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Abstract

Background: Alteration of retinal angiogenesis during development leads to retinopathy of prematurity (ROP) in
preterm infants, which is a leading cause of visual impairment in children. A number of clinical studies have
reported higher rates of ROP in infants who had perinatal infections or inflammation, suggesting that exposure of
the developing retina to inflammation may disturb retinal vessel development. Thus, we investigated the effects of
systemic inflammation on retinal vessel development and retinal inflammation in neonatal rats.

Methods: To induce systemic inflammation, we intraperitoneally injected 100 μl lipopolysaccharide (LPS, 0.25 mg/ml)
or the same volume of normal saline in rat pups on postnatal days 1, 3, and 5. The retinas were extracted on
postnatal days 7 and 14, and subjected to assays for retinal vessels, inflammatory cells and molecules, and
apoptosis.

Results: We found that intraperitoneal injection of LPS impaired retinal vessel development by decreasing vessel
extension, reducing capillary density, and inducing localized overgrowth of abnormal retinal vessels and dilated
peripheral vascular ridge, all of which are characteristic findings of ROP. Also, a large number of CD11c+

inflammatory cells and astrocytes were localized in the lesion of abnormal vessels. Further analysis revealed that
the number of major histocompatibility complex (MHC) class IIloCD68loCD11bloCD11chi cells in the retina was
higher in LPS-treated rats compared to controls. Similarly, the levels of TNF-α, IL-1β, and IL-12a were increased in
LPS-treated retina. Also, apoptosis was increased in the inner retinal layer where retinal vessels are located.

Conclusions: Our data demonstrate that systemic LPS-induced inflammation elicits retinal inflammation and
impairs retinal angiogenesis in neonatal rats, implicating perinatal inflammation in the pathogenesis of ROP.
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Background
Normal development of retinal blood vessels is critical for
vision. Aberration in retinal angiogenesis during develop-
ment in preterm infants is a major cause of blindness in
retinopathy of prematurity (ROP) that afflicts millions of
the US population [1-3]. More than 80% of premature
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infants weighing less than 1,000 g develop ROP, and the
incidence of ROP is rapidly increasing because of im-
proved survival of the preterm infants [1-3].
Current therapeutic strategies for ROP include a tight

control of environmental oxygen and laser retinal photo-
coagulation [4]. These treatments have been used based
on the evidence that changing levels of oxygen and sub-
sequent oxidative stress contribute to the pathogenesis
of ROP [5]. However, the effect of low oxygen therapy
on the long-term developmental outcome is not clear. A
recent report showed that a reduction in occurrence of
ROP by low oxygen therapy co-occurred with an increase
in mortality [6], while some reports found no association
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between target oxygen levels and death rates [7]. Hence,
the best oxygen level to reduce ROP has not been deter-
mined, and actual intervention by oxygen may not provide
the optimal means to manage ROP [8]. Also, laser photo-
coagulation ablates peripheral avascular retina, and has
unfavorable sequelae on visual acuity and field [9]. There-
fore, efforts are being made to develop novel preventive
and therapeutic modalities for ROP by targeting the bio-
logical pathway of ROP.
Although exposure of the immature retina to excessive

oxygen is an important factor in ROP pathogenesis [5],
there is an accumulating body of evidence that perinatal
infection and inflammation are largely associated with an
increased risk for ROP [10]. Epidemiological studies have
shown that the incidence of ROP was higher in patients
with early or late onset neonatal sepsis [10-14]. Also, some
reports indicated a relationship between the development
of ROP and the levels of pro-inflammatory cytokines such
as TNF-α [15]. Other reports showed that infants born to
mothers with chorioamnionitis or leukocytosis were at
increased risk of ROP [16,17]. In addition to ROP, peri-
natal infection or inflammation has recently been asso-
ciated with various developmental diseases of preterm
infants such as bronchopulmonary dysplasia, necrotiz-
ing enterocolitis, periventricular leukomalacia, and cere-
bral palsy [18-20].
Based on the evidence, we hypothesized that systemic

inflammation prior to completion of retinal development
might disturb normal retinal angiogenesis, and subse-
quently lead to the development of ROP. To test this
hypothesis, we here investigated the effects of systemic
lipopolysaccharide (LPS) administration on vessel devel-
opment, inflammatory cell and molecule expression,
and apoptosis in the retina of neonatal rats.

