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nociceptive neurons: involvement of
ERK-dependent Nav1.8 up-regulation
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Abstract

Background: Pain is one critical hallmark of inflammatory responses. A large number of studies have demonstrated
that stromal cell-derived factor 1 (SDF1, also named as CXCL12) and its cognate receptor C-X-C chemokine receptor
type 4 (CXCR4) play an important role in immune reaction and inflammatory processes. However, whether and how
SDF1-CXCR4 signaling is involved in inflammatory pain remains unclear.

Methods: Under the intraplantar (i.pl.) bee venom (BV) injection-induced persistent inflammatory pain state,

the changes of SDF1 and CXCR4 expression and cellular localization in the rat dorsal root ganglion (DRG) were
detected by immunofluorescent staining. The role of SDF1 and CXCR4 in the hyperexcitability of primary nociceptor
neurons was assessed by electrophysiological recording. Western blot analysis was used to quantify the DRG Nav1.8
and phosphorylation of ERK (pERK) expression. Behavioral tests were conducted to evaluate the roles of CXCR4 as
well as extracellular signal-regulated kinase (ERK) and Nav1.8 in the BV-induced persistent pain and hypersensitivity.

Results: We showed that both SDF1 and CXCR4 were dramatically up-regulated in the DRG in i.pl. BV-induced
inflammatory pain model. Double immunofluorescent staining showed that CXCR4 was localized in all sizes (large,
medium, and small) of DRG neuronal soma, while SDF1 was exclusively expressed in satellite glial cells (SGCs).
Electrophysiological recording showed that bath application with AMD3100, a potent and selective CXCR4 inhibitor,
could reverse the hyperexcitability of medium- and small-sized DRG neurons harvested from rats following i.pl. BV
injection. Furthermore, we demonstrated that the BV-induced ERK activation and Nav1.8 up-regulation in the DRG
could be blocked by pre-antagonism against CXCR4 in the periphery with AMD3100 as well as by blockade of ERK
activation by intrathecal (i.t) or intraplantar (i.pl.) U0126. At behavioral level, the BV-induced persistent spontaneous
pain as well as primary mechanical and thermal hypersensitivity could also be significantly suppressed by blocking
CXCR4 and Nav1.8 in the periphery as well as by inhibition of ERK activation at the DRG level.
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Conclusions: The present results suggest that peripheral inflammatory pain state can trigger over release of SDF1

from the activated SGCs in the DRG by which SGC-neuronal cross-talk is mediated by SDF1-CXCR4 coupling that

result in subsequent ERK-dependent Nav1.8 up-regulation, leading to hyperexcitability of tonic type of the primary
nociceptor cells and development and maintenance of persistent spontaneous pain and hypersensitivity.
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Background

Persistent pain that results from inflammation is a major
public health problem worldwide. An increasing number
of evidence has demonstrated that the up-regulation of
inflammatory mediators, including cytokines and che-
mokines, is involved in the generation of neuronal hy-
perexcitability and thus contributes to inflammatory
pain and hyperalgesia [1-6].

Chemokines could be sorted into four families: C family,
CC family, CXC family, and CX3C family [7]. Stromal
cell-derived factor 1 (SDF1, also named as CXCL12), as a
member of the CXC family, is constitutively expressed in
various kinds of cells in the peripheral and central nervous
system [8, 9]. Through activating the C-X-C chemokine
receptor type 4 (CXCR4), a seven transmembrane G-
protein-coupled receptor, SDF1 exerts multiple biological
functions [9]. In addition to the well-established role in
the immune system and inflammatory reaction, emerging
data have shown that SDF1/CXCR4 system is also in-
volved in neurogenesis, neuronal migration, and neuronal
differentiation during the development of the nervous sys-
tem [10-14]. Recently, the pro-algesic effects of SDF1/
CXCR4 have also been implicated in several pain models.
Immunohistochemical studies found that the expression
level of SDF1 and CXCR4 was changed in the dorsal root
ganglion (DRG) cells in the unilateral sciatic nerve injury
(CCI)-induced pain model and the up-regulation of
CXCR4 lasted at least for 2 weeks [15]. In the spinal cord
injury-induced central neuropathic pain model, Knerlich-
Lukoschus and colleagues demonstrated that SDF1 and
CXCR4 expression was continuously increased from 2 to
42 days at the spinal cord level [16]. Moreover, by map-
ping the cellular and subcellular localization of SDF1 and
CXCR4, Reaux-Le and colleagues detailedly reported that
SDF1/CXCR4 system was closely related to the nocicep-
tive pathway, especially in the primary nociceptive neu-
rons, and they also found that activating the CXCR4 by
intrathecal (i.t.) SDF1 injection could induce mechanical
allodynia for 3 days, which could be prevented by the
CXCR4-neutralizing antibody [8]. However, to date, the
underlying mechanisms of SDF1/CXCR4 involved in the
chronic and persistent pain remain unclear.

Recently, in vitro electrophysiological experiments
have verified that SDF1 could directly modulate the ex-
citability and firing pattern of neuronal cells through

CXCR4 [17-21]. As for neurons, voltage-gated sodium
channels (VGSCs) are the key mediators in cellular ex-
citability and are essential for the generation and propa-
gation of action potentials (AP) [22, 23]. Among all the
VGSCs, tetrodotoxin-resistant (TTX-R) sodium channel
Navl.8 and/or Navl.9 mostly contributes to the en-
hanced excitability and produces majority of current
during AP upstroke [24]. Accumulating data showed
that peripheral inflammation and nerve injury could
induce up-regulation of Navl.8 in the medium- and
small-sized DRG neurons [25-29]. Furthermore, several
studies observed that inflammatory mediators (including
TNF-a, CCL2, and CXCL1) could directly induce Nav1.8
up-regulation in the DRG and thus excite the primary
nociceptive neurons [26, 30, 31]. Taking all these data
into account, we hypothesized that the above modulat-
ing effect of the SDF1/CXCR4 system on the neuronal
excitability was in part due to the regulation of Navl.8
which in turn contributes to the generation of pain.

