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Abstract

Background: Autism spectrum disorder (ASD) affects many children and juveniles. The pathogenesis of ASD is not
well understood. Environmental factors may play important roles in the development of ASD. We examined a possible
relationship of inflammatory pain in neonates and the development of ASD in juveniles.

Methods: Acute inflammation pain was induced by 5 % formalin (5 pl/day) subcutaneous injection into two hindpaws
of postnatal day 3 to 5 (P3-P5) rat pups. Western blot, immunohistochemical, and behavioral examinations were
performed at different time points after the insult.

Results: Formalin injection caused acute and chronic inflammatory responses including transient local edema,
increased levels of inflammatory cytokines, TNF-a, and IL-13 in the blood as well as in the brain, and increased
microglia in the brain. One day after the pain insult, there was significant cell death in the cortex and hippocampus.
Two weeks later, although the hindpaw local reaction subsided, impaired axonal growth and demyelization were seen
in the brain of P21 juvenile rats. The number of bromodeoxyuridine (BrdU) and doublecortin (DCX) double-positive
cells in the hippocampal dentate gyrus of P21 rats was significantly lower than that in controls, indicating reduced
neurogenesis. In the P21 rat's brain of the formalin group, the expression of autism-related gene neurexin 1 (NRXNT),
fragile X mental retardation 1 (FMRT1), and oxytocin was significantly downregulated, consistent with the gene
alteration in ASD. Juvenile rats in the formalin group showed hyperalgesia, repetitive behaviors, abnormal locomotion,
sleep disorder, and distinct deficits in social memory and social activities. These alterations in neuroinflammatory
reactions, gene expression, and behaviors were more evident in male than in female rats. Importantly, an
anti-inflammation treatment using indomethacin (10 mg/kg, i.p.) at the time of formalin injections suppressed
inflammatory responses and neuronal cell death and prevented alterations in ASD-related genes and the development
of abnormal behaviors.

Conclusions: These novel observations indicate that severe inflammatory pain in neonates and persistent
inflammatory reactions may predispose premature infants to development delays and psychiatric disorders including
ASD. The prevention of pain stimuli and prompt treatments of inflammation during development appear vitally
important in disrupting possible evolution of ASD syndromes.
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Background

In the USA, one out of eight infants is born premature
[1]. Preterm infants are at increased risk for develop-
mental disorders, abnormal behaviors, and cognitive dys-
function syndromes that can be associated with autism
spectrum disorder (ASD) [2, 3]. ASD includes a hetero-
geneous group of early onset childhood neurodevelop-
mental disorders [4]. The prevalence of ASD is 1 in 150
individuals and occurs more frequently in males than in
females [5]. The incidence estimation may be even
higher, affecting 1 in 68 children when combining three
basic categories of neurodevelopmental disorders: autis-
tic disorder (autism), Asperger syndrome, and pervasive
developmental disorder (PDD-NOS) [6]. Although the
clinical symptoms are heterogeneous, ASD patients
show common characteristics including social inter-
action deficits, communication difficulties, stereotyped
repetitive behaviors, limited repertoire of interests, and,
in some cases, cognitive problems [7]. Early symptoms
of ASD may include locomotion impairment [7, 8]. ASD
patients may suffer from comorbid conditions such as
anxiety, epilepsy, intellectual disability, and depression
[8]. According to the recent guideline of American Psy-
chiatric Association (APA), clinical diagnostic criteria
include the following: (a) persistent deficits in social
communication and social interaction across multiple
contexts; (b) Restricted, repetitive patterns of behavior,
interests, or activities; (c¢) symptoms must be present in
the early developmental period; (d) symptoms cause
clinically significant impairment in social, occupational,
or other important areas of current functioning; and (e)
these disturbances are not better explained by intellec-
tual disability (intellectual developmental disorder) or
global developmental delay [9]. In this report, we used
the term autism spectrum disorder or ASD to refer to
autism-like behaviors in the animal model tested in this
investigation.

The contribution of genetic and environmental fac-
tors to the development of ASD has drawn increasing
attention in basic and clinical research. ASD most
likely emerges from a complex interaction between
pre-existing genetic vulnerabilities and environment
factors. Although a number of genes such as neurexin
1 (NRXN1), fragile X mental retardation 1 (FMR1),
and oxytocin/oxytocin receptors have been identified
to be ASD related, the contribution of environmental
factors to the development of ASD is not well under-
stood. It was noticed that children born prematurely
more often display poorer executive functionality and
cognition and are more likely to have behavioral prob-
lems [10]. There are reports that premature infants
under stress or surgery may show increased inflamma-
tory factors such as TNF-a and IL-6 [11-13]. It was
suggested that premature birth and susceptibility genes
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may make infants more vulnerable to allergic, environ-
mental, infectious, or stress-related triggers that could
stimulate mast cell release of pro-inflammatory and
neurotoxic molecules, thus contributing to brain inflam-
mation and ASD pathogenesis [12]. In clinical practices,
premature infants in the neonatal intensive care unit
(NICU) are routinely exposed to an average of ten therap-
ies or procedures per day without analgesics [14]. Many of
the procedures are painful and may cause inflammatory
responses and local tissue edema/damage. It is now be-
lieved that infants are more sensitive to pain due to the in-
complete development of the brain and the descending
inhibitory tracts in their spinal cord [15]. Further, the im-
mature sensory processing system within the newborn
spinal cord results in lower thresholds for excitation and
sensitization [16]. Although a few reports noticed different
pain experiences in ASD children and discussed special
care for these young patients [17, 18], the possibility that
early life inflammatory pain experience influences the pro-
gression of ASD has not been explored.

A subcutaneous formalin injection-induced acute in-
flammatory pain model has been widely used for many
years in pain research [19, 20]. Formalin-produced local
response patterns lasting for approximately 1 h are com-
posed of phase I reactions for about 5 min followed by a
longer phase II reaction of about 40 min, characterized
by shaking and/or linking of the paw(s). This model is
suitable for the examination of acute inflammatory pain
and the chronic consequences following the acute pain
insult. In the present investigation, the inflammatory
pain insult was applied to postnatal day 3 to 5 (P3-P5)
pups that are equivalent in brain developmental stage to
human preterm infants [21]. Using this model, we aimed
to elucidate whether repeated inflammatory pain experi-
enced by preterm/premature babies could lead to acute
and delayed brain damage that might be associated with
social and behavioral abnormalities at the juvenile age.

Methods

Animals and ethics, consent, and permissions

Wistar rats (female adult mothers, neonatal pups, and
juvenile rats of male and female sex) were kept in the
Emory University animal facility under environmental
control of standardized room temperature (22-23 °C),
low humidity, and 12-h lighting circle. Animals were
allowed free access to water and food. Postnatal rat pups
stayed with their mothers during experimental periods.
All studies were approved by the Institutional Animal
Care and Use Committee (IACUC) at Emory University.

Inflammatory pain model of neonatal rats

A subcutaneous injection (sc) of formalin induces pro-
gressive and selective activation of the somatosensory
pathway and limbic system structures in the brain and
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brain stem [20]. Formalin injection causes a biphasic re-
sponse. The early phase (0—5 min) results mainly from
C-fiber activation due to the peripheral stimulus, while
the late phase (more than 20 min) results from the com-
bination of an inflammatory reaction in the peripheral
tissue and functional changes in the dorsal horn of the
spinal cord [19, 20].

The inflammatory pain model followed our previous
procedures with some modifications [22]. Male and fe-
male rat pups at postnatal day 3 (P3) received 5-pl sub-
cutaneous injections of 5 % formalin or saline solution,
to each hind paw. The second paw injection was per-
formed 1 h after the first one to give the pups some rest.
Ten-ul Luer lock syringes (Hamilton Co., Reno, NV) fit-
ted with an intradermal needle were used for injections.
For response to the inflammatory pain, animals were
sacrificed 24 h after these formalin injections. For sub-
acute and chronic consequences of the pain insult, two
more injections were performed at P4 and P5 and sacri-
ficed at different specified times later. After each injec-
tion, the pups were immediately returned to their
mothers in the home cage.

Drug administration

Indomethacin was purchased from Sigma. Indomethacin
(10 mg/kg) was administered intraperitoneally within
10 min after injections of 5 % formalin or saline solution.

Paw volume measurements

The paw volume of rats was measured 1 day before the
first formalin injection and 1,3, 5, 7, 9, 11, 13, and
18 days after the first formalin injection using a
plethysmometer (UGO Basile, Varese, Italy). For each
day, the edema was expressed as the increase in paw vol-
ume, and the percentage of induction of edema was
expressed as the increase in volume with respect to the
control group.