Methods
Animals and animal model
The experimental protocols were approved by the Institu-
tional Animal Care and Use Committee of Bundang Seoul
National University Hospital Biomedical Research Insti-
tute (IACUC No. BA1302-123/011-01). Animals were
treated in strict accordance with the ARVO statement for
the use of animals in ophthalmic and vision research [21].
Pregnant Sprague–Dawley rats weighing 300 to 360 g

were purchased from Orient Bio Inc. (Seongnam, Korea),
and maintained in a specific pathogen-free environment
with continuously available water and food. The female-
to-male ratio ranged from 0.8 to 1.2, and sex differences
between the groups were not statistically significant. The
litters of the rats received intraperitoneal (IP) injections of
100 μl LPS (0.25 mg/kg; lot No. 2274257, Sigma-Aldrich,
St. Louis, MO, USA) three times on days 1 (P1), 3 (P3),
and 5 (P5) after birth. The same volume of normal saline
(NS), which was LPS-free, was injected in the same
manner in the control group. We used LPS because LPS
is a well-known ligand for toll-like receptor(TLR) 4 that is
involved in both infectious and sterile inflammation [22].
We used neonatal rats because retinal vessels develop dur-
ing the first few weeks after birth in rodents mimicking
the environment where ROP occurs in preterm human in-
fants [23,24]. Rat pups were maintained in normoxia, and
checked daily for body weight. There were no statistically
significant differences in body weight between the LPS-
treated rats and NS-treated controls. On P7 and P14, rat
pups were anesthetized by an IP injection of ketamine (50
mg/kg; Yuhan, Seoul, Korea) and xylazine (50 mg/kg;
Bayer AG, Leverkusen, Germany), and eyes were collected
for analysis. One eye was subjected to histological assays,
and the fellow eye was processed for flow cytometry or
RT-PCR analysis.

Histopathology
The eyes were enucleated and fixed in 2% paraformalde-
hyde/PBS (phosphate buffered solution, pH 7.4) for 5 min.
The retinas were then isolated from eyeballs, and perme-
abilized with 0.5% Triton X-100, 5% FBS, and 20% DMSO
in PBS for 3 h at room temperature (RT). For vessel stain-
ing, the retinas were incubated with BS-1 Lectin-FITC
(Sigma-Aldrich), chicken anti- GFAP (Millipore, Temecula,
CA, USA), rabbit anti- NG2 (Millipore) at 4°C for 4
days. The secondary antibodies used were Cy3-conjugated
anti-chicken IgG and Alexa Fluor 633-conjugated anti-
rabbit IgG (Molecular probes™, Carlsbad, CA, USA). For
macrophage staining, the retinas were incubated with
anti-CD11c-FITC (Serotec, Oxford, UK), CD11b (Abcam,
Cambridge, UK), and CD68 (Bioss Antibodies, Woburn,
MA, USA) at 4°C overnight. The secondary antibodies
were Cy3-conjugated anti-rabbit IgG plus BS-Lectin-
TRITC (Sigma-Aldrich). After staining, four cuts were
made from the edges to the center of the retina, which
was flattened and mounted with the vitreous side up on
glass slides and visualized on a confocal microscope
(LSM710, Carl Zeiss, Oberkochen, Germany).
For in situ apoptosis assay, the eyeballs were fixed in

4% paraformaldehyde for one day at RT, embedded in
paraffin, and cut into serial 4-μm thick sections. The
cross-sections were de-paraffinized using xylene and rehy-
drated in ethanol. The sections were permeabilized with
20 μg/ml Proteinase K (Gibco BRL, Carlsbad, CA, USA)
in 10 mM Tris 7.5 and 5 mM EDTA for 15 min at RT.
Then the slides were stained with TUNEL (terminal deox-
ynucleotidyl transferase dUTP nick end labeling) as the
manufacturer’s protocol (Roche Diagnostics GmbH,
Mannheim, Germany). Briefly, the slides were incubated
in 50 μl of TUNEL cocktail in humidified chamber for
60 min at 37°C in the dark. Then, the slides were rinsed
with PBS, and incubated with converter-POD (for anti-
fluorescein antibody Fab fragment conjugated with
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horse-radish peroxidase) for 30 min at 37°C. After sub-
strate reaction with DAB, the stained slides were visual-
ized under light microscope.
In addition, the thickness ratio of the inner retina (ret-

inal nerve fiber layer, ganglion cell layer, and inner
plexiform layer) to the total retina was measured in
cross-section images 1 mm from the optic nerve head.

