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Neuropsychiatric systemic lupus
erythematosus persists despite attenuation
of systemic disease in MRL/lpr mice
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Abstract

Background: Systemic lupus erythematosus (SLE) is a prototypical autoimmune disease marked by both B and T
cell hyperactivity which commonly affects the joints, skin, kidneys, and brain. Neuropsychiatric disease affects about
40 % of SLE patients, most frequently manifesting as depression, memory deficits, and general cognitive decline.
One important and yet unresolved question is whether neuropsychiatric SLE (NPSLE) is a complication of systemic
autoimmunity or whether it is primarily driven by brain-intrinsic factors.

Methods: To dissect the relative contributions of the central nervous system from those of the hematopoietic
compartment, we generated bone marrow chimeras between healthy control (MRL/+) and lupus-prone MRL/
Tnfrsf6lpr/lpr mice (MRL/+→MRL/lpr), as well as control chimeras. After bone marrow reconstitution, mice
underwent extensive behavioral testing, analysis of brain tissue, and histological assessment.

Results: Despite transfer of healthy MRL/+ bone marrow and marked attenuation of systemic disease, we found
that MRL/+→MRL/lpr mice had a behavioral phenotype consisting of depressive-like behavior and visuospatial
memory deficits, comparable to MRL/lpr→MRL/lpr control transplanted mice and the behavioral profile previously
established in MRL/lpr mice. Moreover, MRL/+→MRL/lpr chimeric mice displayed increased brain RANTES
expression, neurodegeneration, and cellular infiltration in the choroid plexus, as well as blood brain barrier
disruption, all in the absence of significant systemic autoimmunity.

Conclusions: Chimeric MRL/+→MRL/lpr mice displayed no attenuation of the behavioral phenotype found in
MRL/lpr mice, despite normalized serum autoantibodies and conserved renal function. Therefore, neuropsychiatric
disease in the MRL/lpr lupus-prone strain of mice can occur absent any major contributions from systemic
autoimmunity.
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Background
Systemic lupus erythematosus (SLE) is a complex auto-
immune disease marked by aberrant T and B cell activa-
tion, autoantibody production, and damage in diverse
end organ targets. Lupus-associated brain disease, or
neuropsychiatric lupus (NPSLE), is an important driver of
morbidity and mortality. Treatment of NPSLE has trad-
itionally focused on systemic immune suppression and
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alleviation of symptoms, though newer biologic therapies
have shown some promise [1].
Central NPLSE manifestations can be broadly catego-

rized into two major groups: focal presentations result-
ing predominately from cerebrovascular disease and
diffuse disorders consisting of depression, memory loss,
and cognitive decline. The pathogenic mechanism
underlying focal NPSLE is often a coagulopathy present
in SLE patients [2–4]. Diffuse NPSLE, however, remains
poorly understood.
Systemic humoral factors may be responsible for diffuse

NPSLE presentations. These include anti-N-methyl-D-as-
partate receptor (NMDAR) antibodies [5], anti-ribosomal-
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P antibodies [6], and complement-mediated cytotoxicity
[7]. However, the mechanisms through which these
humoral effectors may traverse the blood brain barrier
(BBB) are not known [8]. Additionally, in both human
lupus and murine models, neuropsychiatric disease can
develop prior to overt systemic disease manifestations
[9, 10], suggesting a possible role of brain-derived
effectors in the development of NPSLE.
One spontaneous murine model, the MRL/Tnfrsf6lpr/

lpr (MRL/lpr) strain, is exceptionally valuable in the
study of many features of SLE [11]. MRL/lpr mice de-
velop an overall clinical and immunologic phenotype
with many similarities to human lupus, including ele-
vated titers of autoantibodies, skin and renal disease,
depression-like behavior, and learning/memory deficits
[12]. Moreover, the MRL/lpr mouse has a congenic con-
trol, the MRL/Tnfrsf6+/+ (MRL/+) mouse, which does
not display significant autoimmune manifestations or
neuropsychiatric disease until a much older age (median
lifespans 17 and 73 weeks, respectively). Various contrib-
utors to the pathogenesis of NPSLE in MRL/lpr mice
have been proposed, including autoantibodies to the
central nervous system (CNS) antigenic determinants,
abnormal cytokine expression systemically and intra-
thecally [13], and the development of a cellular infiltra-
tive process targeting the circumventricular organs [14].
It is unclear whether NPSLE behavioral manifestations
in either MRL/lpr mice or humans develop as a second-
ary consequence of systemic disease processes or if there
are additional driving or inciting factors intrinsic to the
CNS. This limited understanding has confounded clini-
cians’ ability to effectively treat this particularly debilitat-
ing consequence of SLE. In the present study, our aim
was to shed light on this question through the use of
bone marrow (BM) chimeras. By generating chimeric
MRL/lpr mice reconstituted with healthy bone marrow,
we sought to determine the relative contributions to
NPSLE that are CNS driven, outside the context of sys-
temic autoimmunity.

