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Abstract
There is evidence that the kynurenine pathway (KP) and particularly one of its end products,
quinolinic acid (QUIN) play a role in the pathogenesis of several major neuroinflammatory diseases,
and more particularly AIDS dementia complex (ADC). We hypothesized that QUIN may be
involved in astrocyte apoptosis because: 1) apoptotic astrocytes have been observed in the brains
of ADC patients, 2) ADC patients have elevated cerebrospinal fluid QUIN concentrations, and 3)
QUIN can induce astrocyte death. Primary cultures of human fetal astrocytes were treated with
three pathophysiological concentrations of QUIN. Numeration of apoptotic cells was assessed
using double immunocytochemistry for expression of active caspase 3 and for nucleus
condensation. We found that treatment of human astrocytes with QUIN induced morphological
(cell body shrinking) and biochemical changes (nucleus condensation and over-expression of active
caspase 3) of apoptosis. After 24 hours of treatment with QUIN 500 nM and 1200 nM respectively
10 and 14% of astrocytes were undergoing apoptosis. This would be expected to lead to a relative
lack of trophic support factors with consequent neuronal dysfunction and possibly death. Astroglial
apoptosis induced by QUIN provides another potential mechanism for the neurotoxicity of QUIN
during ADC.

Findings
The kynurenine pathway (KP) is a major route of L-tryp-
tophan catabolism, resulting in the production of nicoti-
namide adenine dinucleotide and other neuroactive
intermediates [1]. Of the metabolites, the N-methyl-D-
aspartate (NMDA) receptor agonist and neurotoxin quin-
olinic acid (QUIN) is likely to be one of the most impor-
tant. There is evidence that QUIN is involved in the
neurocytotoxicity associated with several major inflam-
matory brain diseases [2,3] such as AIDS dementia com-

plex (ADC) [4,5] and other viral brain infections [2]. In
the central nervous system (CNS), astrocytes play essential
roles including metabolic homeostasis especially provid-
ing neurotrophic support, detoxification, maintenance of
the blood brain barrier and immune response. During the
brain inflammation associated with ADC, many media-
tors are released and astrocytes are activated leading to
their cellular hypertrophy and/or proliferation [6]. For
some astrocytes, this prolonged activation may induce
apoptosis and the death of these reactive astrocytes can
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directly and/or indirectly affect functions and survival of
the neighbouring neurons and astrocytes [7]. The conse-
quences of astrocyte apoptosis could be either neuropro-
tective [8] or neurodamaging [7,9]. Apoptosis of
astrocytes has been described in the brains of patients
with ADC [10-12]. Furthermore, in ADC both brain
parenchyma and cerebrospinal fluid (CSF) concentrations
of QUIN are strongly elevated [4,5,13] respectively 300
and 100 fold compared to controls. The HIV-1 proteins
Nef and Tat induce macrophages to produce QUIN [14].
The association between brain cell apoptosis and
increased levels of QUIN have been found in various
other neurodegenerative diseases. We therefore hypothe-
sized that QUIN could be linked with astrocyte apoptosis.

We used primary cultures of human fetal astrocytes
treated with three pathophysiological concentrations of
QUIN respectively 350, 500 and 1200 nM (similar to
those in brain parenchyma of ADC patients [15]) and
assessed them for apoptosis with immunocytochemistry.
We found that 99% of the cells were GFAP positive (green
staining, Fig. 1, left column) demonstrating the high
purity of the primary cultures of human astrocytes. No
staining was detected for CD68, MAP2, factor VIII or 5B5
(data not included). Apoptotic cells started to be detected
after only 6 hours(data not presented). Apoptotic astro-
cytes displayed an atypical morphology with a shrunken
body and abnormal processes. Moreover, most of these
cells are in the process of detaching from the culture flask.
These apoptotic cells were easily spotted due to their con-
densed and very bright nucleus with the DAPI staining
(cyan staining, Fig. 1). All these cells also displayed a
strong cytoplasmic and perinuclear staining for the anti-
active caspase-3 (red staining, Fig. 1, right column). The
percentage of apoptotic cells was calculated after 24 hours
of treatment (as described in the methodological section
below) (Fig. 2). After 24 hours, the percentage of apop-
totic cells in cycloheximide-treated slides was increased 5-
fold whilst in QUIN 350, QUIN 500 and QUIN 1200 nM-
treated slides they were respectively increased by 2.2, 4.2
and 5.6-fold compared to baseline. The p-values between
the cycloheximide-treated slides and the QUIN 500 and
1200 nM-treated slides were not significant 24 hours but
were significant between control slides and treated slides,
with exception for QUIN 350 nM (see Fig. 2 legend).