Immunohistochemistry
After sacrifice and dissection, brains were immediately
frozen at -80 °C in the optimal cutting temperature
(OCT) compound (Tissue-Tek®, Sakura Finetek USA,
Inc., Torrance, CA). Sections were cut at 10-um thick-
ness using a cryostat (Leica Biosystems, Buffalo Grove,
IL). Brains from animals that were perfused with 0.9 %
saline (pH 7.4) followed by 10 % buffered formalin for
detection of myelin basic protein (MBP) and bromo-
deoxyuridine (BrdU) immunoreactivities were removed
and placed in formalin for 24 h, then placed in a 30 %
sucrose solution at —20 °C in OCT compound, and were
cut into 14-pm thick sections on a cryostat (Leica
Biosystems).

The brain sections were then fixed for 10 min in 10 %
buffered formalin, washed in phosphate buffered saline
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(PBS) three times, then incubated in -20 °C ethanol
acetic acid (2:1) for 5 min or methanol for 7 min.
Sections were washed in PBS three times and then incu-
bated in 0.2 % TritonX-100 for 5 min. After three more
washes in PBS, sections were incubated in 1 % fish
gelatin (Sigma, St. Louis, MO) for 60 min. Sections were
again washed in PBS or automation buffer, and an
appropriate primary antibody was applied for overnight
incubation at 4 °C: anti-neuronal nuclei (NeuN; Millipore,
Billerica, MA), anti-neurofilament (NF; Millipore), anti-
BrdU (AbD Serotec; Raleigh, NC or Santa Cruz Biotech-
nology, Dallas, TX), anti-MBP (Millipore), anti-neurokinin
1 receptor (NK-1R; Millipore), and anti-Iba-1 (Biocare
Medical, Concord, CA). Slides were then washed and
incubated with the appropriate conjugate secondary
antibody for 60 min at 37 °C: donkey anti-mouse Cy5,
donkey anti-rat and donkey anti-rabbit Cy3 (Jackson
ImmunoResearch, West Grove, PA), and donkey anti-
goat 488 (Invitrogen, Grand Island, NY). In some slides,
nuclei were counterstained with Hoechst 33342
(1:20,000; Molecular Probes, Eugene, OR) for 5 min.
Slides were washed three times in PBS and cover-slipped
prior to imaging under a fluorescent microscope
(Olympus BX61; Olympus America, Inc., Melville, NY).
The image data were collected using the SlideBook 4.2
software (Olympus America, Inc.). All measurements
were performed by an individual who was blinded to
the experimental groups.

TUNEL staining

In brain section containing the cortex, hippocampus,
and other regions, terminal deoxynucleotidyl transfer-
ase dUTP nick end labeling (TUNEL) staining was
performed using a commercial kit (DeadEnd™ Fluoromet-
ric TUNEL system; Promega, Madison, WI) to label DNA
fragmentation in dead or dying cells in brain regions. In
brief, brain sections were placed in equilibration buffer
and incubated with nucleotide mix and rTdT enzyme at
37 °C for 1 h and 15 min. Reactions were terminated by
x2 SSC solution for 15 min. Nuclei were counterstained
with Hoechst 33342 (1:20,000; Molecular Probes) for
5 min. TUNEL-positive cells were visualized using the
fluorescein isothiocyanate (FITC) channel on the Olympus
fluorescence microscope (Olympus America, Inc.).

Cell counting

Cell count was performed following the principles of
design-based stereology. Systematic random sampling was
employed to ensure accurate and non-redundant cell
counting. Every section under analysis was at least 100 um
away from the next. Six 10- to 14-um thick sections,
frozen or perfusion fixed, spanning the entire region of
interest, were selected for cell counting. Counting was
performed on six non-overlapping randomly selected x20
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fields per section. Images were taken in an anterior to pos-
terior direction from the same region of the cortex defined
according to a standard atlas of the rat brain. Cell count-
ing was performed by an individual who was blinded to
the experimental groups.

The data analysis of reactive microglia in the brain re-
gions was based on the morphological assessment of
Iba-1-positive cells according to published method [23].
Briefly, based on the length of branches, thickness of
branches, and cell body volume, the Iba-1-positive cells
were categorized to three classes: (a) ramified microglia
(surveillant/resting microglia), characterized by small
round or oval cell bodies containing a small volume of
cytoplasm; (b) hypertrophied microglia, which had larger
cell bodies and thicker processes than ramified micro-
glia; and (c) bushy microglia, which had numerous but
short processes forming thick bundles around their
swollen cell bodies. Hypertrophied and bushy Iba-1-
positive cells were identified as activated microglia.

Axon measurements

To study axon diameter and distribution, a minimum of
100 axons labeled by neurofilament (NF) were randomly
selected per brain section. Three sections were randomly
selected for each animal, and 100 axons per section were
analyzed in cortical areas adjacent to layer VI, aligned
radially, and perpendicular to the cutting field. Axonal
diameter was estimated by measuring the diameter per-
pendicular to the center of the maximum diameter of
the axon profile, as previously described by Zikopoulos
and Barbas [24]. Measured axons were then categorized
as small (<0.35 pm), medium (0.35-0.69 pm), large (0.7—
1.4 pm), and extra-large (>1.4 pm).

Myelinated axons were quantified using the principles
of design-based stereology stated above. Axons labeled
with MBP were quantified using Image] software (NIH,
Bethesda, MD, USA) area fraction measurements to deter-
mine the density of myelinated axons in the region of
interest. Counting was performed on six non-overlapping
randomly selected x20 fields per section. Each section was
14-pm thick and at least 100 pm from the next section.

Isolation of total RNA and quantitative RT-PCR

Total RNA was extracted from the whole blood and the
specific brain regions of rats in formalin and control
groups using RiboPure™-Blood Kit (Invitrogen) and TRI-
zol reagent (Invitrogen), respectively. RNA integrity was
confirmed by the detection of 28s and 18s rRNA bands
in 1 % agarose gel with ethidium bromide. Also, RNA
was confirmed to be free of genomic DNA contamin-
ation by PCR in the absence of reverse transcriptase.
The RNA samples were reverse transcribed in 20 pl of a
reaction mixture containing x2 RT buffer and x20 RT
enzyme mix according to the manufacturer’s instructions
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(Life Technologies, Grand Island, NY, USA) at 37 °C for
60 min. The samples were then incubated at 95 °C for
5 min and transferred to 4 °C. For measuring gene expres-
sions, quantitative real-time polymerase chain reaction
(qRT-PCR) was done with an ABI 7500 Fast Real-Time
system (Applied Biosystems, Foster City, CA, USA) with
the FastStart DNA Master SYBR Green kit (Roche Diag-
nostics, Mannheim, Germany), and results were analyzed
with the 7500 software supplied with the machine.
GAPDH was used as an internal control. PCR primers
used were listed as follows: for TNF-a, 5-ATGGCC
TCCCTCTCAGTTC-3" (forward) and 5'-TTGGTGGTT
TGCTACGACGTG-3" (reverse); for IL-1B, 5'-CATCTT
TGAAGAAGAGCCCG-3’ (forward) and 5'-AGCTTTC
AGCTCACATGGGT-3" (reverse); for IL-6, 5-GCCC
TTCAGGAACAGCTATG-3’ (forward) and 5-CGGAC
TTGTGAAGTAGGGA-3’ (reverse); for substance P (SP),
5'-ATGAAAATCCTCGTGGCGGT-3" (forward) and 5'-
CAGCATCCCGTTTGCCCATT-3’ (reverse); and for 18s,
5'-ACCACAGTCCATGCCATCAC-3’ (forward) and 5'-
CACCACCCTGTTGCTGTAGCC-3’ (reverse).

Western blot analysis

Western blotting was used to detect the expression of
inflammatory- and ASD-related genes. After sacrifice,
animals were subjected to transcardial perfusion using
PBS. Brain cortical and hippocampal tissues were lysed
in a buffer containing 0.02 M Na,P,0O,, 10 mM Tris-
HCI (pH 7.4), 100 mM NaCl, 1 mM EDTA (pH 8.0), 1 %
Triton, 1 mM EGTA, 2 mM NazVOy,, and a protease in-
hibitor cocktail (Sigma). The supernatant was collected
after centrifugation at 15000g for 10 min at 4 °C. Protein
concentration was determined with a bicinchoninic acid
assay (Pierce Biotechnology, Rockford, IL, USA). Equiva-
lent amounts of total protein were separated by molecu-
lar weight on an SDS-polyacrylamide gradient gel and
then transferred to a PVDF membrane. The blot was in-
cubated in 10 % nonfat dry milk for 1 h and then reacted
with primary antibodies at 4 °C for overnight.