Methods
Animals
Female MRL/lpr (stock #485) and MRL/+ (stock #486)
mice at 6–8 weeks of age were purchased from Jackson
Laboratories (Bar Harbor, ME) and housed at 21–23 °C
on a 12:12-h light to dark cycle. All animal protocols
were approved by the institutional animal care and use
committee.
Bone marrow transplantation (BMT) was performed

essentially as described elsewhere [15]. Eight to nine
week old mice were given a lethal dose of γ-irradiation
(two doses of 5.5 Gy, 4 h apart). BM cells isolated from
MRL/+ or MRL/lpr mice were then immediately trans-
ferred (3–5 × 106 cells/mouse) via tail vein injection as
follows: MRL/lpr→MRL/lpr (the first strain denotes the
donor, and the second strain is the recipient), MRL/+→
MRL/+, and MRL/+→MRL/lpr. The MRL/lpr→MRL/
+ chimera was not studied due to the wasting syndrome
associated with this donor-recipient pair, described ex-
tensively elsewhere [15]. Importantly, MRL/lpr→MRL/
+ chimeric mice die prematurely due to a mechanism
distinct from wild type MRL/lpr mice [16].
Apart from monitoring body weight, mice were left to

recover for 4 weeks after transplantation. Engraftment
was monitored by genotyping peripheral blood for the
Fas gene variant. To provide a reference for typical dis-
ease manifestations, unmanipulated MRL/lpr and MRL/
+ mice were included as positive (diseased) and negative
(healthy) controls, matched according to age post-
transplantation in the chimeric groups. Two mice in the
MRL/+→MRL/+ group and one mouse in the MRL/
+→MRL/lpr group were sacrificed 14 days post-
transplantation due to wasting, indicative of bone mar-
row engraftment failure. All remaining transplanted
mice reached the study endpoint, presumably owing to
the effect of irradiation in hindering immune activity.
For serum analyses and behavioral studies, the number
of mice in each group was as follows: MRL/lpr→MRL/
lpr, n = 13; MRL/+→MRL/+, n = 12; MRL/+→MRL/
lpr, n = 18; MRL/+, n = 5; and MRL/lpr, n = 5. For other
analyses including renal histology, immunofluorescence,
Fluoro Jade C staining (qualitative), and PCR, a ran-
domly selected subset was studied: MRL/lpr→MRL/lpr,
n = 7; MRL/+→MRL/+, n = 7; MRL/+→MRL/lpr, n =
11; MRL/+, n = 5; and MRL/lpr, n = 5. For quantitative
analysis of Fluoro Jade C staining, a random subset of
stained samples was analyzed: MRL/lpr→MRL/lpr, n =
3; MRL/+→MRL/+, n = 3; MRL/+→MRL/lpr, n = 4.

Assessment of systemic disease
MRL/lpr mice spontaneously develop hypergammaglo-
bulinemia, autoantibodies directed against nuclear anti-
gens, and renal disease [16]. Serum IgG and IgG anti-
double stranded (ds) DNA antibody levels were mea-
sured at the time of sacrifice (27 weeks of age), as
previously described [17]. Blood was not sampled prior
to bone marrow transplantation to limit the possibility
of post-procedural infectious complications. Urinary
albumin (Bethyl Labs, Montgomery, TX) and creatinine
(BioAssay Systems, Hayward, CA), as well as serum
blood urea nitrogen (BUN) (BioAssay Systems), were de-
termined at the time of sacrifice. Renal histopathology
was analyzed as described previously [18], by a nephro-
pathologist blinded to the group assignments.

Behavioral assessment
A panel of behavioral tests extensively validated in MRL/lpr
and MRL/+ mice was used for phenotypic characterization,
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as described previously in detail [10, 12, 19]. These tests in-
cluded forced swim (FS) to assess depression-like behavior,
object placement (OP), and object recognition (OR) tests to
assess learning/memory, as well as open field (OF) testing
to examine locomotion and exploration. The tests were
used to evaluate whether the behavioral phenotype of
MRL/lpr mice would manifest absent systemic autoimmun-
ity. Chimeric mice underwent behavioral testing between
24–26 weeks of age, corresponding to 16–18 weeks post-
transplantation. Before each test, mice were exposed to the
testing room under low incandescent light for at least
30 min. All tests were recorded using Viewer tracking soft-
ware (mid-point detection, Bioobserve, Bonn, Germany).
Manually scored tests (FS, OP, and OR) were validated by a
blinded observer.

RANTES Real time quantitative PCR
RNA isolation and real time PCR (in triplicate) for
RANTES was performed as described elsewhere [12].
The primers used for amplification were forward 5′-
GCAAGTGCTCCAATCTTGC-3′, reverse 5′-CTTCTT
CTCTGGTTGGCAC-3′. Reported fold changes of gene
expression are relative to unmanipulated MRL/+ mice.