This study demonstrated that treatments with QUIN in
pathophysiological concentrations induced morphologi-
cal and biochemical changes of apoptosis in a sub-group
of human astrocytes in a dose dependent manner. Some
issues can be raised in term of potential experimental lim-
itations of our in vitro results. Firstly, there are two known
subtypes of astrocytes [16] but only type1 astrocytes can
be grown in the primary cultures obtained by our method
[17]. Differences between these subtypes are not well

known and it is possible that they may have a different
sensitivity to QUIN. Secondly, it can be argued that fetal
and adult astrocytes may have a different sensitivity to
QUIN. This is unlikely because we previously showed the
high degree of similarity between immature and mature
astrocytes [18,19]. Moreover, in ADC brains high levels of
QUIN [15] are associated with a high rate of apoptosis of
adult astrocytes [10]. Finally, the limited number of apop-
totic astrocytes (<15%) implies that only a subset of astro-
cytes is susceptible to QUIN toxicity. The receptors and
signalling pathways that initiate astroglial apoptosis has
not been identify yet. However, two main mechanisms
may potentially be involved. The first is the activation of
NMDA receptors by QUIN [4], which is already known to
mediate neuronal apoptosis with caspase-3 activation
[20-23]. However, the presence of NMDA receptors on
astrocytes is very controversial [24,25]. A similar pathway
may be involved in neurons and astrocytes, but the pres-
ence of functional NMDA receptors on astrocytes still has
to be proved. The second possibility, which represent
another important aspect of QUIN toxicity, is lipid perox-
idation [26]. QUIN in concentration as low as 120 nM
induces lipid peroxidation and formation of free radicals
leading to neuronal death [27]. This second mechanism is
more likely to be involved astrocyte apoptosis induced by
QUIN.

Interestingly, our in vitro results on QUIN toxicity in
human astrocytes correlate well with previous in vivo stud-
ies using animal models. After QUIN injection into the rat
brain, a reduction in the density of GFAP-immunoreactiv-
ity of astrocytes occurs early (within 6 hours of injection)
suggesting astrocytic death; which could be associated
with necrosis rather than apoptosis [28,29]. Another in
vivo study using fetuses derived from ewes and damaged
by hypoxia and hypoglycemia showed a significant
increase in QUIN concentration associated with reduction
in GFAP in fetal brain [30]. However, whether QUIN is
able to induce astrogliosis and/or astrocytosis is still con-
troversial [28,29]. QUIN can increase local inflammation
by inducing production of cytokines and chemokines by
human astrocytes [18]. QUIN increases neuronal release
of glutamate and inhibits its uptake by astrocytes, leading
to an excessive glutamate concentration in the neuronal
microenvironment and secondly to neurotoxicity [9].

It is still debated whether astroglial activation is beneficial
or detrimental to neurons [7]. For some astrocytes, this
activation will lead to an early cellular death, as we
showed here with QUIN. This may be part of a selective
neuroprotective mechanism because on one hand reactive
astrocytes may contribute to a decline of neurological
function through various mechanisms [8]. On the other
hand, the loss of astrocytes compromises their beneficial
effects on neuronal function and survival [31]. The results
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Detection of apoptotic astrocytes using immunocytochemistryFigure 1
Detection of apoptotic astrocytes using immunocytochemistry. Double staining for GFAP (Left column/green)) and active cas-
pase 3 (Right column/red). Nucleuses are stained in blue with DAPI. A) Untreated cells; B) treated with QUIN 350 nM; C) 
treated with QUIN 500 nM; D) treated with QUIN 1200 nM; E) treated with cycloheximide 20 µg/ml for 24 hours. Arrows 
point apoptotic astrocytes.
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of this study are biologically relevant because brain cell
apoptosis (including neurons and astrocytes) and
increased levels of QUIN have been found associated in
various neurodegenerative diseases and brain disorders
such as ADC [10], Alzheimer's disease [32,33], cerebral
malaria [34], and traumatic brain injury [35].

