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Diffusion MRI quantifies early axonal loss in
the presence of nerve swelling
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Abstract

Background: Magnetic resonance imaging markers have been widely used to detect and quantify white
matter pathologies in multiple sclerosis. We have recently developed a diffusion basis spectrum imaging
(DBSI) to distinguish and quantify co-existing axonal injury, demyelination, and inflammation in multiple
sclerosis patients and animal models. It could serve as a longitudinal marker for axonal loss, a primary
cause of permanent neurological impairments and disease progression.

Methods: Eight 10-week-old female C57BL/6 mice underwent optic nerve DBSI, followed by a week-long
recuperation prior to active immunization for experimental autoimmune encephalomyelitis (EAE). Visual
acuity of all mice was assessed daily. Longitudinal DBSI was performed in mouse optic nerves at baseline
(naïve, before immunization), before, during, and after the onset of optic neuritis. Tissues were perfusion
fixed after final in vivo scans. The correlation between DBSI detected pathologies and corresponding
immunohistochemistry markers was quantitatively assessed.

Results: In this cohort of EAE mice, monocular vision impairment occurred in all animals. In vivo DBSI
detected, differentiated, and quantified optic nerve inflammation, demyelination, and axonal injury/loss,
correlating nerve pathologies with visual acuity at different time points of acute optic neuritis. DBSI
quantified, in the presence of optic nerve swelling, ~15% axonal loss at the onset of optic neuritis in
EAE mice.

Conclusions: Our findings support the notion that axonal loss could occur early in EAE mice. DBSI detected
pathologies in the posterior visual pathway unreachable by optical coherence tomography and without confounding
inflammation induced optic nerve swelling. DBSI could thus decipher the interrelationship among various pathological
components and the role each plays in disease progression. Quantification of the rate of axonal loss could potentially
serve as the biomarker to predict treatment outcome and to determine when progressive disease starts.
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Background
Multiple sclerosis (MS) is an inflammatory demyelinat-
ing disease producing, ultimately, irreversible axonal loss
and permanent neurological impairments [1–4]. The
axonal pathology is complex with components directly
associated with the fiber tracts (axonal injury/loss and

demyelination) and those surrounding the tracts (im-
mune cell infiltration and edema). Each of these axonal
pathology components may contribute to neurological
dysfunction and therefore to the clinical signs and symp-
toms of MS [4–6]. Although inflammation and demye-
lination each contributes to MS pathophysiology, axonal
loss is believed to be the primary correlate of irreversible
neurological disability [7, 8]. Therefore, the development
of a non-invasive biomarker to reflect the extent of
axonal loss and the severity of damage in surviving
axons is paramount to confirmation of this notion, to
better monitor individual patients, and to use as an
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endpoint in trials of potential therapeutics. Optic neur-
itis is commonly one of the first manifestations of MS
[9, 10]. Optic neuritis, much like MS, is characterized by
inflammatory demyelination and varying degrees of
axonal injury [10]. Optic nerve dysfunction leads to im-
pairment of visual function which can be monitored in
mice in a clinically relevant manner [11]. As such,
mouse models of optic neuritis present an opportunity
to evaluate the connection between imaging, pathology,
and function in a disorder like MS.
Several different magnetic resonance imaging (MRI)

biomarkers have recently been evaluated in MS [12–14].
Diffusion tensor imaging (DTI), in particular, is one of
the commonest tools for evaluating white matter disease
as, under some circumstances, it can distinguish axonal
injury from demyelination [15–17]. However DTI-
derived metrics are obfuscated by the presence of in-
flammatory pathology [18, 19]. We recently developed a
new diffusion MRI approach called diffusion basis
spectrum imaging (DBSI) that is able to separately quan-
tify the axonal and inflammatory pathologies [20, 21].
DBSI models the diffusion signal as a linear combination
of anisotropic diffusion tensors reflecting fibers, which
in white matter are predominantly axon fibers, and a
spectrum of isotropic diffusion tensors which encompass
cells, edema, and cerebrospinal fluid [20, 22]. In the
study reported here, we applied DBSI at the onset of
optic neuritis (ON) in the experimental autoimmune
encephalomyelitis (EAE) mouse model. DBSI is able to
distinguish and quantify axon injury, demyelination,
cellular infiltration and edema, and axonal loss.

