very small reduction
in diffuse Aβ in the APP23/CD11b-TK model [55], sug-
gesting more subtle approaches to study their role are
necessary.
A number of recent reviews have highlighted the current

literature trends and debated the seemingly contradictory
results relating to microglial involvement in AD [56-58].
The activation state of microglia and their ability to phago-
cytose and clear amyloid in the brain seems to be a signifi-
cant, but contentious, factor. Microglia and macrophages
express a number of different receptors that can promote
phagocytosis and clearance of Aβ that have been targeted.
These include complement receptors, scavenger receptors,
and cytokine/chemokine receptors that are associated with
pathogen recognition (Table 2). These data can often seem
incompatible and contradictory in many cases and yet
yield some significant therapeutic targets and emphasize
the multi-faceted and heterozygous nature of microglial
response in AD from the beginning of the disease through-
out its progression. Specific manipulation of signaling fac-
tors associated with a shift to the M2 phenotype is
reported to promote clearance of Aβ and ameliorate other
symptoms, as microglia exhibit a more anti-inflammatory,
phagocytic phenotype. For example, suppression of frac-
talkine signaling, a negative regulator of microglial acti-
vation, is successful in reducing amyloid plaque burden
and neuronal loss [59-62]. In mouse models of other neu-
rodegenerative disease such as Parkinson’s disease or
ALS (amyotrophic lateral sclerosis), lack of CX3CR1
causes widespread neuron loss [63], suggesting that the
microglial activation profile seen here is an AD-specific
effect. However, as APP mouse models do not exhibit
significant neuron loss it is difficult to conclude if this is
a tau-specific effect or relevant to human AD.
In addition, targeting of the phagocytic phenotype of

microglia has shown some promising results in AD mouse
models. The complement pathway has been extensively
studied in relation to AD and reports suggest that up-
regulating complement factors may target inflammatory
processes by promoting migration and phagocytosis of
inflammatory cells [48,71,75].
Microglia and macrophages express a number of recep-

tors that can promote clearance of Aβ, such as scavenger
receptor class A1 (Scara1) and class BI (Scarb1). Knock-
out models for Scarb1 [65] and Scara1 [64] have shown
alterations in Aβ load.
Additionally, Toll-like receptors (TLRs) and their co-

receptors including MD-2, CD14, and CD36 [90] are of
great importance for the recognition of pathogens in the
body and participate in the response of microglial cells



Table 2 Modulation of glia in Alzheimer’s disease mouse models
AD mouse model Genetic

manipulation
Effect on Alzheimer-like pathology Reference

APP/PS11 Scara1−/− ↑Aβ, ↑mortality, ↓IDE, ↓Neprilysin [64]

PDAPPSweInd line J202 Scarb1−/− ↑amyloid plaques, ↑CAA, ↔glial activation, ↑memory impairment [65]

APP/PS13 CD11b-TK ↔Aβ, ↔amyloid plaques, ↑GFAP, ↓Iba1 [55]

APP234 CD11b-TK ↓Aβ, ↓Iba1, ↔amyloid plaques [55]

PDAPPSweInd line J202 CxCR3-GFP ki ↔Aβ, ↑microglial activation, ↑IL-6, ↑TNF-α, ↑p-tau, ↑memory impairment [62]

TgCRND85 CxCR3-GFP ki ↓Aβ, ↓amyloid plaques, ↑ microglial phagocytosis, ↑microglial proliferation [59]

APP/PS13 CxCR3-GFP ki ↓Aβ, ↓amyloid plaques, ↓microglia, ↑ microglial phagocytosis [60]

R1.406 CxCR3-GFP ki ↓Aβ, ↓amyloid plaques [60]

htau7 CxCR3-GFP ki ↑p-tau, ↑Gallyas-positive dystrophic neurites, ↓Iba1, ↑microglial activation (CD68+ and
CD45+)

[66]

3xTg-AD8 CxCR3-GFP ki ↓neuronal loss [61]

Tg25769 Ccr2−/− ↑Aβ, ↓NEP [67]

APP/PS110 Ccr2−/− ↑soluble Aβ, ↑microglial activation, ↑memory impairment [68]

APP/PS110 NSE-COX2 ↑Aβ, ↑PGE2 [69]