The primary antibodies and their dilutions are as fol-
lows: rabbit anti-TNF-a antibody (Cell Signaling) 1:2000,
rabbit IL-1B antibody (Cell Signaling, Danvers, MA,
USA) 1:1000, rabbit IL-6 antibody (Cell Signaling)
1:1000, mouse anti-actin (Sigma) 1:5000, rabbit anti-NK-
1R (Millipore) 1:2500, mouse anti-neurexin 1 (NRXN1;
Cell Signaling) 1:1000, rabbit anti-fragile X mental
retardation 1 (FMR1; Cell Signaling) 1:1000, mouse anti-
neuroligin3 (NLGNS3; Millipore) 1:1000, rabbit anti-
autism susceptibility gene 2 (AUTS2; Abcam) 1:2000,
goat anti-oxytocin (Abcam) 1:1000, and rabbit anti-
oxytocin receptor (Santa Cruz) 1:500. After washing with
Tris-buffered saline with Tween-20 (TBST), membranes
were incubated with AP-conjugated or HRP-conjugated
secondary antibodies (GE Healthcare, Piscataway, NJ,
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USA) for 2 h at room temperature. After final washing
with TBST, the signals were detected with bromochloroi-
dolylphosphate/nitroblue tetrazolium (BCIP/NBP) solu-
tion (Sigma) or film. Signal intensity was measured by
Image] (NIH) and normalized to the actin signal intensity.

Behavioral tests

Locomotor activity using TopView system

Behavioral changes of experimental rats were monitored
and analyzed using the TopScan System (Clever Sys Inc.,
Reston, VA, USA). P10, P15, and P20 rats were allowed
to freely move in an open field container (50 cm x
50 cm x 50 ¢cm high) during the dark cycle. Travelled
distance and velocity for locomotor activity were re-
corded for 1 h. After finishing the recording, the videos
were analyzed by the TopScan Realtime Option Version
3.0 (Clever Sys Inc.).

Hot-plate test

Pain sensitivity was measured using a hot-plate set to 55
+/- 1 °C. Response latency was measured as the time
taken for the rat to jump after placing on the hot plate.
The maximum allowed time was 30 s. The reported la-
tency was the average value calculated from three mea-
surements per animal. Repeated tests were separated by
at least 15 min.

Three chamber sociability test

The three-chamber test was utilized to test general soci-
ability and response to social novelty. The test was per-
formed in a three-chambered box that has openings
between the chambers. Glass slides were used to cover
the openings during phase changes. First, the test subject
was placed into the empty box and allowed to explore
all chambers freely for 10 min. After the habituation
period, a stranger (non-littermate) rat contained in a
wire cage was placed into the left chamber. The rat was
then allowed to explore all three chambers. Both the
time spent with the stranger rat (stranger #1) and the
time in the empty chamber were recorded over a 10-min
session. The test rat was then returned to the center
chamber, and the openings were blocked. In the social
novelty test, a second stranger rat (stranger #2) was
placed in the empty chamber. The central chamber door
was opened, and the test rat was free again to explore
the strangers #1 and #2. Since the test rat had already
had contact with stranger #1 but not #2, the time it
spent with strangers #1 and #2 tested its novel social
interaction.

Social interaction test

This test was conducted with untreated, unfamiliar,
weight-matched partner same sex rats. Subject and
stranger rats were put together in a clean empty cage
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and recorded by the TopScan System (Clever Sys Inc.).
We scored time spent in social interaction (social sniff-
ing, social grooming, and social following) of the animals
for 5 min between 1:00 and 5:00 pm. The cage was
washed with a 70 % alcohol solution and water before
we performed the next test in order to prevent possible
contamination by previous tests.

Home cage observation

The HomeCage Monitoring System (Clever Sys Inc.)
was used to detect the behavior patterns of animals in
their home cage environment without human interven-
tion. The system had four cameras that monitor four
rats simultaneously in four separate cages (191 mm x
292 mm x 127 mm). Empty cages were first recorded
and saved as the background image for video analysis.
Animals were placed one per cage and allowed to ha-
bituate to the new environment for at least 30 min. The
behavior patterns were recorded from 10 pm to 4 am
during the night time when rodents are most active. The
video recordings were analyzed using the HomeCage
Software 3.0 (Clever Sys Inc.). The software discrimi-
nates various body movements and behavior patterns.
We analyzed both the number of bouts of each behavior
and the time spent performing each behavior during the
6-h period.

Morris water maze test

The Morris water maze test was performed and analyzed
to measure memory function [25]. This test was video-
taped using TopScan (Clever Sys, Inc.), and performance
was analyzed using TopScan Realtime Option Version
3.0 software (Clever Sys, Inc.). The water maze appar-
atus is a round, water-filled tub (120.1-cm diameter
filled with blue tempera paint) placed in a room rich
with extra-maze cues. Rats were placed in the maze
starting from four different positions (NW, NE, SW, and
SE). An invisible escape platform was located in the
same spatial location 1 cm below the water surface inde-
pendent of the starting position on a particular trial. In
this manner, subjects were able to utilize extra-maze
cues to determine the platform’s location. Each subject
was given four trials per day (NW, NE, SW, and SE) for
6 days with a 15-min inter-trial interval. The maximum
trial length was 60 s, and subjects were manually guided
to the platform if they did not reach it in the allocated
time. Upon reaching the invisible escape platform, sub-
jects were kept on it for an additional 15 s to allow them
to survey the spatial cues in the environment to guide
future navigation to the platform. After 6 days of task
acquisition, a probe trial was carried out during which
the platform was removed. The time spent and distance
travelled in the quadrant that previously contained the
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escape platform during task acquisition was measured
over 60 s.

Social transmission of food preference transmission test
The social transmission of food preference test was used
in rodents to assess olfactory memory processes. For the
test, two demonstrator rats were removed from each test
cage and individually housed overnight with water but
without food (18 h). The demonstrator rats were then
placed into clean cages containing almond-flavored food
in small glass jars (3.9-cm diameter, 3.4-cm high). The
glass jars were set in shallow Petri dishes so that food
scattered by the digging of the rats was retained. Dem-
onstrator rats were left to eat the cued food (almond)
for 1 h. Dishes were weighed before and after to meas-
ure how much food was eaten. The demonstrator rat
was then placed in a clean experimental cage. One at a
time, “observer” rats from the same home cage of the
demonstrator rat were placed in the cage containing the
demonstrator rat and left there for 5 min. The observer
rat was then removed. After an interval of 15 min, the
sequence of interaction was repeated, with each observer
rat being placed with the second demonstrator rat from
the home cage. All observer rats were then returned to
the home cage, and demonstrator rats were individually
housed. Six hours after the social interaction sessions,
the observer rat was food-deprived for 18 h (overnight).
The following morning, each rat was placed individually
in a clean cage (45 cm x 28 ¢cm x 12 ¢cm) containing two
“dishes” in either corner at the back of the cage: one
with almond-flavored food (cued) and the other contain-
ing normal diet (non-cued). Rats were allowed to eat for
1 h. Dishes were weighed before and after to determine
the amount of food eaten. Food preference was calcu-
lated as the amount of cued food eaten/total food eaten
x100 (% total).

Direct interaction test

To measure the social memory function, we performed
the direct interaction test as described previously [26].
In the first trial, subject rats were placed in a clean cage,
and a novel rat was introduced. Social interaction activ-
ity was quantified to examine the time spent in social
sniffing, social following, and social grooming. After an
inter-trial interval of 1 h, either the previously encoun-
tered rat or novel rat was introduced and then the social
interaction activity was measured for 5 min.

Five-trial social memory test

The five-trial social memory test was performed to
measure more obvious social memory ability as de-
scribed previously [26]. Briefly, subject rats were pre-
sented with four successive 1-min trials. On the last
trial, we introduced a novel rat. In each trial, we
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measured the social interaction activity (nose-to-nose
sniffing, following, and grooming).

Statistical analysis

All analyses were performed using GraphPad Prism 6.0
statistical software (GraphPad Software, Inc., La Jolla,
CA). Multiple comparisons were performed by one- or
two-way analysis of variance (ANOVA) followed by Bon-
ferroni’s post hoc analysis. Single comparisons were per-
formed using Student’s ¢ test. Changes were considered
significant if the P value was less than 0.05. Mean values
were reported with the standard error of the mean
(SEM) unless otherwise indicated.