Subcutaneous intraplantar (i.pl.) injection of bee venom
(BV) is a frequently used inflammatory pain model which
is suitable for exploring the pathophysiological mechanism
of persistent pain and inflammation [32-34]. Thus, in the
present study, we firstly examined the expression of
CXCR4 and SDF1 in DRG cells under inflammatory pain
condition induced by i.pl. BV injection. Then, we investi-
gated the role of CXCR4 in the neuronal excitability and
Nav1.8 modulation by applying the selective inhibitor of
CXCR4, AMD3100. Finally, we investigated whether
blocking CXCR4 could alleviate the inflammatory pain-
related behaviors.

Methods

Animals

The experiments were performed on male Sprague—
Dawley rats weighing from 180 to 220 g (purchased
from the Laboratory Animal Center of Fourth Military
Medical University, FMMU, Xian, People’s Republic of
China). The animals were housed in plastic boxes with
access to water and food ad libitum and maintained on a
12-h light/dark cycle (with the lights on at 8:00 am. to
8:00 p.m.) at room temperature (22—-26 °C). Behavioral
evaluations were carried out between 9:00 and 18:30.
The rats were acclimated to test boxes for at least
30 min each day for 5 days before testing. The present
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experiment protocols were approved by the Institutional
Animal Care and Use Committee of FMMU, and were
in accordance with the National Institutes of Health
Guide for the Care and Use of Laboratory Animals (NIH
Publications No. 80-23) revised 1996. International As-
sociation for the Study of Pain (IASP)’s ethical guidelines
for pain research in conscious animals was followed.
The number of animals used and their suffering were
greatly minimized.

Behavioral testing

Persistent spontaneous nociceptive behavior

The method to estimate persistent spontaneous nocicep-
tion (PSN) was based on our previously reports [34]. A
30 x 30 x 30 cm transparent Plexiglas box was placed on
a supporting frame of 30 cm high above the experimen-
tal table. The rat was placed in the test box for at least
30 min before administration of any chemical agents.
After the acclimation period, an i.pl. injection of BV was
made into the center of the plantar surface of one hind
paw with slight restraint. BV-induced persistent spon-
taneous nociception was expressed as the number of
paw finches occurring at each 5-min interval for 1 h fol-
lowing i.pl. BV injection.

Mechanical pain sensitivity

For examination of mechanical pain sensitivity, the
mechanical stimuli were applied by using ascending
graded individual von Frey monofilaments with bending
forces of 0.8, 2.0, 4.0, 6.0, 8.0, 10.0, 12.0, 14.0, 16.0, 18.0,
20.0, 25.0, 30.0, 45.0, and 60 g. The rats were placed on
a metal mesh floor covered with plastic box, and von
Frey filaments were applied from underneath the metal
mesh floor to the plantar area of the bilateral hind paws
1 h before and 2 h after i.pl. BV injection. Each von Frey
filament was applied ten times (once every several sec-
onds) in order to induce the withdrawal reflex. The
bending force value of the von Frey filament that caused
an appropriate 50 % occurrence of paw withdrawal was
expressed as the paw withdrawal mechanical threshold
(PWMT, g). For details, see [32, 34].

Thermal pain sensitivity

The thermal sensitivity was determined by measuring
the withdrawal latency of the hind paws in response to
radiant heat [34]. Rats were placed in a plastic chamber
on the surface of a 2-mm thick glass plate and the sensi-
tivity to heat stimuli by a TC-1 radiant heat stimulator
(new generation of RTY-3 made in Xi'an Bobang Tech-
nologies of Chemical Industry Co. Ltd., China, 10 V) at
30 min before and 3 h after i.pl. BV treatment was mea-
sured. The heat stimuli were applied to both the injec-
tion site and the corresponding area of the contralateral
paw, and the latency was determined as the duration
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from the beginning of heat stimuli to the occurrence of
a marked withdrawal reflex. Five stimuli were repeated
for each site, and the latter three values were averaged
as mean paw withdrawal thermal latency (PWTL, s). A
maximal cutoff of 30 s was used to avoid excessive tissue
injury. The inter-stimulus interval for each heat test was
more than 15 min at the same region and 10 min at the
different paws.

Drug

A volume of 50 pl BV solution (4 pg/pl, Floret Ltd. and
its partner company New Techniques Laboratory Ltd.,
Thilisi, Georgia, dissolved in 0.9 % sterile saline) was
used during the whole experiment. To evaluate the role
of CXCR4 in the PSN, thermal, and mechanical pain
sensitivity, AMD3100 (10, 100, or 200 pg/20 pl, Sigma)
or vehicle was administered through subcutaneous i.pl.
injection 10 min prior to BV treatment. We chose this
route of delivery to exclude the spinal roles of CXCR4 in
the BV-induced pathological pain processing. To evalu-
ate the role of extracellular signal-regulated kinase
(ERK), an isoform of mitogen-activated protein kinase
(MAPK), U0126 (Sigma, 10 pg dissolved in 10 ul
DMSO), which was decided according to our previous
study [35, 36], was administered through intrathecal (i.t.)
or intraplantar (i.pl.) injection 10 min prior to BV treat-
ment. Considering the effective duration and peak time,
A-803467 (Abcam, 500 pg/50 pl dissolved in DMSO), a
selective Nav1.8 blocker, was administered through sub-
cutaneous injection 10 min prior to or 90 min post-BV
treatment [37, 38].