Tg25769 C1q−/− ↔Aβ, ↓glial activation, ↑neuronal degeneration [70]

Tg25769 C1q−/− ↔Aβ, ↓glial activation, ↓loss of synaptic markers [71]

APP/PS111 C1q−/− ↔Aβ, ↓glial activation [71]

TauP301L line JNLP312 sCrry ↑p-tau [49]

Tg25769 CD40L−/− ↓p-tau [72]

Tg25769 CD40L−/− ↓Aβ, ↓glial activation [73,74]

APP/PS111 CD40L−/− ↓Aβ, ↓glial activation [73]

APP/PS11 Nlrp3−/− ↓Aβ, ↓plaques, ↓IL-1β, ↓iNOS, ↑LTP, ↑spatial memory, ↑IDE [39]

PDAPPSweInd line J202 C3−/− ↑Aβ, ↑amyloid plaques, ↑glial activation, ↑neuronal loss [75]

APP/PS11 CD14−/− ↓Aβ, ↓amyloid plaques, ↓CD45+ activated microglia [76]

APP/PS11 CD33−/− ↓Aβ, ↓plaques [77]

Tg25769 (before plaque
onset)

CD36−/− ↔Aβ, ↔ROS [78]

Tg25769 (old mice) CD36−/− ↓Aβ40, ↓CAA, ↑cognitive performance [79]

APP/PS11 CD45−/− ↑Aβ, ↑amyloid plaques, ↑inflammatory microglia, ↑TNF-α, ↑IL-1β, ↑neuronal death [80]

APP/PS13 IRAK4KI/KI ↓Aβ, ↓amyloid plaques, ↓glial activation, ↑PPARγ, ↑IDE, ↑IFNγ, ↓iNOS [81]

APP/PS11 TLR4Lps-d ↑Aβ, ↑amyloid plaques [82]

APP/PS11 TLR4Lps-d ↑CD11b+ microglia, ↑GFAP [83]

APP/PS11 TLR4Lps-d ↑Aβ, ↑ amyloid plaques, ↓microglial activation, ↑cognitive impairment [84]

APP/PS11 MyD88−/− ↓Aβ, ↓amyloid plaques, ↓CD11b+, CD45+ microglia [85]

APP/PS110 MyD88+/− ↓amyloid plaques, ↑soluble Aβ, ↓IL-1β [86]

APP/PS110 TLR2−/− Delayed plaque formation, ↑Aβ, ↑TGF-β, ↑memory impairment [87]

Tg25769 GFAP-MCP1 ↑Aβ, ↑microglial activation [88]