Methods
EAE mouse model of optic neuritis
All experiments were performed on 10-week-old female
C57BL/6 mice (The Jackson Laboratory, Bar Harbor,
ME). All mice were housed and maintained in the
Washington University animal facility and subjected to a
12-h light/dark cycle with constant access to nourish-
ments. The EAE model of optic neuritis was induced as
previously described [22]. Mice were immunized with
50 μg myelin oligodendrocyte peptide (MOG35-55) emul-
sified in incomplete Freund’s adjuvant with 50 μg Myco-
bacterium tuberculosis. Mice further received 300 ng
intravenous adjuvant pertussis toxin (PTX, List Labora-
tories, Campbell, CA) on the day of and 2 days after
immunization. Eight mice were studied.

Visual acuity (VA) measurements
Visual acuity, utilized to measure visual function in
parallel to clinical signs, was assessed with the Virtual
Optometry System (Optomotry, Cerebral Mechanics,
Inc., Canada) as previously described [23]. In short, mice
were presented with virtual rotating columns displayed

on four LCD screens. The spatial frequencies in cycle/
degree (c/d) were changed starting from 0.1 c/d with
step size of 0.05 c/d until the mouse stopped responding.
VA is then defined as the highest spatial frequency to
which the mouse was able to respond. Left and right eye
VA can be assessed by the direction of rotating columns,
clockwise for left eye and vice versa [24]. If the mouse
did not respond to 0.1 c/d, VA was assigned to be 0 c/d.
With this technique, it is possible to separately assess
the VA of each eye by switching the rotational direction
of the columns. Visual impairment was defined as VA
≤0.25 c/d, based on our previous work [22]. Normal VA
was confirmed before immunization and then assessed
daily after immunization.
For each mouse in our cohort, onset of optic neuritis,

as indicated by impairment of visual function defined by
VA, did not occur simultaneously for both eyes. We
therefore defined time 1 as the day in which the first eye
had a VA ≤0.25 c/d and time 2 as the day in which the
second eye had a VA ≤0.25 c/d. Concordantly, for each
mouse, eye 1 is the eye affected at time 1 and eye 2 is
the eye affected at time 2. VA for each eye is presented
in Fig. 1. Based on this experimental paradigm, time 1
and time 2 corresponded to onset and post-onset of
optic neuritis for eye 1 and pre-onset and onset of optic
neuritis for eye 2, respectively.

Magnetic resonance imaging (MRI) measurements
MRI experiments were performed on a 4.7 T Agilent
DirectDrive™ small-animal MRI system (Agilent Tech-
nologies, Santa Clara, CA) equipped with Magnex/Agi-
lent HD imaging gradient coil (Magnex/Agilent, Oxford,

Fig. 1 Visual acuity (VA) of EAE mice (n = 8) from baseline, pre-onset
(time 1 of eye 2), onset (time 1 of eye 1 and time 2 of eye 2), and
post-onset (time 2 of eye 1). Eye 1 = filled symbols; eye 2 = open
symbols. The dotted line indicates VA = 0.25 c/d, which was the
threshold of defined onset of optic neuritis. The results indicated
that there was no visual acuity difference between eye 1 and eye 2
at time 2 (p = 0.15)
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UK) with pulse gradient strength up to 58 G/cm and a
gradient rise time ≤295 μs. Mice were anesthetized with
1% isoflurane in oxygen and placed in a custom made 3-
point immobilization head holder. Breathing rate was
monitored, and body temperature was maintained at
37 °C with a small animal physiological monitoring and
control unit (SA Instruments, Stony Brook, NY). An ac-
tively decoupled volume (transmit)/surface (receive) coil
pair was used for MRI excitation and signal reception.
Diffusion-weighted MRI data was acquired with a trans-
verse slice of mouse brain with two optic nerves, as nearly
orthogonal to the image slice as possible. A multi-echo
spin-echo diffusion-weighted sequence [25] with an icosa-
hedral 25-direction diffusion-encoding scheme [26] com-
bined with one b = 0 was employed and MR acquisition
parameters were TR of 1.5 s, TE of 37 ms, time between
gradient pulses (Δ) of 18 ms, gradient pulse duration (δ)
of 6 ms, maximum b-value of 2200 s/mm2 (each encoding
direction has a unique b-value), slice thickness of 0.8 mm,
and in-plane resolution of 117 μm2.

