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Abstract

Background: Laquinimod is an oral immunomodulator in clinical development to treat relapsing-remitting multiple
sclerosis (RRMS). Laquinimod is in clinical development for the treatment of multiple sclerosis and Huntington
Disease (HD). The objective of this study is to assess the safety, tolerability, pharmacokinetics (PK) and
cytoimmunologic effects following escalating doses of laquinimod in patients with RRMS.

Methods: One hundred twelve patients were randomly assigned to laquinimod/placebo in a series of separate
dose-escalating cohorts starting from a daily oral dose of 0.9 mg/1.2 mg escalating to 2.7 mg, in 0.3 mg increments.

Results: Twenty-eight patients received placebo and 84 received laquinimod ranging from 0.9 to 2.7 mg. No deaths
occurred. One serious adverse event (SAE) of perichondritis was reported, which was unrelated to laquinimod (0.9 mg).
There was no increased incidence of adverse events (AEs) with escalating doses. Laquinimod-treated patients showed
more abnormal laboratory levels in liver enzymes, P-amylase, C-reactive protein (CRP), and fibrinogen, but most shifts
were clinically non-significant. The exposure of laquinimod was dose proportional and linear in the tested dose range.
An immunological substudy showed significant dose-dependent decreases in 6-sulpho LacNAc + dendritic cell
(slanDC) frequency following laquinimod compared to placebo.

Conclusion: Laquinimod doses up to 2.7 mg were safely administered to patients with RRMS. An in vivo effect of
laquinimod on the innate immune system was demonstrated.

Trial registration: EudraCT Number: 2009-011234-99. Registered 23 June 2009.
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Background
Laquinimod, a quinolone-3-carboxamide derivative, is an
innovative oral anti-inflammatory drug selected for efficacy
and safety from a pool of 60 quinoline 3-carboxamide de-
rivatives of the parent compound roquinimex, a drug
whose clinical development stopped due to safety concerns
[1]. Laquinimod is in clinical development for the treat-
ment of multiple sclerosis and Huntington disease (HD).

Three phase 3 studies evaluating the efficacy and safety of
laquinimod 0.6 mg as a treatment for relapsing remitting
MS have been conducted; one study (Allegro) showed sta-
tistically significant differences between laquinimod and
placebo in its primary endpoint of relapse rate reduction
[2], the second study (BRAVO) did not [3]. The third
study, Concerto did not meet its primary endpoint of a dif-
ference from placebo in confirmed 3-month disease pro-
gression; however, there were differences from placebo in
the secondary endpoints [4]. There are two clinical trials
currently ongoing, one evaluating laquinimod as a treat-
ment for progressive MS [5], and one with laquinimod as a
HD treatment [6].
This maximum tolerated dose study (MS-LAQ-101)

was designed to assess the safety and tolerability profile
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of ascending doses of oral laquinimod (0.9, 1.2, 1.5, 1.8,
2.1, 2.4, and 2.7 mg) administered daily in patients with
relapsing-remitting multiple sclerosis (RRMS). It is im-
portant to note that in January 2016, subsequent to the
completion of the study reported herein, patients on
laquinimod doses greater than 1.0 mg per day were dis-
continued from treatment in the clinical studies of MS
and HD. This action was recommended by the Data
Monitoring Committee and was due to an imbalance in
cardio- and cerebrovascular adverse events (AEs) in
emerging safety data in the MS clinical studies (Teva
Pharmaceutical Industries Ltd., data on file). The study
evaluating the effect of laquinimod as a treatment for
progressive MS includes laquinimod at a dose of 0.6 mg
per day as a MS treatment, and the study on laquinimod
as a treatment for HD includes doses of 0.5 and 1.0 mg.
Preclinical studies have shown that laquinimod reduces