Tissue preparation and immunofluorescence
At 27 weeks of age, mice were transcardially perfused
with ice-cold PBS followed by immediate brain isolation.
A portion of the brain including cortex and hippocam-
pus was dissected and snap frozen in liquid nitrogen for
subsequent RNA isolation. The remainder was dissected
along the mid-sagittal plane and fixed in 4 % paraformal-
dehyde/PBS for 36–48 h at 4 °C. Brains were then either
cryo-protected in 30 % sucrose/PBS at 4 °C for frozen
sectioning or paraffin-embedded.
All immunofluorescent staining was done after blocking

in 20 % normal horse serum. Representative images of IBA-
1 staining were taken using a Leica SP2-AOBS confocal
microscope, while RANTES and fibronectin staining were
visualized using a Zeiss Axio Observer CLEM instrument.
Evaluation of IBA-1 (three sections per mouse at 40–
60 μM intervals, rabbit anti-IBA-1, Wako, Osaka, Japan),
RANTES (goat anti-RANTES, Santa Cruz Biotechnology,
Dallas, TX), NeuN (mouse anti-NeuN, Millipore, Darm-
stadt, Germany), IgG (Donkey anti-IgG, Jackson Immunor-
esearch Laboratories, West Grove PA), and fibronectin
(rabbit anti-fibronectin, Abcam, Cambridge, MA) were
performed on 5-μM paraffin sections. Tissue deposition of
fibronectin was analyzed by subtracting the vascular fluor-
escent area from the total tissue fluorescent area. IBA1+
cellular infiltration was determined as either the presence
of clustered IBA1+ cells indicating infiltration from the per-
iphery, compared to isolated IBA1+ cells, indicative of resi-
dent cells within the choroid plexus. IgG deposition was
calculated as the mean fluorescent intensity in the
hippocampal and cortical regions of interest. All secondary
antibodies were from Jackson Immunoresearch Laborator-
ies (West Grove, PA). Following immunostaining, all
sections were counterstained with DAPI, and the images
analyzed using List source of imageJ (U. S. National Insti-
tutes of Health, Bethesda, Maryland, USA). Primary and
secondary antibodies were withheld from several sections
to control for background fluorescence and non-specific
staining.

Fluoro Jade C staining
Ten to twelve micron frozen sections were used for
Fluoro Jade C (FJC) staining. After warming to room
temperature, slides were immersed for 1 min each in 100
and 70 % ethanol, followed by rinsing with water. Slides
were blocked for 15 min in 0.06 % KMnO4, rinsed, and
stained in a 0.001 % solution of FJC (Millipore, Darmstadt,
Germany) in 0.1 % acetic acid for 30 min. Slides were then
washed, dried at 60 °C, cleared in xylene, and mounted in
DPX mounting medium (Sigma, St. Louis, MO). The
number of FJC+ cells in representative samples from each
group, consisting of three high-powered fields from ran-
domly selected MRL/+→MRL/+ (n = 3), MRL/lpr→
MRL/lpr (n = 3), and MRL/+→MRL/lpr (n = 4) mice,
were manually counted.

Statistics
All statistical analysis was performed using GraphPad
Prism software (La Jolla, CA). Normality was determined
with the Kolmogorov-Smirnov test and, for most experi-
ments, significant effects between groups of mice were
determined by one-way ANOVA, followed by post hoc
analysis by Fisher’s least significant difference test. Un-
manipulated MRL/+ and MRL/lpr mice were evaluated
using a one-tailed Student’s t test. For OP and OR
tasks, the threshold for preference was set at >53 %.
“Preference” vs. “no preference” was then analyzed by
chi-square and Fisher’s exact test between groups, as
described elsewhere [20]. Analysis of RANTES RT-
qPCR was done with the Kruskal-Wallis test of variance
followed by post hoc analysis by Dunn’s multiple com-
parison test. Data is displayed as the mean ± SEM, except
for OP and OR, which are displayed as the number of mice
in each category. For all analyses, significance was defined
as p < 0.05.

Results
Transplantation of MRL/+ bone marrow to MRL/lpr mice
minimizes extra-cranial disease manifestations
MRL/lpr mice spontaneously develop hypergammaglo-
bulinemia, anti-dsDNA antibodies, and immune-
mediated glomerulonephritis. In contrast, MRL/+→
MRL/lpr chimeras displayed significantly attenuated sys-
temic disease at 26 weeks of age. Although total IgG
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(F2,39 = 15.09; p < 0.0001, Fig. 1a) and anti-dsDNA anti-
body levels (F2,38 = 26.4, p < 0.0001, Fig. 1b) were
significantly elevated in MRL/lpr→MRL/lpr chimeric
mice, those of MRL/+→MRL/lpr mice were compar-
able to MRL/+→MRL/+ mice. Histologically, the
kidneys of MRL/+→MRL/lpr mice were devoid of
significant glomerular (F2,21 = 9.211, p = 0.001, Fig. 1c)
or tubulointerstitial inflammation (F2,21 = 14.34, p =
0.001, Fig. 1d). Renal function in MRL/+→MRL/lpr
chimeras was preserved as well, as indicated by BUN
levels (F2,40 = 4.408, p = 0.01, Fig. 1e) and urinary albu-
min/creatinine ratios (F2,22 = 4.730, p = 0.2, Fig. 1f ).
Antibody titers and the assessment of kidney function
and histopathology are summarized in Table 1. Col-
lectively, these experiments confirm that BMT from
MRL/+ to MRL/lpr mice markedly diminishes gener-
alized systemic autoimmunity and provides protection
from nephritis [15]. These results strongly suggest,
therefore, that any development and/or persistence of
an NPSLE phenotype in MRL/+→MRL/lpr chimeric
mice would less likely be attributable to systemic im-
mune abnormalities.
Fig. 1 MRL/+→MRL/lpr mice are rescued from systemic disease. Total IgG w
mice (a), as were anti-DNA antibodies (b) and renal histopathological scores (c
by BUN and albumin/creatinine ratios (e, f). Data in (b) is expressed as mean v
figure were performed on serum obtained at sacrifice (27 weeks of age). Error
The MRL/lpr NPSLE phenotype occurs independently of
systemic autoimmunity
Open field test
Open field testing was done to evaluate overall ex-
ploratory activity, as well as to insure that BMT caused
no deleterious effects on locomotion. There were no
significant differences in the number of rears between
groups (F2,40 = 0.25; ns, Fig. 2a), suggesting similar
levels of exploration. Similarly, no significant difference
was found in total track lengths between individual
groups (F2,40 = 0.875; p = 0.03, Fig. 2b), indicating no
motor deficits or musculoskeletal disability. Although
center track length was similar between the groups
(F2,40 = 0.2445; ns, Fig. 2c), there was a significant
difference between unmanipulated MRL/lpr and MRL/+
mice when analyzed independently. Furthermore, both
MRL/lpr→MRL/lpr and MRL/+→MRL/lpr mice had
significantly greater center-to-total track length ratios.
Given the natural tendency of mice to display thigmotac-
tic behavior, increased relative exploration of the exposed
(center) portion of an open field arena is an aberrant
exploratory phenotype, consistent with increased risk-
as reduced in MRL/+→MRL/lpr mice to levels similar to MRL/+→MRL/+
, d). MRL/+→MRL/lpr mice had improved renal function, demonstrated
alues, normalized to unmanipulated MRL/+ mice. Measurements in this
bars = SEM, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001