MRI data analysis
Data was analyzed with DBSI multi-tensor and conven-
tional DTI single-tensor analysis packages developed in-
house with Matlab [20, 21]. For optic nerve, we have a
coherent fiber bundle, the diffusion-weighted imaging
data was modeled according to Eq. 1:

Sk ¼ f e− bk⇀j jλ⊥e− bk⇀j j λ∥−λ⊥ð Þ cos2Φk

þ
Z b

a
f Dð Þe− bk⇀j jDdD k ¼ 1; 2; 3;…; 25ð Þ:

ð1Þ
The quantities Sk and bk⇀j j are the signal and b-value of

the kth diffusion gradient, Φk is the angle between the kth

diffusion gradient and the principal direction of the an-
isotropic tensor, λ|| and λ⊥ are the axial and radial
diffusivities of the anisotropic tensor, f is the signal
intensity fraction for the anisotropic tensor, and a and b
are the low and high diffusivity limits for the isotropic
diffusion spectrum (reflecting cellularity and edema,
respectively) f(D). DBSI derived f represents retinal gan-
glion cell (RGC) axon density (fiber fraction) in the
image voxel, accounting for intra-voxel pathological and
structural complications. DBSI derived λ|| and λ⊥ reflect
residual axon and myelin integrity respectively: ↓ λ|| ≈
axonal injury and ↑ λ⊥ ≈ demyelination [20–22, 27].
Based on our previous experimental findings, the re-
stricted isotropic diffusion fraction reflecting cellularity
is derived by the summation of f(D) at 0 ≤ ADC ≤
0.3 μm2/ms. The summation of the remaining f(D) at 0.3
< ADC ≤ 3 μm2/ms represents non-restricted isotropic
diffusion, which putatively denotes vasogenic edema and
CSF [20–22, 27].

Regions of interest (ROI) were manually drawn in the
center of each optic nerve on the diffusion-weighted
image, corresponding to the diffusion gradient direction
perpendicular to optic nerves, to minimize partial vol-
ume effects. ROIs were then transferred to the paramet-
ric maps to calculate the mean for each of the DBSI and
DTI-derived metrics.

ROI for DBSI fiber fraction
Separate ROIs encompassing the whole optic nerve
were drawn on the diffusion-weighted images (DWI)
with diffusion-weighting gradient orthogonal to the
optic nerve, which were larger than the ROIs for
measuring DBSI- or DTI-derived metrics. The partial
volume effect of surrounding cerebrospinal fluid for
ROIs outlining optic nerve cross-section area estima-
tion was minimized because surrounding cerebrospinal
fluid signal was eliminated via diffusion weighting.
DBSI analysis models axonal fibers as anisotropic dif-
fusion tensor components excluding any residual free
isotropic CSF signal.