APP/PS11 GFAP−/−Vim−/− ↑Aβ, ↑amyloid plaques, ↑neurotic dystrophy, ↓activated astrocytes, ↑microglia, [89]
1hAPP Swedish and hPS1dE9 mutations under the murine Thy1.2 promoter. 2hAPP Swedish and Indiana mutations under the PDGF promoter. 3hAPP Swedish and
hPS1 L166P mutation under the Thy1 promoter. 4hAPP Swedish mutation under the murine Thy1.2 promoter. 5hAPP Swedish and Indiana mutations under the
hamster prion promoter. 6YAC with 300Kb hAPP gene with the Swedish mutation. 7Mapt−/− mice crossed with Tg(MAPT)8cPdav that contains the whole 5′-
flanking and exons 1–14 of the hMAPT gene. 8hAPP Swedish mutation, hPS1 knock-in with M146V mutation, htau P301L mutation. hAPP and hTau are under the
Thy1 promoter. 9hAPP Swedish mutation under the hamster prion promoter. 10hAPP Swedish mutation and hPS1 with the A246E mutation both under the mouse
prion promoter. 11Tg2576 (hAPP Swedish mutation) crossed with hPS1 with the M146L mutation. 12hTau with the P301L mutation under the mouse prion pro-
moter. Aβ, amyloid-beta; AD, Alzheimer’s disease; APP, amyloid precursor protein; CAA, cerebral amyloid angiopathy; GFAP, glial fibrillary acidic protein; GFP, green
Fluorescent Protein; IBA, ionized calcium binding adaptor molecule-1; IDE, insulin degrading enzyme; IFN, interferon; IL, interleukin; iNOS, inducible
nitric oxide synthase; LTP, long-term potentiation; MyD88, myeloid differentiation primary response protein 88; NSE-COX2, neuron-specific enolase-cyclooxigenase-
2; PDAPP, amyloid precursor protein under control of platelet-derived growth factor promoter; PDGF, platelet-derived growth factor; PGE2, prostaglandin E2; PHF,
Paired helical filament; PPAR, peroxisome proliferator-activated receptor; RAGE, Receptor for Advanced Glycation End; ROS, reactive oxygen species; Scar, scaven-
ger receptor; Tg, transgenic; TGF, transforming growth factor; TLR, Toll-like receptor; TNF, tumor necrosis factor.
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to fibrillar forms of Aβ [91]. Deletion of CD14, which
acts as a co-receptor for LPS along with TLR2 and
TLR4, in APP/PS1 mice reduced total microglial num-
bers, in particular CD45-positive microglia, attenuated
AD pathology whilst also increasing the expression of
TNF-α and IL-10, suggesting an induction of a shift of
activation of microglia towards the M2b state [76]. On
the other hand, TLR2 deficiency accelerated spatial and
contextual memory impairments, which correlated with
increased levels of Aβ(1–42) and transforming growth
factor-β in the brain of APP/PS1 mice [87]. An essential
adaptor protein for all TLR signaling, with the excep-
tion of TLR3, is the myeloid differentiation primary re-
sponse protein 88 (MyD88). Decreasing the expression
of MyD88 in APP/PS1 mice led to exacerbation of
spatial memory deficits, increases in Aβ, reduced ex-
pression of the fractalkine receptor CX3CR1 and in-
creased levels of APOE (Apolipoprotein E) together
with reduced astrocyte and microglial activation [85,86].
These data indicate that TLR2 and TLR4 may be in-
volved in Aβ clearance in vivo and hence provide neuro-
protection in AD [92]. They also suggest that targeting
specific glial activation states may prove fruitful in fu-
ture clinical studies.
CD33 gene and TREM2, which are expressed in micro-

glia, have been recently identified as genetic risks factors
for AD [93-96]. It was reported that CD33 is able to in-
hibit the uptake and clearance of Aβ42 in microglial cell
cultures. This was confirmed by in vivo results showing
that brain levels of insoluble Aβ42 as well as amyloid
plaque burden were markedly reduced in APP(Swe)/PS1
(ΔE9)/CD33(−/−) mice. Therefore, CD33 inactivation ap-
pears to mitigate Aβ pathology [77]. On the other hand,
hypothesizing that the TREM2 risk variants impair TREM2
function, these new genetic studies suggest that reduced
function of TREM2 causes reduced phagocytic clearance
of amyloid proteins or cellular debris and thus impairs a
protective mechanism in the brain [94,96].
There are a number of studies that attribute the clear-

ance of amyloid in mouse models to infiltrating mono-
cytes or perivascular macrophages [97-100]. This is due
to the evidence showing a reduced efficiency of micro-
glia with age [101] and bacterial and viral infections
[102]. However, the role of these peripheral monocytes
in neurodegeneration remains unclear. One important
aspect is the contribution of monocytes to resident mac-
rophages, which is highly tissue-dependent and has been
shown not to be relevant for brain microglia. However,
recently it was suggested that, irrespective of their ori-
gin, macrophages/microglia can self-renew by local pro-
liferation similar to that of stem cells [103]. In fact, in
animal models of prion disease it has been demonstrated
that microglial proliferation is a major component in the
evolution of chronic neurodegeneration [104].
Many models that show peripheral monocytic infiltra-
tion use whole body irradiation which damages the
blood–brain barrier itself, induces peripheral immune ac-
tivation and can facilitate infiltration. Using this approach,
it was recently published that microglia-depleted brain re-
gions of CD11b-TK transgenic mice are repopulated with
new Iba1-positive cells within 2 weeks, creating a niche
for myeloid cells [105]. However, using the technique of
parabiosis (in which two mice share vasculature), GFP
(Green Fluorescent Protein) -labelled monocytes from one
mouse are not seen to infiltrate the brain of the other
mouse, except following irradiation and bone marrow
transplantation, which would suggest a pre-existing dis-
ease state is necessary in the brain for significant infiltra-
tion to occur [102,106]. In line with this, recent data
provide strong evidence that the engraftment of myeloid
cells in the brain parenchyma of AD transgenic mice does
not occur normally during disease progression, but re-
quires prior central nervous system conditioning to suffi-
ciently attract bone marrow cells [102]. These studies also
highlight the importance of the chemokine receptor
CCR2 in monocyte migration as the infiltrating cells fol-
lowing irradiation are characterized as CCR2+. Interest-
ingly, deletion of CCR2 in Tg2576 mice increased Aβ
accumulation and reduced microglial recruitment into the
brain, in particular phagocytic macrophages [67]. In agree-
ment with this, another study showed that restriction of
CCR2 deficiency to perivascular myeloid cells drastically
impaired Aβ clearance and amplified vascular Aβ depos-
ition, while parenchymal plaque deposition remained un-
affected [102].
Furthermore, inflammatory IFNγ-secreting Th1 cells