Implantation of intrathecal catheters and administration
of drug

Intrathecal catheter implantation was performed accord-
ing to the method described previously [39]. Briefly,
under sodium pentobarbital anesthesia (40 mg/kg, i.p.),
a sterile polyethylene (PE-10) tube filled with 0.9 % ster-
ile saline was inserted into the L5/L6 intervertebral
space, and the tip of the tube was placed at the spinal
lumbar enlargement level. The tube was fixed by sutur-
ing into the superficial muscle. Then, a tunnel under the
skin was made and the tube was pulled out of another
skin incision at the neck area where the tube was fixed
on the skin. The outer end of the catheter was sealed by
melting. The rats were allowed to recover for 3 days in
individual cages, and only those without motor disturb-
ance and other neurological deficits were included for
further experiments. Drugs or vehicle were adminis-
tered in volumes of 10 pl by microinjection syringe
followed by a flush of 10 pl saline to ensure drugs were
delivered into the subarachnoid space. After drug injec-
tion, the outer end of the catheter was sealed again by
heat melting.
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Immunohistochemistry

The rats were anesthetized with 1 % pentobarbital so-
dium (50 mg/kg, i.p.), then perfused with physiological
saline, followed by 4 % paraformaldehyde in 0.1 M PB
solution. After perfusion, the L4—6 DRGs were removed
and postfixed in the same 4 % fixative overnight at 4 °C
and cryoprotected by immersion in 30 % sucrose in
0.1 M PB at 4 °C till it is sunk on the bottom of the con-
tainer. Transverse frozen sections (15 pm thick) were
cut on CM1900 freezing microtome (Leica, Germany).
Sections were blocked with 10 % goat serum in phos-
phate buffered saline (PBS) for 2 h at room temperature
and incubated with primary antibody at 4 °C overnight.
The primary antibodies used are listed in Table 1. After
three washes with PBS, the sections were incubated with
secondary antibodies for 2-3 h at room temperature.
For double immunofluorescence, sections were incu-
bated with a mixture of primary antibodies overnight at
4 °C, followed by a mixture of FITC-conjugated and
Cy3-conjugated secondary antibodies. For IB4 labeling,
the Alexafluor 594-conjugated isolectin IB4 from Griffo-
nia simplicifolia was used for bioaffinity labeling. The
images were examined under a laser scan confocal fluor-
escent microscope (Olympus FV1000, Japan).

Western blotting

Rats were sacrificed by decapitation after behavioral test-
ing, and the L4—6 DRGs ipsilateral to BV injection were
obtained and homogenized in a RIPA lysis buffer con-
taining protease inhibitors (Applygen Technologies Inc.,
China). Protein concentrations of the lysate were deter-
mined using a BCA Protein Assay kit (Thermo Scien-
tific, Rockford, IL, USA). Protein samples were heated
for 10 min at 95 °C with SDS-PAGE sample buffer, and
equal amounts of protein were then separated by 10 %
separation gels. The resolved proteins were subsequently
transferred to nitrocellulose membranes (Bio-Rad,
Hercules, CA, USA) followed by the incubation with 5 %
nonfat milk (Bio-rad, CA, USA) in PBS with 0.05 %
Tween 20 (PBST) for at least 30 min at room

Table 1 Antibodies for immunofluorescence and Western

blotting

Antibodies Host Vendor

SDF-1 Goat Santa Cruz
CXCR4 Goat Santa Cruz

1B4 - Life Technologies
Substance P Rabbit Chemicon

TRPV1 Rabbit Alomone

pERK Mouse Santa Cruz
Nav1.8 Rabbit Alomone

GFAP Mouse Millipore
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temperature. Then, the membranes were incubated with
primary antibodies at 4 °C overnight. The primary anti-
bodies used are listed in Table 1. After washing three
times in PBST, the membranes were incubated for 2 h at
room temperature with an HRP-conjugated secondary
antibody (1:2000, Bio-Rad). The membranes were visual-
ized with enhanced chemiluminescencce solution (Alpha
Innotech Corp.), and the signals were captured with
FluorChem FC2 (Alpha Innotech Corp.). The density of
specific bands was measured with a computer-assisted
imaging analysis system (Bio-Rad, CA, USA) and nor-
malized to B-tubulin intensity.

Intact DRG preparation and electrophysiological
recording

Rats were anesthetized with 1 % pentobarbital sodium
(50 mg/kg, i.p.); L4—6 DRGs were harvested for elec-
trophysiological recording 2 h after BV injection when
the maximal effect was seen for pain hypersensitivity.
The whole DRGs were placed into an artificial cerebro-
spinal fluid maintained at 4 °C (ACSF, contained in mM:
124 NaCl, 2.5 KCl, 1.2 NaH,POy, 1.0 MgCl,, 2.0 CaCl,,
25 NaHCO3, and 10 glucose). Then, the DRGs were in-
cubated with digestive solution containing 0.4 mg/ml
trypsin (Sigma) and 1.0 mg/ml type-A collagenase
(Sigma) for 40 min at 37 °C. After digestion, all DRGs
were incubated in carbogen gas-bubbled ACSF at room
temperature (25-28 °C) for at least 2 h.