Results

Local reactions of formalin-induced peripheral inflammatory
pain in neonatal rats

Subcutaneous injection of 5 ul 5 % formalin or saline
was applied to right and left hindpaws of postnatal day 3
(P3) rats, followed by two additional injections at post-
natal days 4 and 5, respectively. These repeated injec-
tions were to mimic acute insults experienced by human
premature babies subjected to multiple procedures in
NICU. Rat pups in the formalin group showed hindpaw
local edema and redness that reached to peak levels at
P8. The formalin-induced edema progressively subsided
thereafter and completely dissipated by P16 (Additional
file 1: Figure S1IA and S1B). Using a TopScan system
analysis, we observed that P10 and P15 rats that received
formalin injections travelled less distance and showed a
lower velocity than control rats (Additional file 1: Figure
S1C and S1D). The low locomotion completely disap-
peared at P20 (Additional file 1: Figure S1C and S1D).
Considering the prevalence of ASD is higher in male
than in female, different sex groups were analysis and
compared in many experiments of this investigation.
The locomotor deficits were seen with both male and fe-
male rats (Additional file 1: Figure S1C and S1D). Sexual
dimorphism in the examination of general condition
such as fur density/color and eating activity did not
show significant difference. The body weight underwent
a trend of slower gain within 10 days after formalin in-
sult in both male and female but gradually caught up in
following days (Additional file 2: Table S1)

Peripheral inflammatory pain-induced acute and chronic
increases of inflammatory cytokines in the blood circulation
and brain

To determine whether the local acute inflammatory pain
could trigger systemic and lasting inflammatory re-
sponses, we measured inflammatory cytokines in the
blood and brain cortical tissues. One day after the 3-day
formalin insult, quantitative real-time polymerase chain
reaction (QRT-PCR) assays showed significant increases
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of tumor necrosis factor alpha (TNF-a) and interleukin-
1 beta (IL-1p) in the blood both in male and female rats
(Fig. 1a). No significant change was seen in the level of
IL-6 (Fig. 1a). At the same time, the TNF-« level in the
brain cortex significantly increased in male rats but not
in female rats (Fig. 1b). No significant increase in IL-1p
and IL-6 was seen at this time in the brain of either sex
group (Fig. 1b). Interestingly, chronic overexpression of
TNF-a and IL-1f was detected in both the blood and
cortex of P21 male rats, ie., 16 days after the formalin
insult (Fig. 1c, d). The increases were not detected in
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female rats. To block formalin-induced inflammation, a
separate group of rats received anti-inflammatory pain
treatment by the nonsteroidal drug indomethacin
(10 mg/kg, ip.) co-administered with formalin. This
treatment prevented all acute and chronic increases of
inflammatory factors in the blood and brain (Fig. 1la—d).
Substance P is an important element in pain percep-
tion, related to the transmission of pain information
into the central nervous system. Substance P can be
increased acutely but decreased after repetitive pain
stimuli [27, 28]. We noticed a significant and chronic
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Fig. 1 Neonatal inflammatory pain increased inflammatory cytokines in the blood and cortex. Quantitative RT-PCR (qRT-PCR) analysis was

performed to measure inflammatory factors in blood samples and cortical tissues. a The levels of TNF-q, IL-1, and IL-6 in the blood 1 day after
the 3-day formalin injections, TNF-a and IL-1( significantly increased in both male and female rats; indomethacin (Indo) co-applied with formalin
blocked the inflammatory reaction. b TNF-q, IL-13, and IL-6 levels in the cortex 1 day after formalin injection. Only the TNF-a level was significantly
enhanced in the male brain. Indomethacin (Indo) showed inhibitory effect on TNF-a expression. ¢ Inflammatory factors were measured in blood
samples 16 days after formalin injections (P21 rats). TNF-a and IL-13 increased in male but not in female rats in the formalin group, which were
blocked by indomethacin (Indo). d Increased levels of TNF-a and IL-1B persisted in the male brain cortex 16 days after formalin injections.
Indomethacin (Indo) blocked these increases. *P < 0.05 vs. control, *P < 0.05 vs. formalin group, ANOVA plus Bonferroni's correction; n = 4 per group
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reduction in substance P level in the P21 male brain
and indomethacin co-applied with formalin prevented
this alteration (Additional file 3 Figure S2A-S2B). Neu-
rokinin 1 receptor (NK-1R) is a G-protein-coupled sub-
stance P receptor found in the nervous system and
highly expressed in the hippocampus [28]. In immuno-
histochemical staining assays, fewer NK-1R-positive
cells were seen in the hippocampus of P21 rats in the
formalin group (Additional file 3: Figure S2C-S2F).
Western blotting verified the significant reduction of
NK-1R in the hippocampal tissue of the formalin group
(Additional file 3: Figure S2G and S2H).

Peripheral inflammatory pain-induced microglia increase/
activation in the brain

To further determine whether peripheral inflammatory
pain could induce inflammatory responses in the brain,
we measured microglia cells stained with ionized
calcium-binding adaptor molecule-1 (Iba-1) in the cor-
tex 1 day after the 3-day formalin insult. The number of
Iba-1-positive cells in the cortex from the formalin
group significantly increased comparing to that in con-
trol rats (Fig. 2a, b). Indomethacin co-applied with for-
malin significantly attenuated the microglia increase
(Fig. 2b). Morphological assessments revealed that con-
trol group microglia generally showed ramified shape
while most Iba-1-positive cells in the formalin group ex-
hibited hypertrophied and bushy shapes consistent with
activated microglial cells (Fig. 2a).

Peripheral inflammatory pain-induced cortical and hippo-
campal cell death

One day after the 3-day formalin insult, TUNEL staining
was performed in brain sections for the inspection of
cell death. Spontaneous apoptotic cell death normally
occurs in the developing brain [29]. The inflammatory
insult significantly increased the number of TUNEL-
positive cells in the cortex and hippocampus (Fig. 2c—f).
This is consistent with our previous observation using
the neuron-specific marker NeuN that formalin-induced
neuronal cell death in the cortex, hippocampus, and
hypothalamus [22]. Focusing on the hippocampus, we
noticed that the hippocampal CA2 region had signifi-
cantly more TUNEL-positive cells than that in the hip-
pocampal CA1l and CA3 regions (Fig. 2f). The selective
cell death of CA2 may be significant as damage to this
region has recently been implicated in the loss of social
memory [26].

Inflammatory pain in neonates impaired axonal integrity
and myelination in the juvenile brain

Axonal diameter may reflect its structural integrity and
directly affects conductivity and electrophysiological
properties. Prior to this study, it was unknown whether
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Fig. 2 Neonatal peripheral inflammatory pain-induced microglia
activation and neuronal cell death in the cortex and hippocampus.
Microglia cells and neuronal cell death were measured using Iba-1
and TUNEL staining, respectively, in the cortex and hippocampus. a,
b Immunohistochemical staining was performed 1 day after the last
formalin injection. Iba-1-positive cells (red) were identified as microglia
cells in the cortex. Nuclei were stained with Hoechst 33342 (blue).
Different shapes of Iba-1-positive microglia cells at resting state (control)
and activation state (formalin) are shown in the insets of enlarged
magnification. Scale bars = 100 uM. b The ratio of Iba-1+ cells against
total Hoechst + cells. Formalin injections significantly increased
activated microglia while indomethacin (Indo) attenuated this event.
*P < 0.05 vs. control, *P < 0.05 vs. formalin, ANOVA plus Bonferroni's
correction; n = 6-8 per group. ¢ TUNEL staining (green) and Hoechst
33342 (blue) were used to evaluate cell death in the cortex and
hippocampus. Arrows point to some TUNEL-positive green color cells.
Scale bars =100 um. d, e Quantified data of TUNEL-positive cells/field
in the cortex (d) and hippocampus (e). *P < 0.05 vs. control; n =6-7
per group. f TUNEL-positive cells/field in the hippocampus in saline
control and formalin groups. A marked increase in TUNEL-positive cells
was seen in CA2. *P < 0.05 vs. CA1 or CA3, ANOVA plus Bonferroni's

correction; n=6-7 per group

peripheral pain might have an impact on axonal integrity
in the developing brain. In the control brain of P21 rats,
axon diameter varied from 0.1 to 3 pm. The average
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value was 0.957 + 0.079 pm with most of the axons be-  showed a significant reduction of myelin basic protein
ing the medium (0.35-0.69 pm) or large (0.7-1.4 um) (MBP) in the IV/V cortical columns (Fig. 3g, h).