Immunohistochemistry
Immediately after the final MRI time point, mice were
deeply anesthetized and underwent perfusion via the left
cardiac ventricle with phosphate-buffered saline (PBS)
followed by 4% paraformaldehyde (PFA). Brains were ex-
cised after intra-cardiac perfusion fixation with 4% PFA
at 4 °C and then transferred to PBS for further storage
until processing. Optic nerves were then dissected, em-
bedded in 2% agar, and then further embedded in paraf-
fin wax [28]. Paraffin blocks were sectioned at 5-μm
thick, deparaffinized, and rehydrated for immunohisto-
chemistry analysis. Sections were blocked with 5% nor-
mal goat serum and 1% bovine serum albumin in PBS
for 30 min at room temperature to prevent non-specific
binding. Slides were then incubated overnight at 4 °C
with primary antibody and then 1 h at room
temperature with the appropriate secondary antibody.
Primary antibodies used were anti-total neurofilament
(SMI-312, BioLegend, 1:300), anti-phosphorylated neu-
rofilament (SMI-31, BioLegend, 1:300), and anti-myelin
basic protein (MBP, Sigma, 1:300). Secondary antibodies
were goat anti-mouse or goat anti-rabbit (Invitrogen,
1:240) with both conjugated to Alexa 488. Slides were
mounted with Vectashield Mounting Medium for DAPI
(Vector Laboratory, Inc., Burlingame, CA) and cover-
slipped. Images were acquired on a Nikon Eclipse 80i
fluorescence microscope with MetaMorph software (Uni-
versal Imaging Corporation, Sunnyvale, CA) at ×72 and
×84 (1.2 and 1.4 magnification of ×60 objective) mag-
nifications. Quantification was performed on entire
optic nerve images which were the combination of
four to six ×72 immunohistochemistry images using
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ImageJ (http://rsbweb.nih.gov/ij/plugins/volume-viewer.
html, NIH, US). Images were then undergone back-
ground subtraction, bilateral filter for edge preservation,
watershed segmentation, threshold determination, and
the analyze particles macro for SMI-312, SMI-31, and
MBP area calculation and then normalized by entire area
of optic nerve. Background subtraction, watershed seg-
mentation, threshold determination, and analyze particles
were used for DAPI counts.

Statistics
For all the boxplots, whiskers extend to the minimum/
maximum and the mean is marked as diamonds. Data
were collected in a nested design where each mouse had
two periods (eye 1 and 2) each containing repeated mea-
surements at baseline, time 1, and time 2. Data were an-
alyzed with a mixed random effect repeated measures
model with period, time, and period by time interaction
fixed effects. Contrasts were estimated for change from
baseline to times 1 and 2, averaged over periods. Degrees
of freedom were adjusted with Kenward-Rogers method.
A first order auto-regressive covariance structure was
used to account for repeated measures. The correlation
of histology data and DBSI measurements at time 2 were
analyzed by simple linear regression.

Results
Monocular visual acuity decrease at the onset of optic
neuritis
After immunization, daily VA of EAE mice (n = 8) was
confirmed. When VA ≤ 0.25 c/d, defined as onset of ON
[22], DBSI was performed and the eye was defined as eye
1 at time 1 (12.1 ± 1.9 days post-immunization, mean ±
SD, n = 8). The other eye was defined as eye 2. When the

VA of eye 2 decreased below 0.25 c/d, DBSI was per-
formed again at the same day (14.4 ± 1.7 days post-
immunization, mean ± SD, n = 8, one eye 2 did not de-
velop ON but still included in statistical analyses) defined
as time 2 (Fig. 1). There was no difference between eye 1
and eye 2 at time 2 (p = 0.15).