inflammatory cell infiltrates in the central nervous system
(CNS), inhibits development of experimental autoimmune
encephalomyelitis, decreases demyelination, and prevents
axonal loss [7, 8], and the formation of meningeal B cell
aggregates [9]. Laquinimod is likely to exert its anti-
inflammatory activity via suppression of Th1 and Th17
cells and induction of a Th2/3 shift of immune response
in the peripheral blood [7–13]. These changes are mainly
related to changes of dendritic cell properties [8, 14, 15].
A possible mechanism of laquinimod associated neuro-
protective activity was demonstrated in the cuprizone
model of toxic demyelination [16] where laquinimod
treatment prevented cuprizone-induced demyelination by
attenuating astrocytic NF B activation in a mechanism
involving direct CNS intrinsic modulation of NF B sig-
naling in astrocyte [17] independent of Toll-like receptor
signaling [18]. These results were further verified using
human astrocytes in vitro [17]. Laquinimod’s immuno-
modulatory effects in EAE are thought to be mediated via
its action at the aryl hydrocarbon receptor (AhR) [19].
Previously in a longitudinal analysis of immune pa-

rameters comparing laquinimod and placebo-treated co-
horts, no significant changes in the relative proportion
of T cells, B cells, monocytes and macrophages, natural
killer cells, dendritic cells, or FoxP3+ CD25hi regulatory
T cells were observed in patients, receiving 2 years of
continuous laquinimod therapy and they retained their
capacity to respond to immunologic stimuli [20]. However,
detailed in vitro analysis of monocytes demonstrated a
lower level of CD86 expression on monocytes stimulated
with lipopolysaccharide (LPS) in laquinimod patients start-
ing from the first month of treatment. Upon inflammatory
stimulation, monocytes obtained from laquinimod-treated
patients tended to secrete lower levels of the proinflamma-
tory chemokines CCL2 or CCL5 [21]. As existing data sug-
gest that inhibition of the NF-κB pathway is responsible for
the changes observed in dendritic cell maturation and

functions, laquinimod may exhibit its disease-modulating
activity in MS by downregulating immunogenicity of den-
dritic cell responses [22]. A recent study has showed the
proinflammatory potential of 6-sulpho LacNAc+ dendritic
cells (slanDCs) through expression of CD83 and tumor ne-
crosis factor-α (TNF-α) production, and that a decrease in
slanDCs was linked to decreased inflammatory activity
[23]. Thus, as part of this study to assess the safety and tol-
erability of ascending laquinimod doses, the effect of laqui-
nimod on the frequency of slanDCs, a cell population of
interest that accounts for 0.5 to 2% of PBMCs and have
been recently described in MS, was evaluated [24, 25].

Methods
Participants and study design
This phase 1, randomized, double-blind, placebo-controlled,
dose-escalation study was performed at seven centers in
Germany from August 2009 to March 2012. The study was
conducted in accordance with the Declaration of Helsinki,
the protocol was approved by the Independent Ethics Com-
mittee at each study site (Ethikkommission der Universität
Ulm), and written informed consent was obtained from each
patient as a condition of entry. Patients participating in the
immunological substudy were required to sign a separ-
ate informed consent form. Eligible participants were
male and female patients aged 18 to 55 years old, inclu-
sive, with a confirmed and documented diagnosis of
RRMS (revised McDonald criteria) [26], had experienced
at least one documented relapse in the 3 years prior to
screening, and were ambulatory with a baseline EDSS
score [27] of 0 to 5.5.
This study assessed the tolerability and safety of escal-

ating doses of oral laquinimod (0.9, 1.2, 1.5, 1.8, 2.1, 2.4,
and 2.7 mg) administered daily for 4 weeks in patients
with RRMS (see Additional file 1: Figure S1 for study de-
sign). As there was no formal hypothesis testing planned,
no statistical methods were employed to determine sam-
ple size. Based upon clinical judgment, 16 patients per
cohort (randomly assigned in a 3:1 ratio for laquinimod
and placebo, respectively), was considered adequate for
this type of study. An exception was the first cohort,
which consisted of two laquinimod arms (0.9 and 1.2 mg)
and a placebo arm, with 32 patients randomly assigned in
a 3:3:2 ratio. The Teva Global Biostatistics unit prepared a
computer-generated randomization scheme for each co-
hort using a SAS® PLAN procedure. Each scheme used a
block design; however, due to the small number of pa-
tients recruited at each center for each cohort, there was
no stratification by center.
The investigator at each study site evaluated the eligi-

bility of patients to participate in the study during a 1-
week screening and baseline visit. At the baseline visit,
patients who met inclusion criteria were randomized to
receive either laquinimod or matching placebo capsules