Vessel scoring and analysis
Images were obtained under a confocal laser scanning
microscope (LSM710), and processed and analyzed using
image analysis software (Zen 2011, Carl Zeiss, Oberkochen,
Germany and Image J, NIH) at 100× magnification as fol-
lows. To score the vessel development, four to six non-
overlapping fields (1 mm [2], 1 to 1.5 mm distance from
optic nerve) were randomly selected per retinal flap in each
flat mount. The vessel extension was measured as the
length (μm) of the vessel from the optic nerve to the
border between vascularized and nonvascularized retina.
The number of branch points and vessel net holes was
measured in the unit area (mm [2]) of peripheral retina.
The vessel density was determined using a 1 × 1 grid (grid
element side length approximately 1,000 μm) in the con-
focal images (magnification, 100×).

Real-time reverse transcriptase PCR
For RNA extraction, retinas were minced into small
pieces, lysed in RNA isolation reagent (RNA Bee; Tel-
Test, Friendswood, TX, USA), and homogenized using a
sonicator (Ultrasonic Processor, Cole Parmer Instruments,
Vernon Hills, IL, USA). Total RNA was extracted using
RNeasy Mini kit (Qiagen, Valencia, CA, USA) and used to
synthesize double-stranded cDNA by reverse transcription
(SuperScript III; Invitrogen, Carlsbad, CA, USA). Real-
time amplification was performed using TaqMan Univer-
sal PCR Master Mix (Applied Biosystems, Carlsbad, CA,
USA). For all the PCR probe sets, Taqman Gene Expres-
sion Assay kits were purchased from Applied Biosystems.
The assays were performed in dual technical replicates for
each biological sample.

Flow cytometry
The retinas were placed and minced between the
frosted ends of two glass slides in RPMI media (Welgen,
Daegu, Korea) containing 10% fetal bovine serum and
1% penicillin-streptomycin. Cell suspensions were col-
lected, and incubated for 30 min at 4°C with anti-MHC
class II (ebioscience, San Diego, CA, USA), anti-CD11b
(BD BioSciences, Mountain View, CA, USA), anti-
CD11c (Serotec), and anti-CD68 anticodies (Serotec).
The cells were assayed for fluorescence using a FACS-
Canto flow cytometer (BD BioSciences). Data were ana-
lyzed using Flowjo program (Tree Star, Inc., Ashland,
OR, USA).
Statistical analysis
The data are presented as the mean ± SEM. Compari-
sons of two values between the groups were made using
the two-tailed Student’s t or Mann–Whitney test, and
comparisons of more than two means were made using
a one-way ANOVA (Prism™, GraphPad Software, Inc.,
La Jolla, CA, USA). Differences were considered signifi-
cant at P <0.05.

Results
Postnatal systemic lipopolysaccharide administration
impaired normal retinal vessel development
On P7 and P14, the rats were humanely killed and the ret-
inas were assayed for retinal vessels. The lectin staining of
the whole retinal flat mounts showed that retinal vascular
growth was significantly delayed in the LPS-treated rats,
compared to the NS-treated controls (Figure 1). On P7
when retinal vessels grow radially from the optic nerve to
the ora serrata within the superficial layer of the retina
[23,24], vascular extension was significantly reduced in the
superficial layer as measured by the length of retinal ves-
sels between the optic nerve and the peripheral edge of
the vessels (Figure 1A). Similarly, capillary density in the
superficial plexus was also decreased in the LPS-treated
group as measured by the number of branch points of ca-
pillaries (Figure 1B). On P14 when the vessels start to
sprout downward and form the deep vascular plexus
[23,24], the radial extension of the vessel to the peripheral
edge was significantly reduced in both superficial and deep
layers in the LPS-treated rats (Figure 1A). Also, capillary
density in the deep plexus was significantly lower in the
LPS-treated retina as assayed by the number of branch
points and net holes of capillaries (Figure 1B).
In addition to the delay in vessel growth and decrease

in capillary density, abnormal vascular findings were also
observed in the vascular edge of the peripheral retina
(Figure 2). On P7, the peripheral retinal vessels in the
LPS-treated group showed delayed centrifugal growth
compared to the control, and had multiple focal vascular
tufts (Figure 2A). The vascular dilatation and tortuosity
were markedly increased in the peripheral retina of the
LPS-treated group on P14, and a line of anastomosis de-
veloped at the peripheral edge where the vessels were
abruptly terminated (Figure 2B). These findings in the
peripheral retinal vessels are similar to the ridge forma-
tion and plus sign (vascular tortuosity and dilatation)
that are commonly observed in stage 2 (pre-prolifera-
tive) ROP (Figure 2C).