For electrophysiological recording, the ganglion was
transferred to the recording chamber which was perfused
with carbogen gas-bubbled ACSF at room temperature. A
small mesh anchor was used to keep the ganglion stabi-
lized. The neurons in DRG were visualized with x40
water-immersion objective attached to a BX51WI micro-
scope (BX51WI, Olympus, Japan) equipped with infrared-
differential interference contrast optics. All recordings
were made with EPC10 amplifier and Pulse software
(HEKA Elektronik, Germany). Current-clamp recordings
were made to evoke action potentials and measure the
changes of membrane potential using the whole-cell
patch-clamp technique. The patch pipettes were fabri-
cated with P-97 Puller (Narishige, Japan) and had resis-
tances of 4-7 MQ with internal solution before seal
formation. The internal pipette solution contained the fol-
lowing (in mM): 140 KCl, 2 MgCl,, 10 HEPES, and 2 Mg-
ATP (pH 7.4, adjusted by KOH). Osmolarity was adjusted
to 290-300 mOsm by sucrose. All junction potentials
were corrected online by adjusting the pipette offset. After
GQ-seal whole-cell formed under voltage-clamp holding
at—-60 mV, capacitance transient was canceled and serious
resistance was compensated (80-90 %) digitally. Neurons
were selected for further study if they had a resting mem-
brane potential more negative than —-50 mV and exhibited
an overshooting action potential.
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Statistical analysis

All data were expressed as mean + SEM. Differences in
changes of values of each group were tested using t
tests and one-way ANOVA, followed by individual post
hoc comparisons (Tukey or Bonferroni test). A level of
P <0.05 was accepted as significant.

Results

Localization of CXCR4 within primary nociceptor neurons
Under naive state, CXCR4 was localized in almost all
non-peptidergic IB4-positive cells (Fig. 1a—a2); however,
CXCR4 was only seen in a few number of peptidergic
SP-positive cells (Fig. 1b—b2). Moreover, CXCR4 was
also localized in most of TRPVI1-positive neurons
(Fig. 1c—c2). CXCR4 was also seen in NF-200 positive
neurons (data not shown).
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Up-regulation of SDF1 and CXCR4 in the dorsal root
ganglia induced by peripheral inflammatory pain state
Under peripheral inflammatory pain state induced by
i.pl. BV injection, the SDF1-like immunoreactivity was
significantly increased in the DRG when compared with
the saline control in which less SDF1 immunoreactivity
could be seen (Fig. 2a, b). Because the BV-induced in-
crease in SDF1-like immunoreactivity was not seen in
the DRG neuronal profiles, but was seen in intercellular
space, we performed a double immunofluorescent label-
ing for SDF1 and glial fibrillary acidic protein (GFAP), a
marker for satellite glial cells of the DRG. As seen in
Fig. 2c, SDF1 was localized in almost all GFAP-positive
profiles in the DRG (Fig. 2c).

We next sought to examine the level of CXCR4 ex-
pression in the DRG under BV injection-induced inflam-
matory pain state. As shown in Fig. 2d—f, the expression

=x
C1

Fig. 1 Localization of CXCR4 in rat primary nociceptive neurons. Immunofluorescence micrographs show the double-staining of CXCR4 (a-c)
with IB4 (a1), substance P (SP, b1), and TRPV1 (c1). Showing merged images from a1 and a2, b1 and b2, ¢1 and c2. Note that CXCR4 was
co-localized with IB4, SP, and TRPV1 in subpopulations of DRG neurons (a2-c2)
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Fig. 2 Intraplantar BV injection induces up-regulation of SDF1 and CXCR4 in the rat lumbar DRG. a Representative immunofluorescence
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photomicrographs of SDF1 in lumbar DRG from saline-treated rats and BV-treated rats. b Quantification of the mean immunofluorescent
intensity of SDF1 showing an increase in SDF1 expression following intraplantar BV injection (n = 5/group, ***P < 0.001). ¢ Immunofluorescent
photomicrographs of double-staining of the SDF1 (red) with GFAP (green), a marker for satellite glial cell. d Representative immunofluorescent
photomicrographs of CXCR4 in the lumbar DRG from saline-treated rats, BV-treated rats, and rats that received AMD3100 10 min before BV
injection. e Quantification of the mean immunofluorescent intensity of CXCR4 showing an increase in CXCR4 expression following intraplantar
BV injection and a reduction of CXCR4 in rats that received AMD3100 10 min before injection (n = 5/group, ***P < 0.001). f Western blot showing the
expression of CXCR4 in lumbar DRG from saline-treated rats, BV-treated rats, and rats that received AMD3100 10 min before BV injection. Representative

bands are shown on the top, and data summary is shown on the bottom. (n = 3/group, **P < 0.01, ***P < 0.001)

level of CXCR4 was also significantly increased in the
DRG neurons relative to saline control demonstrated by
both immunofluorescent staining and Western blotting
analysis. However, the up-regulation of CXCR4 induced
by i.pl. BV injection could be significantly prevented by
pre-treatment with subcutaneous AMD3100, a selective
CXCR4 inhibitor, suggesting that the BV-induced over-
expression of CXCR4 in the DRG cells may be partially
mediated by peripheral SDF1-CXCR4 signaling in the
skin through trafficking to the peripheral terminals. The
BV-induced increases in both SDF1 and CXCR4 were re-
stricted to the ipsilateral side to the BV injection, but
with the level of them being unchanged in the contralat-
eral side (not shown).