and IL-17-secreting Th17 cells have been shown to infil-
trate the brain of older APP/PS1 mice [107], supporting
the observation of infiltrating T cells in the brain of AD
patients [108]. However, the role of these cells in the AD
brain is still unknown.

Manipulation of astrocytes in animal models of
Alzheimer’s disease
Astrocytes are becoming increasingly recognized as hav-
ing key immune functions in the brain, and their role in
Alzheimer’s disease progression has recently been inves-
tigated. Whilst currently falling behind the number of
studies that are published assessing microglial function
in AD, it is clear that astrocytes have a significant role
to play in AD and therefore warrant significant future
research.
Attenuation of astrocytic activation via deletion of

GFAP and vimentin in APP/PS1 mice exacerbated amyl-
oid plaque load independent of APP processing and Aβ
production [89], suggesting that astrocytes are important
in amyloid clearance. Yet a previous study has shown
that blocking astrocyte activation via AAV-Gfa2 vectors
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in APP/PS1 mice also attenuates microglia activation, im-
proves cognitive and synaptic function and reduces amyl-
oid load [109]. However these mice were analyzed at a
considerably older age (16 to 18 months) when compared
with the more recent study (8 to 12 months) which sug-
gests that there may be a significant timing factor involved
in targeting the immune response in AD.
Whether astrocytes are promoting amyloid clearance

or exacerbating deposition is in debate; α1-antichymo-
trypsin (α1-ACT), an acute-phase protein that is overex-
pressed by activated astrocytes surrounding the amyloid
plaques in human AD brains, has been proven to promote
Aβ fibrillization. Confirming this, overexpression of a hu-
man transgene by astrocytes in the PDGF-APPSweInd J9 or
PDAPP mouse model promoted Aβ deposition and plaque
formation [36,37]. It also affected tau phosphorylation and
p-tau was increased both in single transgenic GFAP-α1-
ACT and in APP-GFAP-α1-ACT mice [38].

Anti-inflammatory therapy
Non-steroidal anti-inflammatory drugs
Many inflammatory pathways have been implicated in
AD, yet these pathways are not sufficiently well delin-
eated to define those processes and targets that may be
pathogenic as opposed to those that may be protective.
The finding that treatment with non-steroidal anti-
inflammatory drugs (NSAIDs) is associated with a reduced
risk and age of onset of AD reinforces the hypothesis that
modulating inflammation could have therapeutic efficacy.
The beneficial effects of NSAIDs have also been associated
with reductions in Aβ generation, since experiments
in vitro and in AD models indicate that certain NSAIDs
are able to decrease Aβ levels, plaque size and tau phos-
phorylation [110,111].
The mechanism by which NSAIDs are protective has

yielded controversial results. The initial hypothesis was
that NSAIDs may affect Aβ aggregation [112,113]. Fol-
lowing this, it was suggested that a subset of NSAIDs
was affecting the γ-secretase cleavage site and the ratio
Aβ40/42 [114,115]. Some recent studies have shown that
treatment of AD mice with a novel NSAID derivative,
CHF5074, which has a more selective action on γ-
secretase, resulted in modulation of Aβ42 production
without affecting C-terminal APP or Notch processing
[116-118]. Chronic treatment in Tg2576 mice amelio-
rated memory deficits and loss of dendritic spine density
together with a reduction in Aβ load, activated microglia
and neuronal cell death [119]. Another potential target
of NSAIDs is COX-1 [120]. It was recently reported that
treatment of 3×Tg-AD mice with the COX-1 selective
inhibitor SC-560 improved spatial learning and memory,
and reduced amyloid deposits and tau hyperphosphoryla-
tion. SC-560 also reduced glial activation and brain ex-
pression of inflammatory markers [121]. Certain NSAIDs
are also agonists for peroxisome proliferator-activated re-
ceptor (PPAR)γ and have been shown to reduce BACE1
[22,122]. However, PPARγ activation can affect the tran-
scription of other proteins involved in AD as well (see sec-
tion below).
However, clinical trials have failed to reproduce the