DBSI reflected acute inflammation and axonal pathology
specifically
DTI- and DBSI-derived parametric maps from EAE optic
nerve revealed decreased DTI-λ∥ (1.65 ± 0.16 μm2/ms vs.
control 1.79 ± 0.12 μm2/ms, p < 0.05), normal DBSI-λ∥
(1.82 ± 0.08 μm2/ms vs. control 1.79 ± 0.12 μm2/ms, p =
0.059) and normal DTI- λ⊥(0.16 ± 0.03 μm2/ms vs. control
0.16 ± 0.04 μm2/ms, p = 0.088) and DBSI-λ⊥ (0.20 ±
0.03 μm2/ms vs. control 0.17 ± 0.03 μm2/ms, p = 0.065) at
time 1 (Fig. 2). Similarly, mild but not significant inflam-
matory cell infiltration and putative significant vasogenic
edema, manifested as the increased DBSI restricted (0.03
± 0.01 vs. control 0.01 ± 0.01, p = 0.29) and non-restricted
(0.04 ± 0.03 vs. control 0.02 ± 0.01, p < 0.05) isotropic
diffusion fractions, was also seen at time 1 in this particu-
lar nerve. Both DTI and DBSI measurements showed
decreased λ∥ (DTI λ∥: 1.25 ± 0.32 μm2/ms vs. control 1.79
± 0.12 μm2/ms, p < 0.005 and DBSI λ∥: 1.57 ± 0.17 μm2/
ms vs. control 1.79 ± 0.12 μm2/ms, p < 0.005) and in-
creased λ⊥ (DTI λ⊥: 0.22 ± 0.06 μm2/ms vs. control 0.16 ±
0.04 μm2/ms, p < 0.005 and DBSI λ⊥: 0.21 ± 0.03 μm2/ms
vs. control 0.17 ± 0.03 μm2/ms, p = 0.16) at time 2, sug-
gesting axonal and myelin injury, respectively [16]. Con-
sistent with the increased DBSI restricted (0.08 ± 0.05 vs.
control 0.01 ± 0.01, p < 0.005) and non-restricted (0.09 ±
0.06 vs. control 0.02 ± 0.01, p < 0.05) isotropic diffusion
fractions, exaggerated DTI λ∥ and λ⊥ change at time 2

Fig. 2 DTI- and DBSI-derived parametric maps of one representative EAE optic nerve (eye 1) from baseline (top row), time 1 (middle row, onset),
and time 2 (bottom row, onset of the fellow eye). Decreased axial diffusivity (λǁ, columns 1 and 2) and increased radial diffusivity (λ⊥, columns 3
and 4) in both DTI and DBSI measurements suggest axonal injury and demyelination at time 2. DBSI distinguished and further quantified the
extent of inflammatory cell infiltration (column 5, restricted diffusion fraction) and vasogenic edema (column 6, non-restricted diffusion fraction),
confounding DTI estimated λǁ and λ⊥
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paralleled inflammatory cell infiltration and putative vaso-
genic edema (Fig. 2). Data from eye 1 and eye 2 were aver-
aged at baseline, time 1 and time 2. Exaggerated changes
in DTI-derived maps (Fig. 3a–c) when compared to DBSI-
derived λ∥, λ⊥, and FA (Fig. 3d–f ) at time 2, resulted from
confounding effects from inflammation (Fig. 3g, h). For
the EAE mice in this cohort, slightly increased inflamma-
tory cell infiltration (seen as increased DBSI restricted
fraction, Fig. 3h) and significant edema (as increased DBSI
non-restricted fraction, Fig. 3g, p < 0.05) at time 1 were
seen while axon and myelin damage was still absent
(Fig. 3d–f ). The EAE mice in this cohort developed axonal
injury (Fig. 3d), mild demyelination (Fig. 3e), and signifi-
cantly increased cell infiltration (Fig. 3g) and edema
(Fig. 3h) at acute ON.

DBSI detected and quantified axonal loss in the presence
of optic nerve swelling
Onset of EAE ON was highly associated with inflamma-
tory cell infiltration and putative edema, which led to
optic nerve swelling in diffusion-weighted images (DWI,
Fig. 4a–c). Group-average of nerve volume showed sig-
nificant swelling at time 1 (0.10 ± 0.01 mm3 vs. control
0.08 ± 0.01 mm3, p < 0.005) and 2 (0.12 ± 0.02 mm3 vs.
control 0.08 ± 0.01 mm3, p < 0.005, Fig. 4d). The corre-
sponding DBSI-derived axon volume (nerve volume
multiplying DBSI fiber fraction of corresponding ROI)
demonstrated significant 16 and 17% axonal loss at time
1 and time 2, respectively (Fig. 4e). DBSI fiber fraction
correlated well with VA measurement from baseline to
time 2 (Fig. 4f ).