Inhibition of the BV-induced hyperexcitable state of
primary nociceptor neurons by AMD3100, a selective
antagonist of CXCR4

Similar to our previous reports [28, 29, 40, 41], the pri-
mary nociceptor neurons could be persistently activated
by peripheral inflammatory pain state induced by ipl.

injection of both bee venom and complete Freund’s ad-
juvant (CFA) through up-regulation of both Nav1.8 and
Navl.9 of VGSC in the DRG cells. However, only the
tonic, but not the phasic, type of primary nociceptor
neurons was involved in this processing [41]. The
phasic type of the DRG neurons is characterized by
producing only one AP following repeated electrical
stimulation; however, the tonic type is featured by pro-
ducing many APs following the same electrical stimula-
tion [41].

Figure 3a showed an example of current patch-clamp
recording of tonic type of primary nociceptor neurons
in which the firing rate was significantly increased in
the BV-treated group relative to the saline control (left
panel of Fig. 3a). The averaged number of APs pro-
duced in the BV-treated group was about fivefold more
than the saline control group (Fig. 3e, **P < 0.01 BV vs.
saline, 7 =10 cells for each group). In the BV-treated
group, the rheobase and half-width of APs were signifi-
cantly reduced relative to saline control group (Fig. 3¢, d
*P<0.05 BV vs. saline, n=10 cells for each group);
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Fig. 3 Reversal of BV-induced hyperexcitability of small- and medium-sized DRG neurons by antagonism of CXCR4. a Representative traces of
current-evoked action potentials (AP) in the DRG neurons harvested from saline-treated and BV-treated rats. b—e Histograms exhibiting the effect
of bath application of AMD3100, a selective antagonist of CXCR4, on the absolute values of RMP (b), AP half-width (c), AP rheobase (d), and AP
frequency (e) in DRG neurons from saline-treated and BV-treated rats. RMP rest membrane potential, AP action potential; n = 8/group,*P < 0.05,
**P < 0.01 BV + vehicle vs. saline + vehicle; #P < 0.05 BV + AMD3100 vs. saline + AMD3100

however, the resting membrane potential (RMP) was not
changed between the two groups of DRG neurons
(Fig. 3b). These results were also consistent with our pre-
vious report [41].

To test the role of CXCR4 in mediation of the changed
excitability of DRG neurons, the effects of bath perfu-
sion with AMD3100 (1 pM) to the DRG neurons were
studied. Bath perfusion of AMD3100 could inhibit the
firing rate (#P <0.05 AMD3100 vs. vehicle, n=10 for
each group) and reverse the lowered rheobase value to
the normal level (#P < 0.05 AMD3100 vs. vehicle, n =10
for each group); however, the drug had no effect on the
lowered AP half-width in the BV-treated group (Fig. 3).
Bath perfusion of AMD3100 had no effect on either
membrane properties or firing rate in saline control

group (Fig. 3).

Suppression of BV-induced up-regulation of Nav1.8 and
phosphorylated ERK by blocking CXCR4

Based upon our present and previous data, it is reasonable
to link the functions of SDF1-CXCR4 signaling with ex-
pression of Nav1.8 due to the following accumulating evi-
dence: (1) the hyperexcitability of the tonic type of DRG
neurons induced by peripheral inflammatory pain state
was associated with up-regulation of Nav1.8 and Nav1.9
[28, 29, 41], (2) anti-sense down-regulation of Nav1.8 or
Nav1.9 resulted in reversal of altered excitability of DRG

neurons induced by peripheral inflammatory pain state
[28, 29], and (3) the hyperexcitability of the tonic type of
DRG neurons induced by peripheral inflammatory pain
state could be blocked by antagonism against CXCR4 with
AMD3100 (see in the current study). Thus, we proposed
that activation of SDF1-CXCR4 signaling should be
involved in regulation of Nav1.8 expression through an
unknown molecular downstream route. Because it has
been suggested that ERK, a subfamily of mitogen-
activated protein kinase (MAPK), is a common intra-
cellular downstream messenger of SDF1-CXCR4 sig-
naling [42-44], examination of the roles of ERK is also
reasonable.

We therefore firstly evaluated whether the BV-induced
overexpression of Navl.8 could be blocked by antagon-
ism against CXCR4 and inhibition of activation of ERK.
As shown in Fig. 4a and b, pre-treatment with ipl.
AMD3100 and i.t. U0126, respectively, could remarkably
block the increased expression of Navl.8 in the DRG
neurons induced by ipl. BV injection. Using Western
blot, it was also confirmed that the BV-induced up-
regulation of both Navl.8 and phosphorylated form of
ERK could be blocked by i.pl. AMD3100 as well as by
i.t. U0126 (Fig. 4c and d). Moreover, as shown in Fig. 4e,
pre-treatment with i.pl. U0126 could also block the in-
creased expression of Navl.8 in the DRG neurons in-
duced by ipl. BV injection.
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Relief of BV-induced persistent spontaneous nociception
and primary pain hypersensitivity by peripherally local
injection of AMD3100

During the 1-h time course of the BV-induced PSN, per-
ipherally local pre-treatment with AMD3100 (100 and
200 pg/20 pl) resulted in a dose-related suppressive ef-
fect on the development of paw-flinching reflex relative
to the vehicle control, while the lowest dose (10 pg/
20 ul) had no significant effect (Fig. 5a). The averaged
inhibition rate produced by AMD3100 was 26.90 % for
100 pg and 40.17 % for 200 pg, respectively (Fig. 5b).