beneficial effects of NSAIDs in AD patients. The success
of NSAIDs clinically is likely to be dependent on the
stage of the disease at which the medication is started as
well as the duration of the treatment [111], since their
benefit seems to be towards a preventive effect rather
than a therapeutic option. Interestingly, clinical trials
with anti-inflammatory drugs such as trifusal in MCI
(mild cognitive impairment) patients have shown a sig-
nificant lower rate of conversion to dementia that is
likely to be clinically relevant [123].

Peroxisome proliferator-activated receptor-γ agonists
PPARγ is a nuclear receptor that regulates the transcrip-
tion of pro-inflammatory genes, such as IL1β and iNOS.
Activation of PPARγ is therefore able to inhibit the in-
flammatory response, and acute and chronic treatment
with the PPARγ agonist pioglitazone in APPV717I and
Tg2576 mice resulted in a reduction in the number of
activated microglia [122,124]. In addition, our group
found that PPARγ activators decrease total Aβ levels
under inflammatory conditions by affecting BACE1 tran-
scription [6,22,23]. On the other hand, it was shown in
neuronal cells that ibuprofen is able to suppress RhoA
activity through PPARγ activation, promoting neurite
elongation [125]. Therefore PPARγ activation could be
beneficial in AD at several levels.
Other groups have suggested that PPARγ may affect Aβ

clearance and degradation. It was recently demonstrated
that PPARγ activation induces lxrα, apoe, and abca1 ex-
pression, promoting Aβ clearance by both microglia and
astrocytes [126]. Furthermore, PPARγ can stimulate Aβ
phagocytosis by the upregulation of scavenger receptor
CD36 expression. It has also been shown that combined
treatment with agonists for the heterodimeric binding
partners of PPARγ, the retinoid X receptors (RXRs),
showed additive enhancement of the Aβ uptake that was
mediated by RXRα activation [127].
Treatment with PPAR agonists has also shown benefits

in tau models. Treatment with the pan-PPAR agonist beza-
fibrate significantly decreased tau hyperphosphorylation
and caused behavioural improvement, as evidenced by re-
duced hyperactivity and disinhibition in P301S mice [128].
In addition, 3×Tg-AD mice treated with pioglitazone for
4 months showed improved learning, decreased hippocam-
pal Aβ and tau deposits, and enhanced short- and long-
term plasticity [129].
Clinical trials with PPARγ activators have been more

successful than those with NSAIDs. A randomised study
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with pioglitazone (a typical PPARγ agonist) showed sig-
nificantly increased memory scores in treated patients
[130]. Another PPARγ agonist, rosiglitazone, has been
trialled with inconsistent results, due to its lack of per-
meability in the brain and its differential effects depend-
ing on the APOE (Apolipoprotein E) ε4 genotype [131].

Minocycline
Minocycline, a tetracycline derivative, has potent anti-
inflammatory, anti-apoptotic, and neuroprotective pro-
perties. In many cases, the neuroprotective properties of
minocycline have been attributed to inhibition of caspases.
In primary cortical neurons, minocycline was shown to re-
duce caspase-3 activation and lowered generation of cas-
pase 3-cleaved tau fragments [132]. Recently, minocycline
was shown to protect against Aβ-induced cell death and
prevent fibrillization of Aβ in vitro [133], reduce iNOS
levels [134], prevent Aβ deposition and cognitive decline
in APP transgenic mice [134,135] by reducing BACE1
levels [134], inhibit neuronal death and attenuate learning
and memory deficits following administration of Aβ in
rats [136,137]. In addition, treatment of a tau model with
minocycline resulted in reduced levels of tau phosphoryl-
ation and insoluble tau aggregates [132].
Another potential mechanism of action of minocycline

has been related to the inhibition of microglial activa-
tion. Administration of minocycline in animal models of
ALS attenuated the induction of the expression of M1
microglia markers during the progressive phase, whereas
it did not affect the transient enhancement of expression
of M2 microglia markers during the early pathogenesis
phase [138]. This study suggests that minocycline may
selectively inhibit the microglia polarisation to a proin-
flammatory state.