Ziemssen et al. Journal of Neuroinflammation  (2017) 14:172 Page 2 of 10



by an Interactive Web Response System according to the
randomization algorithm. Laquinimod capsules and their
matching placebo capsules were of identical appearance
and packaged in aluminum-silver/aluminum-soft blister
cards to maintain study blinding. All patients were admin-
istered laquinimod or matching placebo capsules, taken at
the same hour every day, with water.
The investigators, the sponsor, and any personnel in-

volved in patient assessment, monitoring, analysis, and
data management (excluding the designated Clinical Supply
Chain’s personnel) were blinded to patient assignment. Once
each dose cohort was completed and the database closed,
treatment assignments of that cohort were unblinded to the
sponsor study team to allow for further data analysis, pres-
entation to the steering committee (SC), and a decision
whether to continue to the next dose cohort in 0.3 mg in-
crements of laquinimod. The investigators remained blinded
to the patients’ treatment assignment. Specific predefined
safety stopping rules relating to increases in alanine
transaminase (ALT) or aspartate transaminase (AST) ≥
3 × the upper limit of normal were included in this
study. At any time during the study, the SC could de-
termine if a dose-limiting toxicity (DLT) had occurred.

The criteria for DLT were not predefined and were
based on the judgment of the SC.
Scheduled in-clinic visits during which clinical examina-

tions and safety evaluations were performed occurred at
screening (day −7), baseline (day 0), and on days 7, 14, 21,
and 28. Drug treatment discontinued on day 28 (end of
double-blind treatment visit) and a 2-week follow-up
(study completion) visit occurred on day 42. Patients who
discontinued study drug prior to the day 28 visit per-
formed the follow-up/study completion visit 14 days after
study drug discontinuation. Unscheduled visits for safety
or any other reason occurred as needed during the study.
Blood samples for pharmacokinetic (PK) evaluation

were collected on day 21 before dosing, and at 0.25, 0.5,
1, 2, 3, 4, 6, and 24 h after dosing. In addition, predose
samples were collected on days 7, 14, and 28. Samples
were analyzed for laquinimod concentrations by LC/MS/
MS bioanalysis assay using validated methods with a lower
limit of quantification of 2.5 ng/mL. The pharmacokinetic
measures were evaluated by model-independent methods
using Phoenix WinNonlin version 6.2. Actual sampling
times were used for pharmacokinetic analysis, while nom-
inal sampling times were used for summary statistics.

Table 1 Patient demographic and disease characteristics at baseline

MS-LAQ-101 Pooled placebo
(n = 28)

Laquinimod
0.9 mg
(n = 12)

Laquinimod
1.2 mg
(n = 12)

Laquinimod
1.5 mg
(n = 12)

Laquinimod
1.8 mg
(n = 11)

Laquinimod
2.1 mg
(n = 13)

Laquinimod
2.4 mg
(n = 12)

Laquinimod
2.7 mg
(n = 12)

All (N = 112)

Age, years

Mean ± SD 37.3 ± 8.5 38.6 ± 10.3 35.8 ± 9.4 35.2 ± 5.3 35.5 ± 8.4 41.5 ± 9.8 38.3 ± 10.5 44.8 ± 7.5 38.3 ± 9.0

Range 20.9–53.9 21.4–55.9 18.6–48.4 28.8–44.8 23.2–47.2 23.4–56.0 23.6–54.5 31.3–55.5 18.6–56.0

Gender N (%)

Female 23 (82.1) 10 (83.3) 6 (50.0) 10 (83.3) 5 (45.5) 7 (53.8) 9 (75.0) 9 (75.0) 79 (70.5)