Systemic lipopolysaccharide induced CD11c+ cell
infiltration and inflammatory cytokine expression in
the retina
We next evaluated the inflammatory cells and mole-
cules in the retina after systemic LPS administration.



Figure 1 Systemic lipopolysaccharide (LPS) altered retinal vessel development in neonatal rats. A. The lectin staining of the retinal whole
mounts from P7 and P14 rats showed that centrifugal growth of retinal vessels was significantly reduced by postnatal systemic LPS administration
as measured by the length of vessels between the optic nerve and the peripheral vascular edge. Scale bars = 1000 μm. B. Retinal capillary density
as measured by the number of branch points and net holes of capillaries was also reduced in LPS-treated rats. *P <0.05; **P <0.01; ***P <0.001;
ns, not significant.
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Immunohistochemical staining of retinal flat mounts
showed that a large number of CD11+ cells infiltrated both
central and peripheral retina of the LPS-treated rats on P7
(Figure 3A). Of note, the cells were largely localized in the
area of abnormal retinal vessels. Neither CD68+ nor
CD11b+ cells were observed (data not shown). Moreover,
abnormal proliferation of astrocytes as well as CD11c+

cells infiltration was accompanied in the areas of focal vas-
cular proliferation in the LPS-treated rats (Figure 3A). In
the deep layer corresponding to the superficial retinal
layer that had abnormal angiogenesis, capillary densities
were decreased indicating concomitant vascular regression
(Figure 3B). Regression of pre-existing capillaries was also
observed (Arrow, Figure 3C).
Consistent with the immunohistochemical finding,

flow cytometric analysis of retinal cells revealed that the
percentage of MHC class IIloCD68loCD11bloCD11chi cells
were significantly higher in the LPS-treated rats on P7 and
normalized on P14 (Figure 4A). There was no difference
in the percentage of CD11bhi cells between the LPS- and
NS-treated retinas (Figure 4A). The cells expressing CD68
were not detected among retinal cells.
We further analyzed the retina for inflammation- and

angiogenesis-related cytokines. Real time RT-PCR assay
revealed that the levels of TNF-α, IL-1β, and IL-12a
transcripts in the retina were increased by systemic LPS
on P7, and returned to normal levels on P14 (Figure 4B).
Interestingly, the level of thrombospondin (TSP)-1, an
anti-angiogenic and pro-apoptotic factor [25,26], was
markedly increased in the retina of the LPS-treated rats
on P7, while the level of VEGF transcript was not altered
by LPS (Figure 4B).



Figure 2 Systemic lipopolysaccharide (LPS) induced retinopathy of prematurity (ROP)-like changes in peripheral margins of retinal
vasculature. A. On P7 retina in rats treated with LPS, the growth of peripheral retinal vessels was markedly delayed, and focal vascular tufts and
abnormal angiogenesis developed (arrows). Scale bars = 200 μm. B. On P14 retina in the LPS-treated rats, the peripheral vascular margin in the
superficial layer had abrupt vascular termination and tortuosity of surrounding vessels with a wide area of avascular retina (arrows) in contrast to
controls. In the deep layer, a centrifugal growth of retinal vessels was markedly delayed (dashed line) compared to controls (arrows), and vascular
density was also decreased. Scale bars = 200 μm. C. The ridge formation (arrows) and vascular tortuosity in the peripheral margin of vascularized
retina are characteristic of retinopathy of prematurity in humans and similar to the findings of P14 retina in neonatal rats treated with systemic
LPS (B).
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Systemic lipopolysaccharide induced apoptosis in
the retina
Apoptosis of retinal cells including vascular endothelial
cells is one of the causative factors in ROP development
[27,28]. Therefore, we further assayed the retina for apop-
tosis. TUNEL staining of retinal cross-sections showed
that a number of TUNEL-positive cells indicating injured
or apoptotic cells were present in the inner retinal layer
(where retinal vessels are located) of LPS-treated rats on
P7, while there were fewer TUNEL-positive cells in the
retina of NS-treated rats (Figure 5A). In addition, the
thickness of the inner retinal layer was significantly de-
creased in the LPS-treated rats compared to the controls
on P14 (Figure 5B). Flow cytometry showed that the pro-
portion of PI+Annexin+ cells indicating apoptotic cells
were significantly increased in the retina by LPS on P7
(Figure 5C). There was no difference in the number of
apoptotic cells on P14 between LPS- and NS-treated
groups (Figure 5C).
Discussion
Data demonstrate that systemic LPS administration mark-
edly altered retinal vessel development in neonatal rats by
delaying vascular growth, reducing capillary density in the
superficial and deep plexus, and forming aberrant vessel
tufts in the peripheral retina. These findings are similar to
vascular features of ROP [28]. Of note, abnormal retinal
vessel development was accompanied by inflammatory
cell infiltration, increased level of pro-inflammatory cyto-
kines, and apoptosis. LPS is an endotoxin and TLR4
agonist that triggers inflammation [22]. Hence, our data
suggest that systemic and retinal inflammation induced by
LPS might result in dysregulation of vascular development
and disrupt the balance between pro-angiogenesis and
anti-angiogenesis in the retina.
The major risk factors for ROP are low gestational