size (Fig. 3a—f). Rats in the formalin group showed an

average axonal diameter of 0.642 + 0.027 pum (Fig. 3b), Inflammatory pain in neonates diminished regenerative
which was significantly smaller than the control axons activities in the juvenile brain

(n=6 assays, P<0.01). There was a larger proportion To label newly formed cells in the developing brain, bro-
of small- and medium-sized axons in the brain of for- modeoxyuridine (BrdU; 5 mg/kg/day), a cell-proliferation
malin-treated rats (Fig. 3c—f) compared to the large-sized = marker, was injected intraperitoneally daily from P3 to
axons in controls. In the assessment of myelination of axon ~ P21. Double labeling of BrdU and doublecortin (DCX), a
fibers, P21 rats subjected to neonatal inflammatory pain  marker for neuronal precursor cells and immature

A Control Formalin

-
&)

-
o

Hk

Average axonal @
diameter (um)

05
Control Formalin
NeuN/Neurofilament
C D
% 020 <0.35 pm % 08 0.35-0.69|ir:1
() o)
(=]
g5 015 , 8506
C o C o
g S 0.10 g = 0.4
& & 005 S X 02
© 000 © 00 :
Control Formalin Control Formalin
E _ F _
o 08 0.7-1.4 pm 2 0.4 - >1.4 pm
o @ o O
g5 os 2E o3
C o cC o
55 0.4 ank 38 02 T
& s 02 & & 01 .
© 00 © o0 i _
Control Formalin Control Formalin
Control Formalin n_ X 10
ol -
% g 101
“J'E 0.8 1 *
E’.Q 0.6 1
T w ]
58 0.4
% go.z 1
we Q0

Control Formalin

Fig. 3 Neonatal inflammatory pain affected axonal development in the juvenile brain. Immunohistochemical staining was performed to determine
whether peripheral inflammatory pain in neonates could affect axonal growth and myelination at P21. a Double-labeled images of NeuN (red) and
neurofilament (NF; green) in the cortex of the control or formalin group. Nuclei were stained with Hoechst 33342 (blue). Scale bars = 20 pum. b—f Axon
diameter was estimated by measuring the distance perpendicular to the center of the maximum diameter of the axon profile. Measured axons were
categorized as small (<0.35 pm), medium (0.35-0.69 um), large (0.7-14 um), and extra-large (>1.4 um) groups. *P < 0.05 vs. control; **P < 0.01 vs.
control; ***P < 0.001 vs. control; n =6 per group. g Images of MBP (red) in the cortex. Nuclei were stained with Hoechst 33342 (blue). Scale bars =

20 um. h Juvenile rats subjected to neonatal inflammatory pain showed a significant decrease of MBP expression compared to control rats. *P < 0.05
vs. control; n =6 per group
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neurons, was examined in the neurogenic subgranular
zone of the hippocampus of P21 rats (Fig. 4). The number
of BrdU-positive cells in the dentate gyrus of the formalin
group was fewer than that of control group (Fig. 4e). Spe-
cifically, the number of newly formed neuronal cells (DCX
+/BrdU+) in the dentate gyrus of the formalin group was
significantly suppressed (Fig. 4f).

Inflammatory pain in neonates altered expressions of

ASD-related genes in the cortex of the juvenile brain

ASD-associated gene expression was inspected in the cor-
tical tissue of P21 juvenile rats subjected to either early
formalin insults or saline injections. Western blotting was
applied to measure expression of some key genes associ-
ated with ASD, including neurexin 1 (NRXN1), fragile X
mental retardation 1 (FMR1), neuroligin3 (NLGN3), aut-
ism susceptibility gene 2 (AUTS2), oxytocin, and oxytocin
receptor. The expression levels of neurexin 1, FMR1, and
oxytocin all decreased in the cortex of male rats of the
formalin group (Fig. 5a, b, d, and f). On the other hand,
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Fig. 4 Neonatal inflammatory pain decreased neurogenesis in the
juvenile brain. Immunofluorescent double labeling for DCX and BrdU
was performed to examine neurogenesis in P21 rats. a-d Double-
labeled images of BrdU (red) and DCX (green) in the dentate gyrus
of the control (a, b) or formalin (c, d) group. Nuclei were stained
with Hoechst 33342 (blue). b, d 3-D confocal images of BrdU (red)
and DCX (green) in the dentate gyrus of the control and formalin
groups. Scale bars =50 um. e, f Summarized data of the total numbers
of DCX-positive and DCX/BrdU-positive cells in three sections of each
animal. There were fewer BrdU-positive (e) and DCX/BrdU-positive cells
(f) in the formalin group compared to the control group. ***P < 0.001
vs. control; n =6 per group
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only the FMR1 expression was significantly reduced in
the cortex of female rats that received formalin injec-
tions (Fig. 5a, ¢, e, and g). Indomethacin co-applied
with formalin evidently blocked alterations of ADS-
related genes in P21 male rats (Fig. 5h-k). No signifi-
cant changes were seen in expressions of NLGN3,
AUTS2, and oxytocin receptor in the cortex of either
sex (data not shown).

Inflammatory pain in neonates altered the expression of
oxytocin receptor in the hippocampus of the juvenile
brain

Recent studies suggest that the hippocampal CA2 region
and the level of oxytocin receptor in this particular re-
gion are strongly related to social memory functionality
[26, 30, 31]. Immunohistochemical analysis of oxytocin
receptors was then focused on the hippocampus of P21
rats. It was seen that the oxytocin receptor was mostly
colocalized with NeuN-positive cells (Fig. 6a). Signifi-
cantly fewer oxytocin receptor/NeuN double-positive
cells were detected in CA1 and CA2 regions of male and
female rats in the formalin group (Fig. 6b, c). However,
the downregulation of oxytocin receptor was more evi-
dent in male rats comparing to the marginal reduction
in female rats (Fig. 6b, c).

Inflammatory pain in neonates caused functional/
behavioral deficits in juvenile rats

We examined the possibility that the acute inflammatory
pain occurring in neonates could alter pain sensation
later in juvenile rats. In the hot-plate test, P21 rats in the
formalin group were much more sensitive to the thermal
stimulus, showing significantly reduced latency in re-
sponse to heat stimulus (Fig. 7a). In more behavioral
surveillance using a HomeCage monitoring system in
rat’s natural environment without human intervention,
P21 rats in the formalin group spent significantly more
time engaging in repetitive behaviors such as self-
grooming, repetitive jumping, and spontaneous muscle
twitching (Fig. 7b—d). These animals also showed sleep-
ing disorder, exhibited as marked increases in bouts of
awake and sleep activities (Fig. 7e, f). Additionally, rats
in the formalin group displayed changes in olfaction-
related activities and anxious behaviors (Additional file
4: Table S2 and Additional file 5: Table S3).

Effects of neonatal inflammatory pain on spatial and
social memory in juvenile rats

The Morris water maze test was performed to evaluate
spatial memory in P21 rats [25]. During a 6-day training
period starting from P15, the latency and distance trav-
elled to the underwater platform improved similarly in
both control and formalin groups (Additional file 6:
Figure S3A and S3B). On day 7, all rats spent similarly
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Fig. 5 Neonatal peripheral inflammatory pain altered ASD-related genes in juvenile rats. Western blotting analysis was performed to determine
the expression of ASD-related genes in the cortex of P21 rats subjected to saline and formalin injections at neonatal stage. a Representative Western
blot bands of NRXN1, NLGN3, FMR1, AUTS2, oxytocin, and oxytocin receptor of male and female rats. b, d, and f Optic density of NRXN1 (b), FMR1 (d),
and oxytocin (f) in the cortex of male rats. *P < 0.05 vs. control; n = 12-14 per group. ¢, €, and g Optic density of NRXN1 (c), FMR1 (e), and oxytocin (@)
in the cortex of female rats. *P < 0.05 vs. control; n = 12-14 per group. h-k The expression of NRXN1, FMR1, and oxytocin in control and formalin
groups of male sex (P21). The reductions induced by the formalin insult were all blocked by the anti-inflammatory treatment of indomethacin (Indo)
co-applied with formalin. *P < 0.05 vs. control, *P < 0.05 vs. formalin group, ANOVA plus Bonferroni's correction; n =4 per group