Male 5 (17.9) 2 (16.7) 6 (50.0) 2 (16.7) 6 (54.5) 6 (46.2) 3 (25.0) 3 (25.0) 33 (29.5)

Height (cm)

Mean ± SD 170.3 ± 9.5 174.2 ± 9.8 175.8 ± 8.5 169.6 ± 8.1 177.7 ± 10.5 171.9 ± 7.9 171.4 ± 7.7 173.1 ± 6.8 172.6 ± 8.9

Range 157.0–196.0 158.0–198.0 164.0–196.0 158.0–180.0 158.0–193.0 158.0–186.5 161.0–186.0 164.0–187.0 157.0–198.0

Weight (kg)

Mean ± SD 72.9 ± 15.3 74.8 ± 14.5 75.9 ± 17.4 77.7 ± 19.1 81.1 ± 18.6 81.0 ± 13.9 79.9 ± 9.9 77.4 ± 12 76.9 ± 15.2

Range 53.0–110.0 57.0–99.5 58.0–124.0 52.0–113.0 63.0–123.2 62.0–109.5 62.0–98.0 62.0–97.0 52.0–124.0

BMI (kg/m2)

Mean ± SD 24.9 ± 3.7 24.8 ± 5.5 24.4 ± 4.3 27.0 ± 6.4 25.7 ± 5.0 27.4 ± 4.2 27.3 ± 3.9 25.8 ± 3.6 25.8 ± 4.5

Range 20.2–36.6 19.8–39.9 18.9–32.3 18.6–36.5 19.1–35.8 21.1–33.0 22.0–33.9 21.5–33.6 18.6–39.9

EDSS score at screening

Mean ± SD 2.1 ± 1.1 2.0 ± 1.4 1.6 ± 1.2 2.1 ± 1.3 2.4 ± 1.8 2.5 ± 1.2 2.7 ± 1.0 2.6 ± 1.5 –

Range 0.0–5.5 0.5–5.5 0.0–4.0 0.0–5.5 0.0–5.5 1.0–5.0 1.0–4.0 1.0–5.5 –

Total number of exacerbations in the year prior to screening

Mean ± SD 0.7 ± 0.6 1.2 ± 0.8 1.1 ± 0.8 0.8 ± 0.7 1.2 ± 1.2 1.0 ± 0.9 1.0 ± 0.6 1.0 ± 0.6 0.9 ± 0.8

Range 0.0–2.0 0.0–3.0 0.0–3.0 0.0–2.0 0.0–4.0 0.0–3.0 0.0–2.0 0.0–2.0 0.0–4.0

BMI body mass index, EDSS Expanded Disability Status Scale, SD standard deviation
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Further details regarding preparation of PBMC samples
are provided in the Additional file 1.
As part of the immunological substudy, whole blood

samples for assessment of PBMCs were collected on
days 0 and 28 from all patients who signed the appropri-
ate informed consent form. Whole blood samples for de-
tailed longitudinal assessment of PBMCs at the Dresden
study center were also collected for evaluation on days
7, 14, 21, and 42. SlanDCs were evaluated regarding fre-
quency, properties, and modulating effects of laquini-
mod on activation status.

Measures and statistical analyses
This study aimed to assess the safety and tolerability profile
of ascending doses of laquinimod administered daily in pa-
tients with RRMS. Safety assessments included evaluation
of adverse events (AEs), clinical laboratory (biochemistry,
hematology, and urinalysis) assessments, vital signs, and
electrocardiograms (ECGs). The intent-to-treat analysis set
(ITT) consisted of all patients randomized to the study and
who received at least one dose of study drug. In accordance
with the ITT principle, all patients were kept in their ori-
ginally randomly assigned treatment group. All safety ana-
lyses were performed on the ITTanalysis set.