age, early exposure to high levels of oxygen, and late ex-
posure to relatively lower oxygen levels [5,29]. Recently,
there is an emerging body of clinical evidence that



Figure 3 Systemic lipopolysaccharide (LPS) recruited inflammatory cells in retina. A. Immunohistochemical staining of retinal flat mounts
from P7 rats showed a massive infiltration of CD11c+ cells around the area of focal abnormal vascular proliferation (arrows) in central and
peripheral retina. Scale bars = 200 μm. B. On P14 retina, there were focal proliferations of abnormal retinal vessels in the superficial vascular layer
(arrows). In the deep layer corresponding to the superficial layer of abnormal vascular proliferation, there were scanty capillaries indicating
concomitant vascular regression (dashed circle). C. In the areas of focal vascular proliferations, infiltration of CD11c+ cells and proliferation of
GFAP-stained astrocytes were noted. Also, regression of pre-existing capillaries was accompanied as indicated by ghost sheathing of NG2-stained
pericytes (arrow). Scale bar = 1000 μm.
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infants exposed to perinatal infection or inflammation
are more susceptible to ROP [10]. In addition to clinical
observations, Tremblay et al. [30] recently reported that
perinatal LPS-induced inflammation without concurrent
oxygen manipulation perturbed vascular development in
the developing mouse retina. They observed an early in-
crease in retinal vascular density and late depletion of
retinal vascular beds in neonatal mice after systemic LPS
administration. These are different from our findings of
delayed centrifugal growth of retinal vessels and abnor-
mal vascular proliferation. This difference might be re-
lated to the timing or severity of inflammation induced.
Tremblay et al. [30] injected LPS once at P4, whereas
we injected LPS three times at P1, P3, and P5. Thus, it is
possible that the early and sustained inflammation in our
model triggered more severe aberration in retinal vessel
development similar to ROP. Also, Tremblay et al. [30]
used mice for the study, and we used rats. The species
difference might be another reason of different vascular
features between the two studies. Nonetheless, these
experimental data serve as another evidence to support
the notion that systemic inflammation in the period
when retinal development is not accomplished is one of
the pathogenic mechanisms leading to ROP.
The mechanisms by which systemic inflammation is

involved in retinal vessel development are not clear. One
explanation is that systemic inflammation might indir-
ectly affect retinal vessel growth by making immature



Figure 4 Characteristics of inflammatory cells and molecules in retina after systemic lipopolysaccharide. A, B. Flow cytometry revealed
that the percentage of major histocompatibility complex (MHC) class IIloCD68loCD11bloCD11chi cells in the retina was increased in the LPS-treated
group on P7, and normalized on P14. There was no difference in the percentage of CD11bhi cells between the LPS- and normal saline (NS)-treated
retinas. C. Real time RT-PCR showed that the levels of TNF-α, IL-1β, and IL-12a transcripts were increased in the retina of the LPS-treated group on P7,
and returned to baseline on P14. Also, the level of thrombospondin (TSP)-1, an anti-angiogenic and pro-apoptotic factor, was significantly increased in
the retina of the LPS-treated rats, while the level of VEGF transcript was not altered. *P <0.05; **P <0.01; ns, not significant.
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retina vulnerable to hypoxic-ischemic injury. The rats in
our study were maintained in normoxia and subject to
neither hypoxic-ischemic injury nor variations in oxygen
supplementation. Also, abnormal vascular proliferation
within the vascular bed in our model did not accompany
the capillary dropout (vasoattenuation) that is a charac-
teristic finding of retinal hypoxia and typically observed
in the conventional OIR model. Therefore, we speculate
the vascular proliferation observed in our model might
not be a result of retinal hypoxia. Nevertheless, we cannot
rule out the possibility that systemic and retinal inflamma-
tion might cause retinal hypoxia, and thereby induce ab-
normal retinal angiogenesis. Another explanation is that
inflammation might change the balance between pro-
angiogenic and anti-angiogenic factors. Although there
was no change in VEGF that is a main driver for angio-
genesis, the level of TSP-1, an endogenous inhibitor of
angiogenesis [31], was markedly increased in the retina by
systemic LPS in our study. TSP-1 plays an important role
in retinal angiogenesis during development. In mice over-
expressing TSP-1, normal retinal vascular development
was attenuated and vessel obliteration was increased [26].
The inhibitory effect of TSP-1 on retinal vessels was
mediated by promoting apoptosis of vascular endothe-
lial cells [32]. Also, TSP-1 was shown to antagonize
VEGF-mediated signaling, and capillary survival in the
developing retina was increased in mice lacking allele
for TSP-1 [32]. Another report indicated that oxidative
stress induced TSP-1, and thereby resulted in microvascu-
lar degeneration in a model of oxygen-induce retinopathy
[25]. The relevance of TSP-1 in altered retinal vessel devel-
opment in our model of systemic inflammation-induced
retinopathy needs to be elucidated in further studies.
As for the mechanisms of how systemic inflammation