A large majority of the in vivo or ex vivo studies concerning
astrocyte apoptosis are related to HIV brain infection and
ADC [12]. Thompson et al. [10] found that there is a cor-
relation between an increased number of HIV DNA-posi-
tive astrocytes and an increased number of apoptotic
astrocyte and rapid progression of patients to dementia.
Furthermore, QUIN production is directly related to the
viral load in patients with ADC [36]. There is strong evi-
dence that ADC is associated with NMDA receptor activa-
tion [37,38]. We previously demonstrated that HIV-1
proteins Nef and Tat lead to production of high levels of
QUIN by human macrophages [14]; that inhibition of

QUIN production by HIV-1 infected macrophages
strongly reduces neurotoxicity [39]; and finally that QUIN
can amplify neuroinflammation and increase astroglial
expression of HIV-1 co-receptors [18]. Interestingly, viral
induction of IDO in human macrophages differs accord-
ing to particular HIV-1 isolates [40] and similarly diverse
HIV-1 primary isolates have different effects on astrocyte
apoptosis [11]. The present study provides a direct link
between the astrocyte apoptosis and high levels of QUIN
in ADC brains. These data provide a new mechanism by
which HIV-1 may be involved in astrocyte apoptosis
directly and indirectly via QUIN production. The charac-
terisation of molecular pathways leading to QUIN-
induced astrocyte apoptosis has the potential for develop-
ing agents that reduce glial and neuronal death related to
QUIN-toxicity. Development of pharmacological agents
targeting specific KP enzymes was reviewed recently [41].

All cell culture media and additives were from Invitrogen
(Melbourne, VIC, Australia) unless otherwise stated.
QUIN, DAPI, cycloheximide was obtained from Sigma-
Aldrich Chemical Co. (Sydney, NSW, Australia). anti-
active caspase-3 antibody (polyclonal) was from BD
Pharmingen. Mouse mAb anti-GFAP (clone GA-5) was
obtained from Novacostra (Newcastle, UK). Secondary
goat anti-mouse IgG and anti-rabbit Alexa 488 (green) or
Alexa 594 (red) conjugated antibodies were purchased
from Molecular Probes (Eugene, OR, USA). All commer-
cial antibodies were used at the concentrations recom-
mended by the manufacturer. Human fetal brains were
obtained from 16 to 19 week old fetuses collected follow-
ing informed consent. Astrocytes were prepared using a
protocol adapted from previously described methods
[17]. The experiments were carried out in triplicate
throughout. Initially, cells were incubated in serum-free
AIM-V. The negative control cells were incubated in AIM-
V only. The QUIN group was incubated in 350, 500 and
1200 nM QUIN in AIM-V. The positive control cells were
incubated in cycloheximide (20 µg/ml) [42] in AIM-V.
Dose-response and time course (3, 6, 12, 24, 48, 72
hours) have been done for QUIN and cycloheximide
(data not shown). The optimal time of incubation was 24
hours for the active caspase 3 detection. QUIN concentra-
tions between 350 nM to 1200 nM are known to be found
in patients with ADC [15]. The characterization of human
brain cell using immunocytochemistry was previously
described [17]. The following three controls were per-
formed for each labelling experiment: 1) isotypic anti-
body controls, 2) incubation with only the secondary
labelled antibodies, and 3) estimation of auto-fluores-
cence of unlabelled cells. The cell counting was performed
in a blinded manner. The whole controls and treated
chamber slides were counted. Enumeration for each slide
was rechecked by the experimenter and cells classified
according to the following scheme: DAPI staining for total

Numeration of apoptotic astrocytes using immunocytochemistryFigure 2
Numeration of apoptotic astrocytes using immunocytochem-
istry. Histogram showing the percentage of apoptotic astro-
cytes relative to the total number of astrocytes after 24 
hours of treatment. Mean values and standard errors were 
calculated for each treatment. Unpaired t tests were used to 
analyse the significance of differences between pairs of the 
three treatments. A p value of <0.05 was regarded as statisti-
cally significant. p value between controls and QUIN 350 nM, 
QUIN 500 nM, 1200 nM treated slides were respectively 
0.07 (NS), 0.04 (**) and 0.004 (***); and 0.002 (***) between 
controls and cycloheximide treated slides. p values between 
QUIN 500 nM, 1200 nM and cycloheximide treated slides 
were not significantly different.
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cell number, GFAP immunoreactivity for astrocytes, and
active caspase 3 immunoreactivity together with DAPI for
apoptotic cells. Experiments were done in triplicates using
brain cells from three different brain tissues. Mean values
and standard errors were calculated for each treatment
and the results were plotted on a histogram (Fig. 2).
Unpaired t tests were performed on the results obtained at
24 hours. Student's t-test was used to analyse the signifi-
cance of differences between pairs of the three treatments.
A p value of <0.05 was regarded as statistically significant.
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