Fig. 3 Box plots summarize the group distribution of DTI-derived λǁ, λ⊥, and FA (a–c) and DBSI-derived λǁ, λ⊥, FA, restricted, and
non-restricted diffusion fraction (d–h) from baseline, time 1, and time 2, respectively. Axonal injury developed at time 2 suggested
by the significantly decreased DTI- and DBSI-λǁ (a, d, p < 0.005). At time 1, significant decrease was only seen in DTI-λǁ but not in
DBSI-λǁ reflecting the confounding effects of inflammatory cell infiltration and vasogenic edema (a, d). The same confounding effects
also resulted in increased DTI-λ⊥ at time 2 but not in DBSI-λ⊥ (b, e).The distribution of DBSI results (d–f) was much tighter than DTI
(a–c) since DBSI was able to separate vasogenic edema (g) and cell infiltration (h) from axon and myelin pathologies. One asterisk
indicates p < 0.05. Double asterisks indicate p < 0.005
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Immunohistochemistry of optic nerve
Post-MRI immunohistochemistry staining of optic
nerves (Fig. 5) was used to assess axon (SMI-312, SMI-
31) and myelin (MBP) integrity, and extent of cellularity
(DAPI). The EAE optic nerves showed significant axonal
swelling (yellow arrows, Fig. 5a), inflammation, and
axonal injury (red and white circles, Fig. 5b, c). Both eyes
from each EAE mouse was selected for the regression
analyses. The regression of SMI-31, MBP, and SMI-312
area fraction and DBSI λ∥, DBSI λ⊥, DBSI fiber fraction,
and DBSI restricted fraction (Fig. 6a–d) supported that
DBSI indexes were able to reflect the optic-nerve path-
ologies. Similarly, DBSI-derived axon volume was able to
reflect SMI-312 area (Fig. 6e).

Discussion
We examined optic nerve pathology in EAE mice at the
onset of the ON when VA impairment was observed
(Fig. 1). Optic neuritis in EAE-affected mice, much like
in MS, is heterogeneous in pathology with a mixture of
axonal injury, demyelination, cellular inflammation, and
edema (Fig. 5) [22, 29–31]. We employed DBSI to moni-
tor the evolving optic nerve pathology in EAE mice with
ON by distinguishing and quantifying inflammation,
demyelination, and axonal injury/loss simultaneously
(Figs. 3, 4, and 6). DBSI parameters suggested the

presence of prominent inflammation-associated increase
in cellularity and edema at the onset of ON (Fig. 3g, h),
consistent with the postmortem immunohistochemistry
findings (Figs. 5 and 6). These pathological components
not only contributed to the impaired visual function
clinically but also confounded interpretation of DTI de-
rived axonal injury and demyelination metrics (Fig. 3a–
c).
Current MRI diagnostic approaches fail to accurately

assess the progression of MS. Advanced MRI measures
such as quantitative relaxation, diffusion, and
magnetization transfer imaging provide more informa-
tion than conventional MRI but unfortunately cannot
distinguish between reversible and irreversible patholo-
gies. Imaging markers sensitive and specific to axonal
loss, which is thought to be irreversible, would provide
the critical tools needed for assessing MS progression.
The advent of optical coherence tomography (OCT)
has enabled the quantification of neuronal (ganglion cell
layer/inner plexiform layer, GCL + IPL) and axonal (ret-
inal nerve fiber layer, RNFL) loss in the visual system
allowing the direct correlation of structure with func-
tion [32–34]. In MS patients with or without history
of clinical optic neuritis, GCL + IPL and RNFL
thinning can be observed [35, 36]. Interestingly, OCT-
detected RNFL thinning has also been reported to

Fig. 4 Diffusion-weighted images (DWI) were acquired using the diffusion gradient applied perpendicular to the optic nerves (black arrows), at
baseline (a, before EAE induction), time 1 (b, onset of ON in the first eye), and time 2 (c, onset of ON in the second eye) from an representative
EAE mouse. Optic nerve swelling was seen at time 1 and 2 caused by inflammation associated increase in cellularity and edema. Significantly
increased optic nerve volume was seen after ON (d, p < 0.005). The corresponding DBSI-derived axon volume (optic nerve volume × DBSI fiber
fraction) suggested a significant axonal loss in optic nerves (e, p < 0.05 and p < 0.005 for time 1 and 2, respectively). DBSI fiber fraction, reflecting
effects of axonal loss and dilution effect of axonal density from inflammation, correlated well with visual acuity (f). One asterisk indicates p < 0.05.
Double asterisks indicate p < 0.005
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correlate with brain atrophy [37–41]. The portions of the
anterior visual pathway measured using OCT have thus
been considered to reflect the more global central nervous
system (CNS) integrity; OCT has increasingly been sug-
gested as an outcome measure in MS [42–45].
However, OCT is not as useful in the presence of early