As for the effects of AMD3100 on the pain hypersensi-
tivity, only the highest dose of AMD3100 (200 pg/20 pl)
could significantly prevent the development of both pri-
mary heat and mechanical hypersensitivity but with the
mirror-image heat hypersensitivity being unaffected
(Fig. 5¢, d). The same treatment of AMD3100 even at
the highest dose used in the present study had no influ-
ence upon the basal pain sensitivity to either heat or
mechanical stimuli (data not shown).

Involvement of ERK signaling and Nav1.8 in the
development and maintenance of BV-induced persistent
spontaneous nociception and primary pain hypersensitivity
As shown in Figs. 6a and 7a, i.pl. BV injection produced
a rapid-onset, long-term spontaneous flinching reflex

which could last for 1-2 h. Comparing with vehicle-
treated control group, it. pre-treatment with U0126
(10 pg/10 pl, 10 min before) significantly prevented the
development of persistent spontaneous nociception
(Fig. 6a, b). Likewise, ipsilateral i.pl. treatment with A-
803467 (500 pg/50 pl) 10 min before BV injection also
prevented the occurrence of persistent flinching reflex
(Fig. 7a, b).

In comparison with vehicle group, pre-treatment with
it. U0126 (10 pg/10 ul) prevented the development of
primary mechanical and heat hypersensitivity identified
in the hindpaws ipsilateral to BV injection and the
mirror-image heat hypersensitivity in the contralateral
hindpaws (Fig. 6¢, d). Figure 7c and d showed that the
established primary mechanical and heat hypersensitivity
could be reversed by ipl. treatment with A-803467
(500 pg/50 ul) 90 min post-BV injection, while the
mirror-image heat hypersensitivity remained unaltered.

Discussion

In the present study, we demonstrated that the SDF1—
CXCR4 signaling contributes to the hyperexcitability of
tonic type of the primary nociceptor cells through up-
regulation of Navl1.8 via regulating ERK pathway. Block-
ing the SDF1-CXCR4 signaling as well as ERK activa-
tion and Navl1.8 activity can suppress both the persistent
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spontaneous nociception and primary pain hypersensi-
tivity through down-regulation of both ERK and Navl.8.
Taken together, it is concluded that SDF1-CXCR4 sig-
naling contributes to persistent pain and hyperalgesia
(and allodynia) via regulating the excitability of primary
nociceptive neurons maintained by ERK-dependent
Nav1.8 up-regulation.

Maintenance of primary nociceptor neuronal
hyperexcitability by SDF1-CXCR4 signaling under
peripheral inflammatory pain state

In the present study, it is interesting to note that antag-
onism of CXCR4 by bath perfusion of DRG with
AMD3100 results in significant inhibition of the BV-
enhanced neuronal firing rate by reversing the lowered
rheobase value to the normal level. This result suggests
a maintaining role of SDF1-CXCR4 signaling in the pri-
mary nociceptor hyperexcitability at the neuronal cell
body level caused by peripheral inflammatory pain state.
The primary nociceptor neuronal cell body hyperexcit-
ability caused by the BV-induced peripheral inflamma-
tory pain state has already been demonstrated in our
previous reports [28, 29, 40, 41]. Regarding this, one
question may arise to be asked: which cell types are pos-
sible sources of SDF1 and CXCR4 in the DRG? To an-
swer this question, we further demonstrated that, by
double immunofluorescent staining and/or Western
blotting, SDF1 was exclusively up-regulated in GFAP-

positive non-neuronal SGCs of the DRG following i.pl.
BV injection, while CXCR4 was mainly co-localized with
IB4, SP, and TRPV1, specific biomarkers of primary
nociceptor neurons in the DRG. This at least suggests
that the non-neuronal SGCs can be activated by periph-
eral inflammatory pain state that serve as a source of
SDF1 release, allowing its binding to CXCR4 be over
expressed in the primary nociceptor neuronal cell body
caused by persistent firing initiated in the peripheral ter-
minals [33, 45-47]. The mechanism of the activation of
non-neuronal SGCs may be due to the fractalkines re-
leased from DRG neurons which has been demonstrated
by Souza and colleagues in ipl. carrageenan injection-
induced inflammatory pain model [48]. It has been dem-
onstrated that, under physiological state, both primary
afferent neurons and non-neuronal SGCs in the DRG
constitutively contain SDF1 that is maintained at a very
low level [9]. However, the source of SDF1 under patho-
logical level may vary depending upon different condi-
tions. In antiretroviral toxic neuropathy model, Bhangoo
and colleagues have observed up-regulation of SDF1 and
CXCR4 mRNA at 7 and 14 days after administration of
antiretroviral drug 2, 3-dideoxycytidine, and the en-
hanced expression of SDF1 was mostly observed in the
DRG non-neuronal cells [49]. Similarly, Dubovy and col-
leagues have also demonstrated that the non-neuronal
SGCs were the source of SDF1 by showing co-localization
of SDF1 and glutamine synthetase in the DRG of animals
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with neuropathic pain induced by CCI [15]. Based upon
the above lines of evidence, it is highly suggested that the
inducible release of SDF1 from non-neuronal SGCs by
peripheral inflammatory and neuropathic pain conditions
should result in development of intraganglionar inflamma-
tory microenvironment, by which long-term hyperexcit-
ability of primary nociceptor neurons can be maintained.
As lines of supporting evidence, it has been demonstrated
that the SGCs in the DRG when they had been activated
by ipl. carrageenan injection could produce some pro-
inflammatory mediators (TNF«, IL-1f, and prostanoids)
that can directly excite the primary nociceptive neurons
[48]. Moreover, SDF1 has been shown to significantly in-
crease intracellular calcium concentrations in the isolated
DRG neurons under several persistent pain conditions
[49-51]. It has also been demonstrated that exogenous
SDEF1 could lower the threshold for action potential gener-
ation and depolarize nociceptive DRG neurons in cultured
DRG neurons [21]. However, sensory neurons of the DRG
may also be the source of SDF1 since increase in SDF1
mRNA or protein have been observed in DRG neurons
of transgenic mice with high-fat diet-induced type II
diabetic neuropathy [50] and animals receiving repeated
morphine treatment [51]. Besides SDF1, other chemo-
kines are also likely to be involved in primary sensory
neuronal hyperexcitability, because up-regulation of
CCL2, CCL3, and CXCL1 by pain and direct activation
of DRG neurons by them have been seen in several pre-
vious reports [6, 30, 31, 52, 53].