Table 1 Antibody titers and renal function of chimeric and unmanipulated mice

Table 1 Total IgG
(mg/dL)

Anti-DNA antibodies
(O.D./MRL/+)

BUN
(mg/dL)

Urinary albumin/
creatinine (ratio)

Total renal
inflammatory
score

Renal
deposits

Renal
endocapillary
proliferation

Renal
crescents

Renal
tabular
casts

Renal
interstitial
inflammation

MRL/+→
MRL/+

0.99*** 1.13*** 0.76** 1.41 0.37*** 0.67*** 1.00** 0.00 0.17* 0.00***

MRL/lpr→
MRL/lpr

4.56 4.17 1.10 12.20 1.60 2.57 2.71 0.44 1.00 1.29

MRL/+→
MRL/lpr

1.32** 2.40*** 0.88 1.72 0.67** 1.09** 1.37* 0.00 0.45 0.45**

MRL/+ 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

MRL/lpr 1.86## 4.38### 1.41 29.84### 1.60### 2.80### 2.80### 0.40 0.60 1.40###

Histopathology is scored as a range of 0–5
*p < 0.05; **p < 0.01; ***p < 0.001, compared to MRL/lpr→MRL/lpr; #p < 0.05; ##p < 0.01; ###p < 0.001, compared to MRL/+
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taking [21, 22] (F2,40 = 5.382, p < 0.01, Fig. 2d). These
effects are not a consequence of the transplantation but
rather are specific neurobehavioral deficits, as the
syngeneic chimeric mice did not differ from the
matched unmanipulated control MRL/lpr and MRL/+
background strains.

Object recognition and object placement tests
The object recognition (OR) and object placement (OP)
tests measure recognition and visuospatial memory,
respectively [23]. Mice have a natural tendency to prefer-
entially explore novel stimuli, including a novel object in
an arena (OR) or an object that is placed in a novel
position within an arena (OP) [24], as illustrated in
Fig. 2e, f. Consistent with previous studies [12], there
were no differences in OR performance between MRL/+
and MRL/lpr background mice (chi-square test, χ2 =
3.72, df = 4, ns, Fig. 2e), regardless of transplant condi-
tion. However, both MRL/lpr→MRL/lpr (p = 0.04) and
MRL/+→MRL/lpr (p = 0.03) mice displayed signifi-
cantly defective visuospatial memory as compared to
MRL/+→MRL/+ mice (chi-square test, χ2 = 10.64, df =
4, p = 0.03, Fig. 2f ).

Forced swim test
When placed in water, mice have a natural tendency to
struggle or swim, whereas increased immobility is indi-
cative of behavioral despair or depression-like behavior
[25, 26]. Depression-like behavior in MRL/lpr mice has
been validated by multiple metrics; forced swim immo-
bility is the most robustly reproduced [10, 12, 27], with
MRL/lpr mice exhibiting higher levels of immobility
than MRL/+. In the chimeric strains, MRL/+→MRL/lpr
mice had no attenuation of this phenotype, with pro-
found immobility equivalent to MRL/lpr→MRL/lpr and
unmanipulated MRL/lpr mice (F2,40 = 22.67; p < 0.0001,
Fig. 2g). In contrast, MRL/+→MRL/+ mice had levels
of immobility similar to unmanipulated MRL/+ mice.
In summary of the behavioral assessments, MRL/+→