more time in the target quadrant than in other quad- functional deficit was then verified with another two trial
rants (Additional file 6: Figure S3C and S3D). Since we tests using two unfamiliar rats in both trials. Compared
detected significant changes in olfactory-related activities ~ with normal controls, male rats in the formalin group
in P21 rats of the formalin group (Additional file 4: showed less interest in unfamiliar rats while female rats
Table S2), the social transmission test of food preference  did not exhibit significant deference from normal con-
was utilized to explore olfactory memory differences. trols (Additional file 7: Figure S4B). In a five-trial social
This test, nevertheless, revealed no significant difference  memory test with repeated exposures to the same famil-
between saline and formalin groups (Additional file 6: iar rats (trials 2 to 4), male rats but not female rats in
Figure S3E and S3F). the formalin group exhibited a social memory deficit in
In a social direct interaction test [26] of two trials with  trial 3 (Additional file 7: Figure S4C).
unfamiliar and familiar rats, respectively, normal juvenile
rats spent shorter time in trial 2 with the familiar rat.  Inflammatory pain in neonates caused impaired social
However, no such time reduction was seen with male or  activity in juvenile rats
female rats in the formalin group, indicating a deficit in  In addition to increased repetitive behaviors, impaired
social memory (Additional file 7: Figure S4A). This social activities and difficulties in social communication
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Fig. 6 Neonatal peripheral inflammatory pain diminished the oxytocin receptor expression in the hippocampus of the juvenile brain.
Immunohistochemical staining measured the expression and distribution of the oxytocin receptor in the CA1, CA2, and CA3 regions of the hippocampus.
P21 rats were subjected to formalin injections or saline injections at P3-P5 age. a Oxytocin receptor-positive cells (green) and NeuN-positive cells (red,
shown as purple due to overlay with blue of Hoechst 33342 nuclei staining) in the hippocampus from the control and formalin groups. The first row in
each group shows oxytocin receptor only, and the next row shows the overlay images of all three immunostainings. Scale bars =50 uM. b, ¢ Quantified
data from experiments in a. The numbers of oxytocin receptor/NeuN double-positive cells per survey area under x 20 magnification. These double-la-
beled cells in both CA1 and CA2 were significantly less in male rats in the formalin group comparing to male controls (b). A trend of reduced
oxytocin receptor level was also seen in CA3. In female rats of the formalin group, a significant reduction of oxytocin-positive neurons was only seen in
the CA1 region, although there was a trend of reduction in CA2 (c). *P < 0.05 vs. control, ***P < 0.001 vs. control; n = 6-7 per group

are some clinical syndromes of ASD [7]. In a three-
chamber test of P21 rats, male but not female rats in the
formalin group showed a significant preference to stay
in the empty chamber. They also preferred to stay in the
chamber with familiar rats in the social novelty test. As
a result, these male rats spent significantly less time in
social interactions (Fig. 8a, b). Other social interaction
tests showed similar reductions in social activities in-
cluding social sniffing and social following (Fig. 8c, e).
Though there was no difference in social grooming

between formalin and control animals, the total social
time for all tested social activities was significantly less
for male rats in the formalin group (Fig. 8a—f). In con-
trast, the social activity deficits were not observed with
female rats in the formalin group (Fig. 8). These results
verified that male rats with early inflammatory pain
experience were more vulnerable to developing abnor-
mal social behaviors than female rats. These results
support the idea that inflammatory pain and increased
inflammatory factors are critical mediators in the
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Fig. 7 Neonatal inflammatory pain caused increased pain sensation,
self-repetitive behaviors, and sleep disorder in juvenile rats. Hot-plate
and repetitive behavior tests were performed to examine pain
sensation and ASD-related activities in P21 juvenile rats. a In the
hot-plate test, rats were placed individually on a hot plate of 55 °C.
The latency time to jump was measured. Rats in the formalin group
were more sensitive to the hot stimulation, showing a reduced latency
to jump compared to controls. **P < 0.01 vs. control; n=9-11 per
group. b—f Six-hour monitoring of the HomeCage system for other
repetitive behaviors and sleep pattern. HomeCage monitoring system
monitored behavioral patterns of control and formalin-injected rats in
a natural environment without human intervention. Rats in the
formalin group showed significantly increases in repetitive grooming
(b), spontaneous jumping (c), and muscle twitching (d) behaviors at
P21. These animals showed increased frequencies of getting awake
and trying to sleep compared to control rats during the same
monitoring time (e, f). *P <0.05 vs. control, **P < 0.01 vs. control;
n=16 per group

development of ASD-like behaviors. All detected social
behavioral deficits were essentially prevented by the co-
applied anti-inflammation pain treatment indometh-
acin (Fig. 8a—f).

Comparisons of the symptoms in the animal model and
human cases

To validate whether the observation on the inflamma-
tory pain-induced pathological, pathophysiological, and
psychiatric changes are consistent with the symptoms in
ASD patients, we compared our results to published
clinical data in order to better understand the clinical
significance of this investigation (Table 1). As shown in
Table 1, there are overwhelmingly similarities between
the pathological process, cellular/molecular alterations,
and functional/behavioral phenotypes between the ani-
mal study and clinical observations.
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Discussion

The present investigation provides novel and compre-
hensive cellular, molecular, and behavioral evidence
that acute but relatively severe neonatal inflammatory
pain can trigger lasting systemic inflammatory re-
sponses and pathological alterations that may generate
a vulnerable environment for the development of ASD-
like syndrome. Formalin-induced inflammatory pain in-
creases major inflammatory factors TNFa and IL-1B
not only in the blood circulation but also in the brain.
This upregulation of inflammatory factors persisted
even after the disappearance of local tissue damage.
Significant neuronal cell death in the cortex and hippo-
campus CA1/CA2 regions was observed after the per-
ipheral inflammatory stimuli, accompanied by impaired
neuronal axons and reduced neurogenesis. Moreover,
the inflammatory pain led to long-term regulation of
ASD-associated genes NRXN1, FMRI1, and oxytocin/
oxytocin receptor in the brain. These genetic alter-
ations, increased repetitive behaviors, and deficient so-
cial memory/interactions all are analogous to patients
with ASD and/or fragile X syndrome. Consistent with
clinical cases, these pathological phenotypes are more
prominent in males than in females. As a mechanistic
verification and of clinical importance, these abnormal
phenotypes can be largely prevented with an anti-
inflammatory pain intervention using the clinical drug
indomethacin.

Previous work reported that exposure to repetitive in-
flammatory pain during the development of high brain
plasticity is associated with neuronal cell death, neuroin-
flammation, modulations in pain sensation, and adverse
changes in brain structure and function [22, 32, 33]. Due
to the plasticity of sensory connections in the neonatal
period, early damage in infancy can cause prolonged
structural and functional alterations in pain pathways
that can last into later life stages [32, 33]. For example,
inflammatory pain experienced during the postnatal
period may cause abnormal adult behaviors such as in-
creased anxiety, altered pain sensitivity, hyperactivity,
self-destructive behavior, or reduced social behaviors
[32, 33]. In clinical studies, premature neonates exposed
to painful experiences are more likely to develop chronic
abnormalities compared to full-term infants. For example,
circumcised infants showed a stronger pain response to
subsequent routine vaccination than uncircumcised in-
fants [34]. On the other hand, there has been no research
focusing on the relationship between neonatal inflamma-
tory pain and the prevalence of ASD.

In the study of postmortem brain from ASD patients,
elevated cytokines and chemokines and activated micro-
glia were observed [35, 36]. A recent review pointed out
that premature babies are more vulnerable to infections
and inflammation that can lead to neurodevelopmental
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Fig. 8 Neonatal inflammatory pain-induced delayed impairments in social activities and the blocking effects of the anti-inflammatory treatment.
Social behavioral tests were carried out to evaluate long-term adverse impacts of the early inflammatory pain on social interactions in juvenile
rats. The indomethacin (Indo) treatment was applied to delineate whether inflammation was a crucial mediator in the social behavior changes.