As for the source of CXCR4, a selective cognate receptor
of SDF1, only primary sensory neurons have been targeted.
Consistent with some previous reports [9, 16, 21], in our
present study, CXCR4 was constitutively present but over-
expressed under peripheral inflammatory pain state in both
non-peptidergic (IB4-positive) and peptidergic (SP-posi-
tive) primary nociceptor neurons. It is also co-localized
with TRPV1, a thermonociceptor of primary sensory affer-
ent. However, the overexpression of CXCR4 induced by
intraplantar BV injection could be significantly prevented
by pre-treatment with ipl. AMD3100, a selective CXCR4
inhibitor, suggesting that the BV-induced overexpression of
CXCR4 in the DRG cells may be partially mediated by per-
ipheral SDF1-CXCR4 signaling in the skin which was traf-
ficking from neuronal soma to the peripheral terminals. In
the case of SDF1-CXCR4 signaling pathway, Reaux-Le
and colleagues have found that CXCR4 receptor was con-
stitutively present in both peptidergic (CGRP positive) and
non-peptidergic (IB4 positive) DRG neuronal soma in rats
[9]. They have also demonstrated that CXCR4: can be local-
ized in pre-synaptic components of both type I and type II
glomeruli in the spinal dorsa horn under electron micro-
scope, indicating that CXCR4 could be axonally trans-
ported to both peripheral and central terminals of the
primary afferent neurons in DRG and exert its functions
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[9]. Although we do not detect the protein level of CXCR4
in the skin directly in the current study, Reaux-Le and col-
leagues’ results can lend support to the rationale of periph-
eral administration of AMD3100 in our current study
because CXCR4 immunoreactivities co-expressed in the
CGRP-positive fibers have been shown to be present in the
glabrous skin as well as in the DRG cells and project to the
dermis [9]. The functional nature of this increased CXCR4
receptor expression was identified by our behavioral
pharmacology assays in which pre-treatment with ipl
AMD?3100 significantly prevented the development of the
BV-induced persistent spontaneous pain-related behaviors
and pain hypersensitivity. Moreover, bath perfusion of
medium- and small-sized DRG neurons with AMD3100
also significantly reduced BV-induced tonic discharges by
restoration of rheobase value to normal level, suggesting a
maintaining role of SDF1-CXCR4 signaling in the primary
nociceptor hyperexcitability. Since it is known that the de-
crease in rheobase value may reflect changes in persistent
Na + conductance [54, 55], the roles of TTX-resistant
VGSC a subunits Nav1.8 and/or Nav1.9, which are select-
ively expressed in the primary nociceptor neurons, should
be further investigated. As aforementioned, we have
already demonstrated that Nav1.8 and Nav1.9 could be up-
regulated in the small and medium-sized DRG cells by i.pl.
melittin, the major toxin of whole bee venom, or CFA in-
jection, resulting in increased persistent current mediated
by Navl.8 and Nav1.9 and enhanced firing rate of tonic,
but not phasic, type of primary nociceptor neurons with
lowered rheobase value [28, 29, 41]. Down-regulation of
Nav1.8 and Nav1.9 by anti-sense oligodeoxynucleotide, re-
spectively, resulted in restoration of Navl.8 and Navl.9
current density and rheobase value, leading to reduction of
hyperexcitability of primary nociceptor neurons and relief
of persistent nociception and pain hypersensitivity induced
by i.pl. injection of melittin or CFA [28, 29]. In the present,
our behavioral data also demonstrated that peripheral pre-
treatment with A-803467, a selective Nav1.8 blocker, could
inhibit the persistent nociception and reverse the primary
pain hypersensitivity induced by i.pl. BV injection, indicat-
ing that increased expression of Navl.8 in the DRG in-
duced by i.pl. BV injection contributed to the development
and maintenance of the BV-induced pain-related be-
haviors. Taken together, we proposed that there must
be a functional link between SDF1-CXCR4 signaling
and expression of Nav1.8 or Navl.9 that maintains pri-
mary nociceptor neuronal hyperexcitability under per-
ipheral inflammatory pain state.