MRL/lpr mice displayed a neuropsychiatric phenotype
surprisingly similar to MRL/lpr→MRL/lpr mice, despite
overall rescue from systemic disease. The presence of
depression-like behavior and spatial memory deficits
were consistent with unmanipulated control MRL/lpr
mice, while MRL/+→MRL/+ controls had no such
behavioral deficits. Considering the prominent role auto-
antibodies are believed to play in the pathogenesis of
NPSLE [28, 29], the persistence of the neurobehavioral
lupus phenotype in MRL/+→MRL/lpr chimeric mice
despite near-resolution of systemic autoimmunity was
quite unexpected.
The blood brain barrier (BBB) is breached in MRL/+→MRL/
lpr chimeras
The ability of IgG and various leukocytes to effectively
target the CNS is indicative of BBB pathology in MRL/
lpr mice [8, 30]. In the present study, BBB disruption
was assessed by extravasation of fibronectin, a serum
protein not widely distributed in the CNS [31]. Fibro-
nectin leakage was observed across the BBB in over half
of MRL/+→MRL/lpr and MRL/lpr→MRL/lpr chi-
meras, while no evidence of leakage was found in MRL/
+→MRL/+ mice (F4,27 = 4.25; p = 0.01, Fig. 3a). Thus,
an abnormally permeable BBB occurred independently
of systemic inflammation.
MRL/+→MRL/lpr mice exhibit increased cortical
neurodegeneration
FJC staining is an effective means of visualizing neuro-
degeneration from various etiologies [32]. While differ-
ences in hippocampal neurodegeneration were
previously observed between 16-week-old MRL/lpr and
MRL/+ mice [27], we found no such differences, perhaps
since the mice studied here were significantly older
(27 weeks old). Nevertheless, increased FJC cortical
staining in MRL/lpr→MRL/lpr and MRL/+→MRL/lpr
mice, as compared to MRL/+→MRL/+ mice, was
present (F2,27 = 4.25; p < 0.0001, Fig. 3b).



Fig. 2 Chimeric MRL/+→MRL/lpr mice display a behavioral phenotype consistent with MRL/lpr→MRL/lpr mice. All transplanted murine strains
displayed an equivalent exploratory drive (a) and locomotion (b, c). An increased ratio of center track/total track, an indicator of increased risk
seeking behavior, was found in MRL/+→MRL/lpr, MRL/lpr→MRL/lpr, and MRL/lpr mice (d). While there were no significant differences between
mice on object recognition tasks (e), MRL/+→MRL/lpr (p < 0.05) and MRL/lpr→MRL/lpr (p < 0.05) displayed significantly poorer performance on
spatial memory tasks as compared to MRL/+→MRL/+ mice (f). The forced swim test demonstrated marked depression-like behavior in MRL/
+→MRL/lpr mice, similar to that seen in MRL/lpr→MRL/lpr and MRL/lpr mice (g). Immobility was not seen in MRL/+→MRL/+ and MRL/+ mice.
Error bars = SEM, *p < 0.05, **p < 0.01, ****p < 0.0001
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RANTES is similarly overexpressed in the brains of MRL/
+→MRL/lpr and MRL/lpr→MRL/lpr mice
RANTES-mediated chemotaxis and inflammation is
important in the development of multiple manifesta-
tions of SLE, including cutaneous [33], renal [34], and
neuropsychiatric presentations [18, 35, 36]. Significant
differences were found in RANTES gene expression
in MRL/+→MRL/lpr, MRL/lpr→MRL/lpr, and MRL/
lpr mice, relative to both MRL/+→MRL/+ and MRL/
+ mice (H = 8.606; p < 0.02, Fig. 4a). Immunofluores-
cent staining confirmed increased RANTES expres-
sion, which was predominately localized to layer V
cortical neurons in MRL/+→MRL/lpr and MRL/
lpr→MRL/lpr mice (Fig. 4b). Additionally, there was



Fig. 3 Brains of MRL/+→MRL/lpr mice are phenotypically similar to MRL/lpr→MRL/lpr mice. Staining for fibronectin (a, in red), indicative of BBB
disruption, demonstrates extravasation of this serum protein into the brain tissue of MRL/+→MRL/lpr and MRL/lpr→MRL/lpr chimeric mice,
while unmanipulated MRL/+ (not shown) and MLR/+→MRL/+ mice had staining restricted to the vascular lumen. Fluoro Jade C staining (b, in
green) revealed increased degeneration in the cortices of MRL/+→MRL/lpr and MRL/lpr→MRL/lpr mice. Representative images of fibronectin
staining were taken with a ×40 objective, and the staining quantitated as described in the “Methods” section. Representative images of Fluoro
Jade C staining were taken with a ×20 objective, while cell counts were performed on three representative ×40 fields per mouse. Error bars =
SEM, *p < 0.05, ****p < 0.0001