Anti-TNFα
TNFα is upregulated in AD and it has been found to in-
crease in a stage-specific manner in the APPSWE/PS1dE9
mouse model [139]. Interestingly, anti-TNFα treatment
with the antibody against TNFα, infliximab, reduced Aβ
and tau phosphorylation in transgenic mice. In addition,
infliximab increased the number of CD11c-positive
dendritic-like cells and the expression of CD11c, suggest-
ing that the CD11c-positive dendritic-like cells might con-
tribute to the infliximab-induced reduction of AD-like
pathology [140].
The TNFα inhibitor thalidomide has been found to

have abilities against tumour growth, angiogenesis, and
inflammation. Chronic administration of thalidomide in
APP23 and 3×Tg-AD mice resulted in a dramatic de-
crease in the activation of both astrocytes and microglia,
Aβ load, plaque formation and tau phosphorylation
[141,142]. Furthermore, a significant decrease in BACE1
level and activity was also found [141]. However, it is
not expected that this type of treatment will be benefi-
cial for tau pathology, according to the results published
in TNFRΙ knockout mice.

Conclusions
The advances in AD research in the last decade have
brought to light that this disease is multi-faceted in na-
ture and is linked to a variety of different functional
mechanisms in the brain. That inflammatory processes
play a role in AD cannot be disputed, and yet there are
still many unanswered questions as to whether this is
beneficial or detrimental.
The use of genetic and drug manipulation in transgenic

AD mice have provided in vivo support to previous
in vitro observations regarding the potential effects of in-
flammation on the processing of APP and the phosphoryl-
ation of tau. In this regard, enhancing inflammation has
been linked with increases in Aβ generation, Aβ aggrega-
tion and tau phosphorylation. While, at first glance, data
obtained in the transgenic models might suggest diffe-
rential effects of immune modulation on APP and tau
models, the very few studies undertaken and reported
here do seem to follow a similar hypothesis that a general
enhancement of immune activation in the brain increases
pathology but that targeted activation of factors promot-
ing phagocytosis and clearance of amyloid may also re-
duce the hyperphosphorylation of tau. On the other hand,
modulation of inflammation in the 3×Tg-AD model has
suggested that the alterations on tau phosphorylation can
be independent of changes in Aβ levels by these inflam-
matory mediators.
Preclinical investigations on anti-inflammatory treat-

ments have shown that certain drugs target these effects
and potentially decrease BACE1 transcription (such as
TNFα inhibitors and PPARγ activators) and increase Aβ
degradation. Current research strongly suggests that
targeting specific microglial phenotypes as opposed to
inflammation in general will yield more promising thera-
peutic results. This is important in light of the different
phenotypic microglial activation in different stages of
the disease. Harnessing the ability of microglia to effi-
ciently clear Aβ has significant therapeutic potential. In
addition, utilising the phagocytic capabilities of infiltrat-
ing macrophages to clear Aβ, in particular targeting
CCR2 in specific myeloid lineages, would be of substan-
tial benefit. It is also worth noting that the promising ef-
fects of anti-inflammatory drugs are possibly preventive
treatments and are not aimed at curing the disease.
The studies presented here also highlight the dangers

of translating observations in animal studies into human
studies and clinical trials. Currently available models do
not accurately and fully reflect AD in humans; however,
they are particularly useful at testing and predicting how
certain manipulations will affect amyloid or tau deposition
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more specifically rather than overall disease progression.
This makes it very clear that testing any potential therap-
ies must be undertaken in a range of AD models to fully
elucidate the predicted outcome in humans. Further stud-
ies assessing the potential for targeting these specific in-
flammatory processes, in addition to the role of astrocytes
and infiltrating macrophages, are needed to elucidate
more effective treatments and provide a clearer under-
standing of the complexities of inflammatory signalling
in AD.
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