Involvement of SDF1-CXCR4 signaling in the
up-regulation of Nav1.8 sodium channels in DRG

neurons via ERK-dependent pathway

In the present study, we further demonstrated that per-
ipheral antagonism against CXCR4 pharmacologically
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with AMD3100 10 min prior to i.pl. BV could prevent
up-regulation of Navl.8 sodium channel from occur-
rence in the DRG. The phosphorylation of ERK (pERK),
an isoform of MAPK, was also significantly suppressed
in the DRG by pre-treatment of AMD3100 at the i.pl.
BV injection site. The phosphorylation of ERK has been
shown to be critical for up-regulation of Nav1.8 [56].
CXCR4 activation has also been shown to induce mul-
tiple intracellular signal transduction pathways, includ-
ing ERK signaling pathway [42—44]. Both intrathecal and
intraplantar pre-treatment of U0126, an ERK inhibitor,
could inhibit the level of pERK and expression of Nav1.8
in the DRG. Furthermore, consistent with our previous
findings that peripheral ERK contributes to the persist-
ent pain induced by melittin, we here found that the
BV-induced persistent nociception and primary mechan-
ical and thermal hypersensitivity could be inhibited by
pre-treatment with i.t. U0126 and i.pl. A-803467, re-
spectively. These results suggest that SDF1-CXCR4 sig-
naling should be involved in up-regulation of Navl.8
through an ERK-dependent pathway in the primary
nociceptor neurons following ipl. BV injection, which
contributes to hyperexcitability of the primary nocicep-
tor neurons that mediate maintenance of both persistent
spontaneous nociception and primary pain hypersensi-
tivity. In support, up-regulation of Nav1.8 sodium chan-
nel by chemokine CCL2 has been seen in acutely
dissociated and cultured DRG neurons from naive rats
that are likely to be mediated by PKC-NF«B and Gfy-
dependent mechanisms [30, 57, 58]. The expression level
of Navl.8 has also been demonstrated to be up-
regulated by TNFa or down-regulated by interleukin-10
(IL-10) in rat DRG neurons [26, 59]. However, unlike
the release of SDF1 from the SGCs, the source of che-
mokine CCL2 and pro-inflammatory mediators TNFa
and IL-10 were thought to be released through paracrine
or autocrine from DRG neurons that possess their re-
spective receptors [26, 30, 57-59]. Taken ours and previ-
ous results together, it seems that there are at least two
regulating patterns to be involved in up-regulation of
Navl.8 in the DRG under peripheral inflammatory and
neuropathic pain conditions: one is likely to be initiated
by neuronal activity-dependent autocrine—autoreceptor
pattern mediated by TNFa-TNFR and/or CCL2-CCR2
signaling pathways within the primary nociceptor
neurons [26, 30, 57-59], while the other is likely to be
initiated by SGC-neuronal pattern mediated by SDF1-
CXCR4 signaling pathway. We propose that the auto-
crine—autoreceptor pattern should be involved in the
early induction process, while the satellite glial-neuronal
pattern in the late maintaining process of both peripheral
inflammatory and neuropathic pain conditions. As a line
of supporting evidence, pro-inflammatory mediator TNFa
has been shown to be only involved in the induction of
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primary nociceptor hyperexcitability but not involved in
the maintaining process [26, 59]. Contrarily, the SGC-
neuronal pattern mediated by SDF1-CXCR4 signaling
pathway was shown, in the current study, to be involved
in the maintaining process because the well-established
BV-induced primary nociceptor neuronal firing could be
suppressed by bath perfusion of the DRG with AMD3100,
thus providing with a novel molecular target for treatment
of clinical pain.

Navl.8 is a sensory neuron-specific channel which acts
as a major contributor to the upstroke of action potentials
and supports repetitive firing in response to depolarizing
input, and is preferentially expressed in nociceptive DRG
and trigeminal ganglion neurons [24, 60-62]. By using
diphtheria toxin to kill all Navl.8-positive sensory neu-
rons, mechanical, cold, and inflammatory pain have been
demonstrated to be ameliorated [63]. Nav1.8-null mutant
mice have been shown to have weak responses to noxious
cold and mechanical stimulation [64]. Moreover, intraperi-
toneal administration of A-803467, a potent Navl.8 so-
dium channel blocker, has been shown to produce
significant anti-nociception in inflammatory pain models
induced by CFA and capsaicin [65]. Collectively, these
findings suggest that Nav1.8 may be a good target for the
development of novel analgesics for treatment of inflam-
matory pain hypersensitivity [66]. However, the side ef-
fects, which were produced due to the high degree of
structural homology within the VGSC family, and the
poor bioavailability of the existing VGSC blockers limit
their clinical use [66—68]. Based upon our present result,
targeting the SDF1-CXCR4 signaling between SGC-
neuronal link might be a good option for treatment of
chronic pain. Because the SDF1-CXCR4 signaling may
also regulate other various downstream ion channels such
as other subtypes of VGSC, voltage-gated calcium chan-
nels, and the family of TRP (TRPV, TRPA, TRPM, TRPC)
channels, further intensive studies of the regulating
functions of SDF1-CXCR4 signaling at the DRG neur-
onal cell body level may shed new light on the treat-
ment of chronic inflammatory and neuropathic pain
conditions.

Conclusions

In summary, our present data demonstrated that, under the
peripheral inflammatory pain condition, SDF1-CXCR4 sig-
naling between non-neuronal SGCs and primary nocicep-
tor neurons is dramatically enlarged through up-regulation
of both substances in the DRG which acts as a mediator for
the intraganglionar neuroinflammatory microenvironment
and induces ERK-dependent up-regulation of Nav1.8 that
contributes to the maintaining process of primary nocicep-
tor neuronal hyperexcitability that is required for mainten-
ance of persistent spontaneous pain and hypersensitivity.
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