a In the three chamber test, male rats, not female rats, in the formalin group, spent less time with the novel stranger and preferred to hide in an
empty chamber compared to the control rats. Indomethacin (Indo) co-applied with formalin completely blocked the development of this abnormal
behavior. *P < 0.05 vs. control; n =16 in control and formalin group. n =5 in indomethacin group. b In the social novelty test, since male rats in the
formalin group preferred to stay with a familiar rat, their time with a novel stranger was significantly less than the time spent by controls. The
indomethacin (Indo) treatment blocked the social abnormality. *P < 0.05 vs. control; n =16 in control and formalin group. n =5 in indomethacin group.
c—e In the social interaction test, male rats in the formalin group showed reduced time in social sniffing and social following, although no change was
seen with social grooming. Indomethacin (Indo) reversed the behavioral changes. Female rats which received formalin did not show significant deficits
in these tests. *P < 0.05 vs. control, *P < 0.05 vs. formalin; n =16 in control and formalin group. n =5 in indomethacin group. f A summarized data
analysis of all social behavioral tests for male and female rats. The total social time was significantly less with male rats in the formalin group, and the
phenotype was prevented by the anti-inflammation treatment. Again, female rats were much more resistant to the formalin insult, showing no social

behavior deficits at the juvenile age. *P < 0.05 vs. control, P < 0.05 vs. formalin; n = 16 in control and formalin group. n =5 in indomethacin group.
ANOVA plus Bonferroni's analysis was applied to all comparisons in this experiment

problems and higher risk for ASD [12]. In an animal
study, maternal infections caused by multiple intraperi-
toneal injections of lipopolysaccharide damaged the layer
formation of the fetal brain, possibly linked to neuro-
psychiatric disorders, such as schizophrenia and autism
[37]. A clinical study with 1.2 million pregnancies
showed that the risk of autism in the children of women
with the highest levels of C-reactive protein, a well-
known marker of inflammation, was 43 % higher than
women with the lowest levels [38]. Another study pro-
vided new evidence that mothers who have auto-
immune diseases associated with excess and/or chronic
inflammation could be at increased risk of having chil-
dren with ASD [39]. ASD patients frequently showed
widespread inflammation as indicated by elevated inflam-
matory cytokines in both the brain and blood similar to
those in autoimmune disease, signifying the importance of
the inflammatory response on the development of ASD

[40, 41]. Specifically, ASD patient’s peripheral blood cells
secrete higher levels of TNF-a, IL-1f, and IL-6 [42, 43].
Our current findings are in line with these observations,
showing systemic and lasting elevations of TNF-a, IL-1f3,
and activation of microglia in the brain. The link between
inflammation and ASD pathology was strongly supported
by the success of indomethacin in protecting against in-
flammatory pain-induced changes.

[L-1B-induced inflammation inhibited hippocampal
neurogenesis [44]. Similarly, we observed reduced
neurogenesis in the dentate gyrus of the formalin group,
which may relate to the IL-1p increase in the brain.
Conversely, one previous study in neonatal rats found
increased hippocampal neurogenesis at P22 after a
Freund’s adjuvant injection [45]. The contrasting result
may be due to apparent differences in the inflammatory
insults and in the timing and severity of the insult and
measurements in a particular model. Inflammatory pain
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Table 1 Comparison between the formalin-induced inflammatory pain model and clinical observations of ASD patients

Animals model

Clinical data of ASD patients

Consistency

Increases of inflammatory cytokines such as TNF-  Elevation of TNF-a in cerebrospinal fluid of autistic children [66]. Yes

a and IL-1( in the blood and the brain
TNF-a, and BDNF [67].

Elevated levels of the pro-inflammatory cytokine, including IL-1, IL-6, IL-12, IL-23,

A trend toward a significantly increased production of IL-6 and TNF-a in whole

blood [68].

Increased plasma concentrations of IL-1b, IL-1RA, IL-5, IL-8, IL-12(p70), IL-13, IL-17,

and GRO-a [69].

Impaired neurogenesis

Neuropathological developmental changes in the brain reflect multiregional Yes

dysregulation of neurogenesis, neuronal migration, and maturation [70].

Dysregulation of neurexin-1 Two putative missense structural variants were identified in the neurexin 13 gene [71].  Possibly yes
Disruption of oxytocin system and therapeutic  Significantly lower plasma oxytocin levels [72]. Yes

effect of oxytocin A significant correction of repetitive behaviors following oxytocin infusion [73].

Self-grooming and repetitive jumping (repetitive  Significantly higher frequency and longer duration of repetitive and stereotyped Yes

behaviors) behaviors [74].

Ritualistic and stereotypical behavior [75].

Sleep problem

Insomnia associated with neurochemical (abnormalities in serotonergic transmission ~ Yes

or melatonin levels), psychiatric (anxiety), and behavioral (poor sleep habits)

etiological factors [76, 77].

Treatments for insomnia show promise for behavioral/educational interventions [78].

Reduction of FMRP

Social memory deficits

Significantly reduced levels of FMRP protein [79]. Yes

Impaired on immediate and delayed recall of faces and of family scenes and Yes

impaired spatial working memory. Defective integrity of verbal working memory and
impaired spatial working memory [80].

Axonal impairments Area-specific changes below anterior cingulate cortex (ACC) included a decrease in  Yes or
the largest axons that communicate over long distances. Overexpression of the partially yes
growth-associated protein 43 kDa accompanied by excessive number of thin axons
that link neighboring areas. In the orbitofrontal cortex (OFC), axons had decreased
myelin thickness [24].
Decreased levels of proteins associated with myelination and increased synaptic and
energy-related proteins in the prefrontal cortex. Opposite directional changes were
found for myelination and synaptic proteins in the cerebellum [81].
Deficits in social activities Developmental delays in social interaction, language, and imaginative function [82]  Yes or
partially yes
Altered oxytocin system in CA2 region Oxytocin is a key factor in CA2 regional social memory function [26, 83]. No direct Potentially
human data available. yes
ASD phenotypes are more prominent in male Sexually dimorphic responses to early life stress are linked to two developmental Yes,
than in female animals. disorders: affective problems (greater female prevalence) and ASD (greater male
prevalence) (84, 85].
Abnormal cell death The abnormal apoptosis found in autism from postmortem [86]. Yes

may result from the increased excitability of peripheral
nociceptive sensory fibers activated by inflammatory me-
diators [46]. Alterations in pain pathways such as pain-
related receptor expression can last into the adolescent
or adult stage [16]. NK-1R, an activator of nociception-
induced spinal central sensitization, is reduced in rat
models of chronic pain and stress [28]. Consistent with
these findings, rats exposed to early pain in our study
had reduced NK-1R expression, which is likely an event
related to enhanced pain sensitivity in adolescents/ju-
venile rats.

We show here in juvenile rats that early neonatal
inflammatory pain causes important morphological

alterations in the developing brain, including axonal
damage and reduced MBP. These alterations resemble
some changes caused by activated cytokine responses
seen in prenatal stress [47]. A previous study on in-
flammatory lesions in multiple sclerosis patients re-
vealed that axonal density changes may be caused by
the release of inflammatory mediators [48]. It is likely
that the persistent elevation of inflammatory factors
in the brain is largely responsible for the axonal im-
pairment. The significant axonal changes imply that
altered neuronal transduction along these nerve fibers
must take place after the inflammatory pain and
chronic cytokine upregulation.
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Repetitive and uncontrolled behaviors such as repeti-
tive grooming, jumping, and muscle twitching are prom-
inent features in human and animals with autism-like
disorders [49, 50]. In our study, the time spent in twitch-
ing and doing repetitive jumping and grooming behav-
iors in juvenile rats were significantly increased in the
formalin group. In general, rodents prefer social environ-
ments over solitary ones. They prefer to engage a novel
partner rather than a familiar one. Strikingly, juvenile
rats subjected to early inflammatory pain exhibit notice-
able dysfunction in social interaction tests. In addition
to social deficits, children with ASD appear to experi-
ence sleep problems more frequently than healthy chil-
dren [7]. This is consistent with our observation that
juvenile rats in the formalin group showed disrupted
sleep behavior. Collectively, the functional and behav-
joral disorders in the animal model resemble the syn-
dromes of ASD children.

Although memory loss has not been a diagnostic cri-
terion for ASD, it is a common difficulty experienced by
ASD patients [51]. In social memory tests, formalin-
treated animals, especially male rats, exhibited an im-
paired social memory. Coincidently, we observed that
formalin stimuli increased more TUNEL-positive cells in
the hippocampal CA2 region. Previous research showed
the social responsiveness is reduced in rodents with hip-
pocampal lesions [52]. It is likely that the increased cor-
tical and hippocampal neuronal cell death contribute, at
least partly, to the development of abnormal social be-
haviors. Recent data revealed that the CA2 region is es-
sential for social memory [26]. Our immunostaining
data showed reduced oxytocin receptor in CA1 and CA2
regions of male rats in the formalin group. These find-
ings raise the possibility that CA2 damages and abnor-
mal gene expression induced by early inflammatory pain
play a critical role in social memory impairment.