Stock et al. Journal of Neuroinflammation  (2015) 12:205 Page 7 of 13
non-neuronal cellular staining within and around vas-
culature of both the cortex and hippocampus and a
punctate, granular staining pattern in the neuropil
(data not shown).
Choroid plexus infiltrates persist in MRL/+→MRL/lpr
chimeras despite normalization of peripheral autoimmunity
Previous studies have demonstrated increased F4/80
expression as a marker of activated microglia in MRL/
lpr mice, predominately in the hippocampus, although
cortical nests of activated microglia were found as well
[27]. In the present study we found no significant
differences in hippocampal IBA-1 staining between
chimeric mice (F2,22 = 2.262; ns) although significant
increases were found in unmanipulated MRL/lpr com-
pared to MRL/+ mice (p = 0.01; data not shown). In
nearly all MRL/+→MRL/lpr and MRL/lpr→MRL/lpr
mice, however, we did find an increase in cellular infil-
tration elsewhere in the brain, while no such infiltrates
were found in MRL/+→MRL/+ or MRL/+ mice.
These infiltrates, largely consisting of IBA-1+ cells,
were found in the choroid plexus of the dorsal fourth
ventricle, as well as proximal to the hippocampus
(Fig. 5).
Brain IgG deposition is not increased in MRL/+→MRL/lpr
mice
Local immune complex formation by autoantibodies
binding to neurally expressed antigens is thought to be
involved in the pathogenesis of NPSLE. Histological
evaluation of IgG deposition in both cortical (F4,23 = 8.9;
p = 0.002) and hippocampal (F4,24 = 11; p < 0.0001) brain
regions revealed that both MRL/lpr→MRL/lpr and
MRL/lpr mice had significantly higher IgG tissue depos-
ition than MRL/+→MRL/+, MRL/+→MRL/lpr, and
MRL/+ mice (Fig. 6).
Taken together, our results show that MRL/+→MRL/

lpr chimeric mice replicate the key features of NPSLE
found in the parent MRL/lpr strain, including neuro-
behavioral deficits, a breached BBB, neurodegeneration,
and inflammatory infiltrates in the choroid plexus, despite
normalization of key autoimmune features in the periph-
ery, as well as decreased IgG deposition within CNS tissue.

Discussion
Attempts to identify associations between humoral in-
flammatory effectors and NPSLE have not been able to
conclusively demonstrate causality to date [37, 38]. The
study presented herein utilized BMT to separate innate
CNS from peripheral hematopoietic contributors to the



Fig. 4 Increased neuronal RANTES in MRL +→MRL/lpr mice. Real time quantitative PCR revealed significantly increased brain RANTES expression
in MRL/lpr background mice (a), which by immunofluorescence was found to be produced mostly by neurons (b). Representative images taken
with a ×40 objective are shown. Error bars = SEM, *p < 0.05, **p < 0.01
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development of NPSLE. Through transplantation of
healthy control MRL/+ BM to lupus-prone MRL/lpr
mice, we significantly attenuated the development of
systemic autoimmunity and renal disease. Nevertheless,
MRL/+→MRL/lpr chimeras displayed a neuropsychi-
atric profile consistent with MRL/lpr→MRL/lpr
chimeric and unmanipulated MRL/lpr mice, in the ab-
sence of any motor abnormalities and with a preserved
exploratory drive. We further found evidence of BBB
disruption, neurodegeneration, and RANTES upregula-
tion in both MRL/+→MRL/lpr and MRL/lpr→MRL/
lpr chimeras. Notably, there were no behavioral differ-
ences between syngeneic chimeras and unmanipulated
mice strains, indicating that BMT did not itself signifi-
cantly impact neuropsychiatric manifestations.
We previously have shown that neuropsychiatric man-

ifestations in MRL/lpr mice occur early [10] and may,
therefore, theoretically have been established by the time
the BMT procedure was performed. While we do not
have incontrovertible evidence to disprove this hypoth-
esis, given the persistent NPSLE phenotype absent con-
comitant systemic autoimmunity, we nevertheless report
here for the first time that NPSLE may develop (or per-
sist) without significant contributions from a sustained
autoantibody response. Thus, normalization of the sys-
temic immune response did not affect the molecular



Fig. 5 Monocytic infiltrates in the choroid plexus of MRL +→MRL/lpr mice. IBA-1 staining revealed a mixed cellular infiltrate including IBA-1+ cells
in the choroid plexus of MRL/lpr→MRL/lpr and MRL/+→MRL/lpr mice but not in MLR/+→MRL/+ mice. Representative images taken with a
×40 objective are shown
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pathways involved in neurobehavioral deficits in this
strain. Although it is possible that the NPSLE phenotype
in MRL/+→MRL/lpr was contributed to by systemic
cytokines present in the MRL/lpr background rather
than brain-intrinsic factors, the normalized autoantibody
titers and renal disease suggest that BMT controlled the
systemic inflammatory response as well. Unfortunately,
BMT could not be done before 8 weeks of age for tech-
nical reasons, and repeated behavioral testing would be
non-informative since initial testing affects subsequent
performance.
Autoreactive antibodies binding to the endothelium,