For each of the study doses, the following steady-state PK
parameters were derived using noncompartmental methods:
maximum plasma concentration (Cmax), minimum plasma
concentration (Cmin), time to maximum plasma concentra-
tion (tmax), and area under the plasma concentration-time
curve from 0 to 24 h postdose (AUC0–24).
The safety and immunological substudy data were de-

scribed using descriptive statistics. ANCOVA analyses of
the dose proportionality of the PK measures were per-
formed using a linear regression model with natural
logarithm of dose normalized Cmax and AUC0–24 on day
21 as response variable (Y) and dose (Dose) as an explana-
tory variable (SAS Institute; version 9.2). Gender and body
weight were included as covariates in the model. A linear
model Y = a + b × Dose + error was used to fit the data
and construct 95% confidence intervals (CI) for b. The PK
parameter was declared dose proportional if the slope
parameter b was not significantly different from 0 or
the 95% CI for b contained 0.

Results
Study population
A total of 112 patients participated in the study (Table 1).
Twenty-eight patients (23 females, 5 males) received

Fig. 1 Patient disposition. All patients enrolled in the study were included in the safety evaluation. All safety analyses were performed on the ITT
analysis set. ITT intent-to-treat
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placebo, and 84 patients (56 females, 28 males) received
daily doses of laquinimod ranging between 0.9 and 2.7 mg
(Fig. 1). Seven patients on laquinimod and one patient on
placebo terminated the study early; reasons for withdrawal
in the laquinimod group included AE (n = 5), patient
withdrawal of consent (n = 1), and lost to follow-up
(n = 1) and in the placebo group MS relapse (n = 1). All
patients enrolled in the study were included in the safety
evaluation.

Safety and tolerability
No deaths occurred during the study. One laquinimod
0.9 mg-treated patient had a serious adverse event (SAE)
of perichondritis considered unrelated to study drug. In
addition, one patient in the placebo group for laquini-
mod 1.8 mg had two SAEs of fall and skin laceration. Al-
though there was no overall increased incidence of AEs
with increased dose, several AEs occurred more fre-
quently in the higher dose groups than in the other dose
groups without a clear dose response (Table 2). The
most commonly reported AE in the laquinimod groups
was headache, exhibiting no clear dose response (Table 2).
There was a single AE of tension headache in the 2.7 mg
group considered severe.
Five laquinimod-treated patients terminated early due

to AEs. One patient in the 0.9 mg group terminated
early due to an AE of mild headache and one patient in

the laquinimod 2.1 mg group terminated due to asthenia,
upper abdominal pain, and chest pain, an ECG performed
2 days later was normal. A second patient in the laquini-
mod 2.1 mg group terminated due to self-reported “hyper-
sensitivity” with related chest discomfort. At the time of
early termination, no allergic reaction could be deter-
mined, ECG was normal and fibrinogen level increased to
4.88 g/L (normal range 1.5–4.3 g/L, level at baseline was
4.11 g/L). At a follow-up visit 2 weeks after termination,
ECG showed mild tachycardia and fibrinogen level nor-
malized (3.68 g/L). Two patients in the laquinimod 2.7 mg
group terminated the study early due to AEs. The first pa-
tient terminated due to vomiting, nausea, and tension
headache. The second patient was terminated due to lab
abnormalities (C-reactive protein (CRP) increased, blood
fibrinogen increased). One patient in the placebo group
for the 2.4 mg dose terminated the study early due to an
MS relapse. No dose response detected in the incidence of
AEs leading to ET and no specific AE identified as a com-
mon cause for ET across cohorts.
Overall, most patients had within normal range values

for all laboratory parameters assessed throughout the
study. No clear dose response observed for central trends
or post-baseline shifts for any laboratory parameter. Dur-
ing the study, no patient had an abnormal ECG reading
considered clinically significant by the investigator; a
complete distribution of the investigator’s ECG

Table 2 Adverse events

MS-LAQ-101 % of patients
Preferred term

Pooled placebo
(n = 28)

Laquinimod
0.9 mg
(n = 12)

Laquinimod
1.2 mg
(n = 12)

Laquinimod
1.5 mg
(n = 12)