acute inflammation, due to the confounding presence of
acute cell infiltration and vasogenic edema [46]. The
posterior visual pathway (optic nerves/tracts/radiations)
is not directly visualized by OCT due to the limited
penetration of the technique. Moreover, the ability of
OCT-detected intraocular pathologies to represent CNS
pathologies outside of the visual system is indirect and
imperfect in the individual patient. Thus, imaging bio-
markers that can interrogate the entire CNS white mat-
ter, and distinguish and quantify different components
of pathology without succumbing to their confounding
interferences are greatly needed in MS. DBSI fiber frac-
tion estimated axonal density of the optic nerve includ-
ing the dilution effect of inflammation (optic nerve
swelling on DWI, Fig. 4a–c) in each voxel. The

correlation of VA and DBSI fiber fraction indicated that
visual function was affected by inflammation (revers-
ible) and axonal loss (irreversible, Fig. 4d). The recov-
ery of visual function independent of initial visual
loss in MS patients with optic neuritis may suggest
the irreversible axonal loss is below the threshold of
permanent vision loss [10, 47].
We contend that DBSI could provide the unmet needs

in MS and neurological disorders in general by present-
ing specific pathological metrics to quantitatively reflect
axonal injury, demyelination, inflammation, and axonal
loss. A longitudinal DBSI measurement could assess the
effectiveness of anti-inflammatory therapies on axonal
preservation by longitudinally assessing axonal patholo-
gies in real time. The axonal loss in this cohort of EAE
mice occurred early (Fig. 6e). Since axonal integrity plays
a crucial role in neurological disability [48, 49], longitu-
dinal measurements of DBSI-derived axonal volume could
potentially quantify the rate of irreversible axonal loss and
serve as a biomarker of MS progression preceding detect-
able clinical symptoms.

Fig. 5 Representative ×72 immunohistochemical staining images of anti-total neurofilament (SMI-312, total axons), phosphorylated neurofilament
(SMI-31, intact axon), myelin basic protein (MBP, myelin sheath), and 4′, 6-dianidino-2-phenylindole (DAPI, nuclei) from severe (a, column 1) and
mild (a, column 3) optic neuritis nerves demonstrate the different degrees of tissue damages. The corresponding ×84 zoom-in images (covered
~50% of the optic nerve cross-section area) are displayed alongside ×72 images (a, column 2 and 4, respectively). Swollen axons, some aggre-
gated to form enlarged staining regions (a, yellow arrows), were seen in SMI-312 and SMI-31 staining images. Axonal loss and injury (reduced SMI-
312 and SMI-31 positive staining), demyelination (decreased MBP positive staining), and cell infiltration (increased density of DAPI staining) were
present in optic neuritis nerves. The zoom-in ×84 DAPI and SMI-31 double-staining images from one EAE optic nerve with 200 ms (b) and
800 ms (c) exposure time revealed the multiple-axon aggregation underlying the unusually large green spots seen in the SMI-312 and SMI-31 im-
ages (b, c, red and white circles). Scale bar 50 μm
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Conclusions
Our findings support the notion that axonal loss could
occur early in EAE mice. Diffusion basis spectrum im-
aging detected pathologies in the posterior visual path-
way unreachable by optical coherence tomography and
without confounding inflammation induced optic nerve
swelling. Diffusion basis spectrum imaging could thus
decipher the interrelationship among various patho-
logical components and the role each plays in disease
progression. Quantification of the rate of axonal loss
could potentially serve as the biomarker to predict treat-
ment outcome and to determine when progressive dis-
ease starts.
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