kidneys, and skin are among the major effectors of the
vascular, renal, and cutaneous manifestations of SLE, re-
spectively [39–42]. Consequently, many researchers have
searched for autoantibodies binding to neural antigenic
determinants in NPSLE. Anti-NMDAR antibodies have
been found in SLE patients [28] and can induce NPSLE-
like manifestations upon transfer to mice when coupled
with disruption of the BBB [43]. Anti-ribosomal-P anti-
bodies have been linked with human and experimental
NPSLE as well [44]. There is indeed no doubt from these
and other studies that antibodies given intrathecally or
systemically can replicate some of the features of lupus-
associated neuropsychiatric disease. Moreover, the single
strain studied here does not necessarily represent the full
complexity of experimental neuropsychiatric lupus.
Nevertheless, the MRL/lpr is a spontaneous lupus strain
and a pivotal model in the investigation of lupus-
associated memory abnormalities and behavioral deficits.
Since we found that MRL/+→MRL/lpr mice did not
have elevated serum autoantibody titers while still
exhibiting robust neuropsychiatric disease, it therefore
appears that a sustained serum autoantibody response is
not strictly required for the initiation or maintenance of
a spontaneous NPSLE phenotype. The modest increases
in autoantibody levels seen in MRL/+→MRL/lpr
chimeric mice were not likely neuropathic, since renal
involvement, a lupus complication closely linked to
circulating anti-dsDNA antibodies, was absent. Further-
more, correlation analysis between behavioral outcomes
and systemic disease manifestations revealed no signifi-
cant relationship (data not shown). We further evaluated
whether anti-NMDAR antibodies were elevated in
chimeric MRL/+→MRL/lpr mice and found that titers
were not significantly different from those of MRL/+→
MRL/+ chimeric mice (data not shown). Additionally,
when evaluating IgG within the CNS parenchyma, we



Fig. 6 IgG deposition is reduced in the cortex and hippocampus of MRL/+→MRL/lpr chimeric mice. Immunofluorescent staining, quantitated in
(a) absolute values of mean intensity, demonstrated significantly increased tissue penetration and deposition of IgG in MRL/lpr→MRL/lpr mice as
compared to MLR/+→MRL/+ and MRL/+→MRL/lpr mice in both the cortex and the hippocampus. Representative images taken with a ×20
objective are shown in (b). Error bars = SEM, *p < 0.05, **p < 0.01, ****p < 0.0001
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found that MRL/+→MRL/lpr mice had minimal to no
deposition, similar to MRL/+→MRL/+ chimeric mice.
Therefore, while autoantibodies may still affect disease
progression and/or specific features in NPSLE, these
were less critical in the behavioral phenotype found in
chimeric MRL/+→MRL/lpr mice. Furthermore, our
model is entirely consistent with the variable seropositiv-
ity of NPSLE patients and the requisite BBB disruption
or intrathecal administration used in autoantibody trans-
fer models of NPSLE [45, 46]. Nevertheless, the absence
of peripherally elevated autoantibodies does not wholly
preclude intrathecal generation of antibodies binding to
brain antigens. However, the low antibody and autoanti-
body titers found systemically in MRL/+→MRL/lpr
chimeras, as well as the low amounts of tissue bound
IgG, make it distinctly unlikely that these mice were
exposed to a significant increase in circulating brain re-
active antibodies.
Depression-like behavioral manifestations of NPSLE in

MRL/lpr mice were attenuated by treatment with cyclo-
phosphamide, as measured by sucrose preference and
forced swim tests [47, 48], which would suggest a de-
pendence of CNS disease development on systemic
autoimmunity. More recent work, however, has found
that loss of sucrose preference in MRL/lpr mice is asso-
ciated with peripheral taste receptor inflammation,
which limits the utility of sucrose preference in charac-
terizing the behavioral phenotype of MRL/lpr mice [49].
Furthermore, the effects of cyclophosphamide extend
beyond its role as a cytotoxic alkylating agent, including
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anti-inflammatory and immunomodulatory activity
within the CNS [50], which may contribute to the ob-
served reduction in depression-like behavior.
Use of BM chimeras allowed us to take advantage of

the fact that brain cells are relatively resistant to γ-
irradiation and represent self-renewing cell populations
with no significant peripheral contributors [51]. The in-
flammatory mechanisms uncovered would, therefore, be
related to endogenous CNS effectors. RANTES, a potent
T cell chemoattractant that has been previously found to
be a significant component of renal, cutaneous, and
neuropsychiatric lupus manifestations, was overex-
pressed in MRL/lpr host mice primarily by neurons, re-
gardless of transplant condition. Interestingly, when
stimulated by RANTES in vitro, neurons display modi-
fied expression of genes involved in synaptogenesis and
neurite growth [52], suggesting that RANTES signaling
may contribute to the cognitive manifestations found in
MRL/lpr mice. This potential mechanism warrants fur-
ther exploration in future studies.
MRL/lpr mice were previously reported to display in-

creased hippocampal F4/80+ microglia staining [27].
When quantitating IBA-1 staining within the hippocam-
pus, we found no difference between groups of chimeric
mice. It is important to highlight that microglia are
known to be a self-renewing cell population that is
highly resistant to ionizing radiation, while peripherally
derived macrophages are not [53, 54], suggesting that
our findings are not a consequence of the BMT itself.
We did, however, find increased IBA-1 staining in unma-
nipulated MRL/lpr mice (data not shown). Moreover, we
identified infiltrating cells through the choroid plexus
and para-hippocampal vasculature in MRL/+→MRL/
lpr, MRL/lpr→MRL/lpr, and unmanipulated MRL/lpr
mice, many of which were IBA-1+. As MRL/+→MRL/
lpr mice lacked significant systemic disease and would
therefore not be expected to have an abnormally hyper-
active peripheral immune system, cellular infiltrates
further point to CNS-driven inflammation and chemo-
taxis (possibly through RANTES) as essential to NPSLE
development.
One potential limitation of the experimental design is