Laquinimod
1.8 mg
(n = 11)

Laquinimod
2.1 mg
(n = 13)

Laquinimod
2.4 mg
(n = 12)

Laquinimod
2.7 mg
(n = 12)

All 96.4 75 100 83.3 90.9 92.3 100 100

Headache 32.1 50 66.7 41.7 18.2 38.5 91.7 41.7

C-reactive protein increased 7.1 16.7 16.7 8.3 0 7.7 8.3 33.3

Vomiting 0 0 0 8.3 0 7.7 0 33.3

Abdominal pain upper 10.7 0 16.7 8.3 9.1 7.7 33.3 25

Back pain 0 16.7 0 16.7 0 7.7 25 25

Blood fibrinogen increased 0 0 16.7 0 0 7.7 0 25

Myalgia 0 0 0 0 9.1 0 8.3 25

Nausea 7.1 8.3 0 8.3 0 7.7 25 25

Tension headache 0 0 0 0 0 0 0 25

Diarrhea 7.1 8.3 8.3 8.3 9.1 15.4 8.3 16.7

Insomnia 0 0 0 0 0 0 8.3 16.7

Blood creatine Phosphokinase
increased

14.3 0 8.3 8.3 18.2 0 0 8.3

Nasopharyngitis 10.7 16.7 33.3 8.3 0 38.5 8.3 8.3

Oropharyngeal pain 0 0 0 0 18.2 0 0 8.3

Pain in extremity 0 8.3 8.3 0 18.2 0 0 8.3

Dizziness 10.7 0 8.3 0 9.1 0 25 0

Contusion 0 0 0 0 0 7.7 16.7 0

Common AEs: AEs reported by at least two patients in any of the laquinimod dose groups and with an incidence higher than the pooled placebo

Ziemssen et al. Journal of Neuroinflammation  (2017) 14:172 Page 5 of 10



Table 3 Pharmacokinetic parameters (mean ± SD) of laquinimod in MS patients following repeated daily administration for 21 days

Dose (mg) n tmax
a (h) Cmax (ng/mL) Cmin (ng/mL) AUC0–24 (ng h/mL) Dose -normalized

Cmax AUC0–24h

0.9 10 0.99 (0.25–2.00) 639.6 ± 114.9 469.5 ± 103.4 12,245.8 ± 2075.4 710.6 ± 127.6 13,606.5 ± 2306.0

1.2 12 0.75 (0.25–4.00) 779.2 ± 115.7 565.7 ± 121.0 15,075.2 ± 2757.6 649.4 ± 96.4 12,562.7 ± 2298.0

1.5 12 1.00 (0.50–24.00) 1207.8 ± 210.8 904.0 ± 189.5 22,974.0 ± 3756.6 805.2 ± 140.6 15,316.0 ± 2504.4

1.8 11 0.50 (0.25–3.00) 1449.4 ± 325.4 1076.7 ± 274.3 28,042.7 ± 6495.5 805.2 ± 180.8 15,579.3 ± 3608.6

2.1 11 2.00 (0.50–6.00) 1712.1 ± 385.8 1310.5 ± 356.0 33,741.2 ± 8133.4 815.3 ± 183.7 16,067.2 ± 3873.1

2.4 10 0.50 (0.50–2.00) 1892.3 ± 526.3 1389.3 ± 512.9 35,470.0 ± 11,100.2 788.5 ± 219.3 14,779.2 ± 4625.1

2.7 10 1.00 (0.5–2.00) 1826.2 ± 313.4 1364.5 ± 186.7 35,274.5 ± 5973.0 676.4 ± 116.1 13,064.6 ± 2212.2

AUC0–24 area under the plasma concentration-time curve from 0 to 24 h postdose, Cmax maximum plasma concentration, Cmin minimum plasma concentration,
tmax time to maximum plasma concentration
aMedian (range) is provided for tmax