induces retinal inflammation, many studies have been per-
formed in the brain. Similar to ROP, intrauterine infection



Figure 5 Systemic lipopolysaccharide (LPS) induced apoptosis in retina. A. TUNEL staining of retinal cross-sections from P7 rats indicated
an increased number of apoptotic cells, most of which were located in the inner retinal layer, especially in the ganglion cell layer. Original
magnification 400×. B. The thickness of inner retina relative to outer retina was significantly decreased in the LPS-treated P14 rats. C. Flow
cytometry showed that the percentage of PI+Annexin+ cells indicating apoptotic cells were significantly increased in the retina of the LPS-treated
P7 rats. *P <0.05; **P <0.01; ns, not significant.
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or neonatal sepsis is significantly associated with the de-
velopment of cerebral palsy or neurodevelopmental dis-
abilities which is termed ‘encephalopathy of prematurity’
[33-35]. Also, either maternal or neonatal systemic admin-
istration of LPS displayed brain damage in rat offspring
[36,37]. When it comes to how TLR ligands in systemic
circulation induce brain inflammation, some studies sug-
gest that circulating LPS destructs the integrity of the
blood–brain barrier by releasing cytokines from circulat-
ing inflammatory cells to induce brain inflammation
[22,38-40]. Others suggest that systemic TLR ligands bind
to brain endothelial cells and transmit inflammatory sig-
nals into the brain [22,41-43]. In our study, a large num-
ber of CD11c+ cells extravasated and infiltrated the lesion
of abnormal retinal vessels, suggesting that activated in-
flammatory cells by systemic LPS might cross the blood-
retinal barrier and affect normal retinal vascular growth in
developing retina. Further study to identify these cells will
help elucidate the mechanism of inflammation mediating
abnormal vascular development in the retina of neonatal
rats and eventually, ROP in humans.
There are several differences between our model and a

well-known model of oxygen-induced retinopathy (OIR)
[44]. First, retinal capillary obliteration and neovasculari-
zation were less prominent in our model, compared to
the OIR model. This might be because retinal ischemia
is less severe in the LPS-treated rats than in rats with
OIR. Second, we observed a ridge formation in the per-
ipheral vascular boundary in our model which is the
essential step for severe ROP in humans. Hence, the ret-
inal findings in our model are more similar to pathologic
features of ROP in humans, compared to the conven-
tional OIR model which manifests with severe capillary
dropout and rarely shows peripheral ridge formation.
Another feature of our model is abnormal vascular pro-
liferation in the absence of hypoxia. This is in contrast
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to capillary dropout, a typical finding of the OIR model,
and conflicts with the well-known mechanism of neovas-
cularization in ROP: oxygen-induced capillary obliteration
[40]. Additionally, vascular malformation in our model
was accompanied by inflammatory cell infiltration.
Thus, our data may add new knowledge to the mechan-
ism of ROP.

Conclusions
In conclusion, we here demonstrate that systemic LPS-
induced inflammation elicits inflammation in the retina
and altered retinal vessel growth similar to pathologic
features of ROP. Our study indicates that modulation of
inflammation may help elucidate the mechanism for ret-
inal angiogenesis and provide the novel avenue of ex-
ploration for prevention and treatment of ROP.
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