the challenge in generating complete chimerism. This is
particularly difficult in MRL/lpr mice, as they are sys-
temically radiosensitive although hematopoietically
radioresistant [55]. Nevertheless, the split-dose BMT
method utilized herein has previously been shown to
generate over 95 % engraftment [56]. More importantly,
MRL/+→MRL/lpr chimeras had the same systemic im-
mune profile as MRL/+→MRL/+ mice, indicating suc-
cessful engraftment and repopulation by donor cells.
Another possible limitation was the lack of head shield-
ing during irradiation. Given that the vast majority of
neurogenesis occurs within the hippocampus, the lack of
head shielding, while increasing the degree of chime-
rism, may theoretically have obscured any differences in
neurodegeneration in that region. Nevertheless, both
MRL/+→MRL/+ and MRL/lpr→MRL/lpr control chi-
meras were virtually indistinct behaviorally, systemically,
and neuroimmunopathologically from their unmanipu-
lated MRL/+ and MRL/lpr counterparts, respectively,
further highlighting both that chimera generation was
successful and that the lack of head shielding had no ap-
preciable deleterious effects on study outcome.
A point of interest is the potential role of the hypo-

thalamus–pituitary–adrenal (HPA) axis in development
of the MRL/lpr NPSLE phenotype. Previous studies have
shown increased HPA axis activity in this strain, evi-
denced by increased serum corticosterone levels as well
as adrenal hyperplasia [57, 58]. Furthermore, treatment
with immunosuppression normalized expression of neu-
roendocrine mediators in MRL/lpr mice, suggesting that
neuroendocrine dysregulation is consequent to auto-
immunity [59]. Given that systemic autoimmunity was
highly attenuated in chimeric MRL/+→MRL/lpr mice,
the behavioral phenotype present in these mice is not
likely attributable to neuroendocrine deficits.
An additional question is the potential role of CD4/

CD8 double negative T cells (DN T cells), a cell type
characteristically overrepresented in the unmanipulated
MRL/lpr strain. In general, little is certain regarding the
contribution of DN T cells to the pathogenesis of SLE in
MRL/lpr mice, which may include both innate inflam-
matory as well as regulatory activity. However, given that
DN T cells in this strain develop as a consequence of the
Fas mutation [60] and that chimeric mice received Fas
wild type bone marrow, it is highly unlikely that DN T
cells played a major role in the pathogenesis of the
neurobehavioral phenotype. Nevertheless, while outside
the scope of the current study, whether double negative
T cells are present within the CNS of unmanipulated
and/or chimeric mice is an interesting question that can
be addressed in the future.
Identification of appropriate unmanipulated control

mice for this study was challenging. As the MRL/
lpr→MRL/lpr chimeric mice underwent total body
irradiation and disruption of their immune systems at
8 weeks of age, they experienced atypical longevity.
Additionally, 21 days after BMT, donor leukocyte
counts approach normal levels in peripheral blood
[61], implying that immunological age of chimeric
mice would be 11–12 weeks younger than their
physiological age. In an attempt to compromise be-
tween “immunological” and physiological age, we
chose to age-match unmanipulated controls at 8 weeks
younger than chimeric mice, which would bias the
control mice toward increased autoimmunity, thereby
allowing for more confidence when comparing the
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immune activity between groups. In any case, it is
noteworthy that the control chimeras (MRL/+/→MRL/+
and MRL/lpr→MRL/lpr) were phenotypically indistinct
from unmanipulated control mice.

Conclusions
Human NPSLE is challenging to treat, particularly since
clinicians have incomplete information regarding the
relative contributions of the several potential mecha-
nisms involved. Acute disease exacerbations are often
treated with high-dose corticosteroids, a problematic
therapeutic option in NPSLE patients due to the fre-
quent psychiatric and other unwanted side effects asso-
ciated with this medication. While certain diffuse
NPSLE presentations are treated empirically with mixed
success, there are only few evidence-based treatment
protocols [62–64]. There have long been questions as to
whether NPSLE is a primary manifestation of SLE or a
consequence of systemic disease. Neuropsychiatric signs
can be the initial presentation of patients ultimately di-
agnosed with SLE and are similarly among the earliest
abnormalities identified in young MRL/lpr mice [9, 10].
This chronology of NPSLE development, along with
maintenance of the phenotype despite long term
normalization of circulating autoantibody titers demon-
strated here, collectively suggest that NPSLE can develop
or persist along a pathway quite distinct from systemic
disease manifestations. We acknowledge that systemic
immunosuppressive treatment can be effective in human
NPSLE and has an effect in murine models as well. It is
nevertheless implicit in our results that therapies di-
rected at putative pathogenic autoantibodies or systemic
cytokines may be enhanced by additionally targeting
CNS specific pathways, the nature of which remain to
be discovered. Moreover, our results may have signifi-
cance beyond understanding the pathogenesis of brain
involvement in SLE, but may also provide important
insight into understanding other autoimmune disorders
with mixed brain/systemic presentations, such as
Sjogren’s syndrome and HIV-associated neurocognitive
disorders.
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