Fig. 2 Dose-dependent effect of laquinimod (LAQ) on the frequency of monocytes and slanDC. Sample sizes for slanDC (%) relative change from
baseline: placebo n = 20, 0.9 mg LAQ n = 4, 1.2 mg LAQ n = 6, 1.5 mg LAQ n = 9, 1.8 mg LAQ n = 7, 2.1 mg LAQ n = 9, 2.4 mg LAQ n = 8,
2.7 mg LAQ n = 6. Sample sizes for monocyte (%) relative change from baseline: placebo n = 20, 0.9 mg LAQ n = 4, 1.2 mg LAQ n = 6, 1.5 mg
LAQ n = 9, 1.8 mg LAQ n = 9, 2.1 mg LAQ n = 10, 2.4 mg LAQ n = 10, 2.7 mg LAQ n = 8. BL baseline, fm from, LAQ laquinimod, Rel. relative,
slanDC 6-sulpho LacNAc+ dendritic cell
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interpretation per treatment group at each study visit is
shown in Additional file 1: Table S1. With the limitations
of small sample size, no clear dose responses were ob-
served in the changes of mean group levels over time in
any of the biochemical parameters (Additional file 1: Table
S2). Laquinimod-treated groups had a higher incidence of
post-baseline shifts to abnormally high CRP levels (most
were not potentially clinically significant (PCS)) and to ab-
normally high fibrinogen levels (none were PCS).
Laquinimod-treated groups also had a higher incidence of
post-baseline shifts to abnormally high AST, ALT, and
gamma glutamyl transferase (most non-PCS).
No specific trend of change from baseline over time

seen for any hematological parameter in any of the groups
(Additional file 1: Table S3). The only post-baseline shift
to PCS values, detected with a higher incidence in the
laquinimod arms than in the pooled placebo, was a change
from high/non-PCS to low PCS hemoglobin, observed for
1 patient each at the 2.1 and 2.4 mg doses but not at the
2.7 mg dose.
No specific trend of change from baseline over time

detected in any of the vital signs parameters. No dose re-
sponse in the incidence of post-baseline shifts of vital
signs and no patient had an abnormal ECG reading con-
sidered clinically significant by the investigator.

Pharmacokinetics
The PK population comprised 81 patients with 10 to 12
patients per dose group. After oral administration of
laquinimod, plasma concentrations reached maximum
levels in the majority of patients within 2 h after dosing.
Plasma concentrations declined slightly over the 24-h
dosing interval, a reflection of the long terminal half-life

of laquinimod (approximately 80 h). The plasma concen-
trations generally increased with dose (Additional file 1:
Figure S2), and thus PK parameters, Cmax and AUC0–24,

generally increased with dose (Table 3). Dose-normalized
Cmax and AUC0–24 values were comparable across all dos-
ing groups (Additional file 1: Figure S3). The systemic ex-
posure of laquinimod was dose proportional in the 0.9 to
2.7 mg range, as slope parameters for the linear regression
model were not significantly different from 0 and 95% CIs
for dose-normalized Cmax and AUC0–24 included 0
(Cmax, 95% CI −0.056, 0.113; p = 0.5096 and AUC0–24,

95% CI −0.068, 0.113; p = 0.6278).
Predose plasma concentrations measured through-

out the study increased with increasing doses and
seemed to be comparable for days 14, 21, 22, and 28
across all dose groups, suggesting steady state was
attained after approximately 14 days of daily dosing,
consistent with the elimination half-life of laquinimod.
Laquinimod was rapidly absorbed after oral adminis-
tration and eliminated slowly from the circulation as
suggested by the small differences between Cmax and
Cmin.

Immunological substudy
A dose-dependent, in vivo effect of laquinimod on
the innate immune system was demonstrated. While
monocyte frequency was not affected, dose-dependent
decreases in slanDC frequency were observed in the
laquinimod group, but not in the placebo group. A
saturation effect was found at a laquinimod dose of
1.5 mg; a further increase of laquinimod dose did not
result in additional decreases in slanDC frequency in
peripheral blood (Fig. 2).