Many studies have been investigating the connection
between genetic variation and ASD. Genome-wide asso-
ciation studies (GWAS) for ASD have identified few po-
tential loci associated with ASDs [53]. NRXNI1 was
implicated as an autism susceptibility gene, though
changes in this gene alone are not always detrimental
[54]. For example, mice with a deletion of NRXN1 spend
more time grooming but also show improved motor
learning [54]. NRXN1 knockout mice display increased
responsiveness and accelerated habituation to novel en-
vironments [55]. These data suggest that mutation or
deletion of NRXN1 alone is not sufficient to cause ASD.
In the inflammatory pain model, we detected significant
decreases of NRXN1 and FMR1 expression in the cor-
tex. Being a sub-category of ASD, fragile X syndrome is
identified as a single gene inherited disorder due to mu-
tations or deficiency of FMR1 [56]. FMR1 mutation or
deletion has shown autism-like behaviors such as
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impaired social activity, anxiety, and reduced behavioral
flexibility [56]. A wealth of studies has implicated oxyto-
cin and the oxytocin receptor in the mediation of social
behaviors and social memory, suggesting that failures in
this system may be associated with ASD [57]. Decreased
oxytocin and its receptor signal can result in low social
activity and autism-like behaviors, and this change in
oxytocin system is commonly detected in ASD patients
[57]. Our study shows a significantly reduced oxytocin
level in the cortex of formalin-treated rats. We did not
detect significant changes in the expressions of NLGN3
or AUTS2 in formalin-treated rats. Alteration of NLGN3
contributes to the induction of autism-related behaviors
[54, 58]. However, recent clinical investigations showed
that NLGN3 may not be a major disease gene in ASD
[54]. It is possible that although ASD is associated with
multiple genes, the development of ASD does not re-
quire participation of all related genes.

Some important issues remain to be better addressed.
Males are approximately four times more likely than fe-
males to be diagnosed with ASD [59, 60]. It has been hy-
pothesized that prenatal sex steroids may affect fetal
brain structure and function and consequently influ-
ences postnatal behavior [61]. Whether the high inci-
dence of ASD in male can be explained by the levels of
sex hormones in postnatal babies is obscure. Different
levels of sex hormones are detected in fetal surroundings
and human neonates [62]. As estrogen and progesterone
have neuroprotective and anti-inflammatory effects, it
might be possible that these sex hormones contribute to
the low incidence of ASD in female [63, 64]. There are
also several limitations in this investigation. Most chil-
dren with ASD are at a normal gestational age at birth
and are not treated by painful procedures. Whether in-
flammation pain shows similar pathological and etio-
logical impacts on full term infants and adults remains
to be examined. It is also to note that inflammation and
pain are distinct insults although may sometimes recip-
rocal. The pathogenic effects of pain and inflammation
may play distinctive roles in ASD, while this is unclear
based on available data.

The inflammation insult tested in this investigation (two
hindpaws formalin injections for three consecutive days)
is relatively severe. In our preliminary tests, we found in-
flammatory reaction and pathological consequences to
formalin-induced inflammatory pain depended on the
severity of the insult. A single paw one-time formalin in-
jection elicited mild changes sometimes without statistical
significance. A clear demonstration of the “dose-
dependent” pathogenesis for ASD development requires a
future investigation. Considering that formalin can act as
a pro-oxidative neurotoxicant, it may be necessary to ver-
ify the observations in this investigation using other in-
flammatory pain agents such as carrageenan, zymosan, or
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complete Freund’s adjuvant that are known to trigger lon-
ger inflammatory pain responses than formalin [65]. Based
on our data, however, an irritating insult that triggers
comparable pain and neuroinflammatory reactions should
bear similar pathogenic consequence as shown with for-
malin. It will also be interesting to see whether the benefi-
cial effects of anti-inflammation treatment may last longer
beyond the juvenile age or continual treatments are
needed for long-term effects.

Conclusions

The cellular, molecular, and behavioral examinations in
the inflammatory pain model of neonatal rats demon-
strate significant alterations consistent with the patho-
logical, pathophysiological, genetic, and psychological/
psychiatric changes in ASD children. The higher inci-
dence of ASD syndromes in male animals resembles the
unique feature of clinical ASD cases. Importantly, an
anti-inflammation treatment using indomethacin effect-
ively prevents all ASD-like alterations. We propose that
repeated inflammatory pain suffered by premature neo-
nates is one of the important environmental risk factors
leading to the development of ASD-like syndromes,
while anti-inflammation and analgesic treatments should
be explored as a prevention therapy before the develop-
ment of ASD.
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differences were absent among P20 rats. * P < 0.05 vs. control; n =6-7 per
group. (TIF 1699 kb)

Additional file 2: Table S1. Body weight in male and female rats
received saline control or formalin insult. (DOC 39 kb)

Additional file 3: Figure S2. Neonatal inflammatory pain decreased
the substance P and NK-1R expressions in the brain. gRT-PCR and
immunohistochemical analyses were performed to examine the effect of
neonatal peripheral inflammatory pain on substance P and NK-1R
expressions in hippocampal of P6 and/or P21 rats. A and B. In the gRT-PCR
analysis, substance P was not changed in both P6 male and female rats (A).
In the P21 male rats with formalin insult, substance P was significantly
reduced, whereas this alteration was disappeared in indomethacin
treatment (B). C-F. In immunohistochemistry analysis, cells were visualized
with Hoechst 33342 (blue) and those with substance P receptors were
labeled with anti-substance P receptor antibody (NK-1R; green) in the
hippocampal region of the control or formalin group. Scale bars =50 pum. In
E and F, quantified bar graphs show reduced NK-1R by formalin. ** P <0.01
vs. control; *** P <0001 vs. control, ANOVA plus Bonferroni's correction; n =
6 per group. G and H. Western blotting confirmed a significant reduction of
NK-1R expression in the formalin group. * P < 0.05 vs. control, ANOVA plus
Bonferroni's correction; n =6 per group. (TIF 4583 kb)

Additional file 4: Table S2. Bouts of home cage behavior. (DOC €9 kb)

Additional file 5: Table S3. Time spent in home cage behavior (min).
(DOC 49 kb)

Additional file 6: Figure S3. Neonatal inflammatory pain didn't cause
spatial and olfactory memory impairments in juvenile rats. A-D. Juvenile
male and female rats in the control or formalin groups were evaluated
for spatial memory in the Morris water maze test. A. Latency to escape to
the platform during the 6 day training session. There were no significant
differences between the groups. n =13 per group. B. Swim distance to
reach the platform during training. There were not significant differences
between groups. n =13 per group. C and D. The place preference test
was conducted at day 7 when the platform was removed after the last
training day. All animals spent more time in the target quadrant (platform
quadrant) (), but there were no statistical differences between groups
(D). n=13 per group. E and F. Juvenile male and female rats in control or
formalin groups were evaluated for olfactory memory in the social
transmission of food preference test. There were no significant differences
in the amount of total food consumed and the percentage of preference
for cued food (almond) between groups. n =8-15 per group. (TIF 1085 kb)

Additional file 7: Figure S4. Neonatal peripheral inflalmmatory pain
caused social memory impairment in male juvenile rats. Direct interaction
and five-trial social memory tests were performed to clearly reveal the
effect of neonatal peripheral inflammatory pain on social memory. A and
B. Direct interaction test using the same (A) or different (B) rats in the
two trials. A. Both male and female rats in the formalin group displayed
increased exploring time (unchanged sociability), but the control group
showed decreased exploring time (decreased sociability). * P < 0.05 vs.
control; n=6-7 per group. B. When subject rats were exposed to a novel
rat, both groups explored new stimulus rats similarly. * P < 0.05 vs.
control; n=6-7 per group. C. Five-trial social memory assay. Male, but not
female, rats in the formalin group dishabituated to the same rat during
four trials and habituated to a novel rat (trial 5). * P < 0.05 vs. control;
n=6-7 per group. (TIF 871 kb)

Additional file 1: Figure S1. Effects of neonatal peripheral inflammatory
pain on paw edema, locomotion, and brain inflammation. The inflammatory
pain animal model was generated by S.C. injection of 5 % formalin (5 pl)
into the hindpaws of P3-P5 rat pups. A. Representative photographs of rat’s
right hindpaw 3 and 11 days after saline and formalin injections. B. Rats in
the formalin group developed hindpaws edema after the first injection (P3).
The edema reached peak in P8 rats (5 days after the first injection). The local
edema completely subsided after P16. N =12 per group. C and D. Travelled
distance and velocity were measured using the TopScan System at P10,
P15, and P20 rats. At P10 and P15, the formalin group showed significantly
less travelled distance and lower velocity than the control group. The
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