Fig. 3 Longitudinal effect of laquinimod (LAQ) on slanDC and monocytes. Sample sizes for placebo n = 5, sample sizes for laquinimod n = 12. BL
baseline, Freq frequency, PBMC peripheral blood mononuclear cell, slanDC 6-sulpho LacNAc+ dendritic cell, W week, WO washout
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This decrease in slanDC frequency occurred very early
within the first week of laquinimod treatment and
reached maximum depletion after 2 weeks. Following
cessation of laquinimod treatment on day 28, slanDC
depletion showed a trend of recovery (Fig. 3) in day 42
(washout) samples. When compared to placebo, the pro-
inflammatory capacity of slanDCs for CD83 expression
and TNF-α production after in vitro stimulation with LPS
or R848 decreased with laquinimod therapy (Table 4). The
decrease from baseline in CD83 expression in slanDCs
culture after LPS stimulation was −2.34 and −18.79%, and
after R848 stimulation −5.55 and −16.52% for placebo and
laquinimod groups, respectively. The decrease from base-
line in TNF expression after LPS stimulation was −2.99
and −9.38%, and after R848 stimulation, −2.75 and −8.92%
for placebo and laquinimod groups, respectively.

Discussion
In this 4-week dose-escalating study of laquinimod for
doses ranging from .9 to 2.7 mg, no data suggestive of a
dose-dependent safety signal were identified. The overall
incidence of AEs was comparable between the laquini-
mod and placebo groups; however, several AEs occurred
more frequently in the higher laquinimod doses than in
the other groups without a clear dose response. The AE
reported as common in all laquinimod groups was head-
ache, exhibiting no clear dose response or typical pattern.
Although the shifts were not considered potentially clinic-
ally significant (PCS), the laquinimod-treated groups had
a higher incidence of post-baseline shifts in some bio-
chemical and hematological parameters (CRP, fibrinogen,
AST, ALT, gamma glutamyl transferase, and hemoglobin).
No safety signals detected in urinalysis, vital signs, or ECG
parameters. The exposure of laquinimod was dose propor-
tional and linear in the dose range of 0.9 to 2.7 mg. Laqui-
nimod was rapidly absorbed after oral administration and
steady state attained within approximately 14 days of
dosing.
SlanDC seem to serve as an immunological marker re-

garding dose effects [23]. In the immunological sub-
study, dose-dependent decreases in slanDC frequency
were observed in the laquinimod group but not in the
placebo group. The relationship between the reduction
in SlanDC and AhR activation by laquinimod is unknown.

Monocyte frequency was not affected. This decrease in
slanDC frequency occurred very early during the first
week of laquinimod treatment. A saturation effect was
found at a laquinimod dose of 1.5 mg such that a further
increase of laquinimod dose did not result in additional
decreases in slanDC frequency in peripheral blood. More-
over, the decrease in CD83 and TNF expression by the
slanDCs following laquinimod treatment suggests a pos-
sible mechanism by which laquinimod may exert an anti-
inflammatory effect. These results are consistent with pre-
vious work by Jolivel et al. [22] showing laquinimod’s
modulation of human dendritic cells in in vitro and in
vivo preparations. Other MS treatments such as glatira-
mer acetate [28, 29], fingolimod [30, 31], and fumarate
[32] have reported modulation of monocyte and dendritic
cells as potential mechanisms for reducing multiple scler-
osis pathology.

Conclusion
Overall, in this study, laquinimod doses up to 2.7 mg
were safely administered to patients with RRMS and a
significant dose-dependent in vivo effect of laquinimod
on the innate immune system was demonstrated.

Additional file

Additional file 1: Figure S1. Study MS-LAQ-101 flow chart. Figure S2.
Average plasma concentrations of laquinimod on Day 21 after repeated
daily administration. Figure S3. Exposure-dose plots of laquinimod after
multiple dose administration. Table S1. Distribution of study drug termination
reasons. Table S2. Biochemistry shift analysis to abnormal levels. Table S3.
Hematology shift analysis. (DOCX 276 kb)
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