
REVIEW Open Access

TNFα inhibitors as targets for protective
therapies in MSA: a viewpoint
Alain Ndayisaba1, Kurt Jellinger2, Thomas Berger3 and Gregor K. Wenning1*

Abstract

Multiple system atrophy (MSA) is a unique and fatal α-synucleinopathy associated with oligodendroglial inclusions
and secondary neurodegeneration affecting striatum, substantia nigra, pons, and cerebellum. The pathogenesis
remains elusive; however, there is emerging evidence suggesting a prominent role of neuroinflammation. Here, we
critically review the relationship between αS and microglial activation depending on its aggregation state and its
role in neuroinflammation to explore the potential of TNFα inhibitors as a treatment strategy for MSA and other
neurodegenerative diseases.
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Background
Multiple system atrophy (MSA) is a rare, rapidly pro-
gressing and fatal neurodegenerative disease of unknown
etiology that is clinically characterized by a variable
combination of parkinsonism, cerebellar impairment,
and autonomic and motor dysfunction [1, 2]. Together
with Parkinson disease (PD) and dementia with Lewy
bodies (DLB), MSA belongs to the neurodegenerative
group of α-synucleinopathies which are characterized by
the deposition of aberrant α-synuclein (αS) in both glial
cells and neurons. MSA is considered a synucleinopathy
with specific glioneural degeneration involving striatoni-
gral, olivopontocerebellar, autonomic, and peripheral
nervous systems [3, 4]. The neuropathological hallmark
of this unique proteinopathy is the deposition of aber-
rant fibrillary αS in glial cells, mainly oligodendroglia,
forming glial cytoplasmic inclusions (GCI) [5], which
may even represent a primary pathologic event [3, 6, 7].
Less frequent are neuronal cytoplasmic inclusions (NCI)
and other cellular deposits. Inclusion pathology is ac-
companied by neuronal loss, widespread demyelination,
and gliosis. Degeneration of multiple neuronal pathways
over the course of the disease causes a multifaceted clin-
ical picture of this multisystem disorder [2]. The etiology

and pathogenesis of MSA are not fully understood, but
converging evidence suggests the propagation of mis-
folded αS from diseased neurons to oligodendroglia and
its spreading from cell to cell in a “prion-like” manner
[8, 9], inducing oxidative stress (OS), proteosomal and
mitochondrial dysfunction, dysregulation of myelin
lipids, decreased neurotrophic factor activity, neuroin-
flammation, and energy failure that result in a multisys-
tem involvement [3, 4, 10–12]. Recent experimental and
human studies demonstrated that deposition of αS and
other pathologic proteins induces neuroinflammation
not only in MSA but also in other neurodegenerative
diseases, e.g., PD and Alzheimer disease (AD) [13–24].
In MSA, αS has been shown to mediate formation of ab-
normal inclusion bodies and to induce neuroinflamma-
tion, which, interestingly, may also favor the formation
of intracellular αS aggregates as a consequence of cyto-
kine release and the shift to a pro-inflammatory environ-
ment [23]. αS may directly activate microglia, and recent
studies have shown that only fibrillary αS is an import-
ant inducer of pro-inflammatory immune responses
[25], associated with increased production of key
pro-inflammatory cytokines, like tumor necrosis factor
(TNF)-α and interleukin-1β (IL-1β) [26]. The association
of activated microglial cells and GCI burden [27] sug-
gests that pathologic αS triggers inflammatory response
in α-synucleinopathies by affecting αS aggregation and
provoking cell death [28]. This was corroborated by a
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number of experimental studies in vitro and in vivo [29–
31]. These and other studies supported the notion that
microglial activation may contribute to the progression
of the neurodegenerative process in MSA and in other
synucleinopathies via increased levels of reactive oxygen
species (ROS) [20, 32, 33], like in other neurodegenera-
tive diseases [31]. Although this mechanism is
non-specific, it may be exploited for therapeutic and
neuroprotective interventions.

TNFα in the central nervous system
TNFα, one of the key regulators in inflammation, be-
longs to the TNF ligand superfamily and is synthesized
as a type II integral membrane protein occurring in a
vast number of cell types. Within the central nervous
system (CNS), microglia, astrocytes, and neurons are
capable of synthesizing TNFα; however, activated micro-
glia represent the main production site during neuroin-
flammatory processes [34, 35]. Following translation, it
is synthesized as a transmembrane protein (tmTNFα)
and cleavage by TNFα-converting enzyme (TACE) re-
leases soluble TNFα (sTNFα). Both forms exert their
functions on two receptors, TNFα receptor (TNFR) type
I and II, with sTNFα preferentially binding to TNFR I,
whereas tmTNFα has higher affinity towards TNFR II [36,
37]. The downstream signal-transduction cascades of
TNFR I and TNFR II differ and imply the activation of nu-
merous transcription factors including nuclear
factor-kappa light chain enhancer of activated B cells
(NF-κB) resulting in the regulation of various homeostatic
and pathologic functions [38, 39]. In neurons, depending
on the eventually activated transcription factor down the
signaling pathway, TNFα drives either pro-apoptotic or
pro-survival cell fate via TNFR I or TNFR II, respectively.
Excessive release of TNFα, especially in a chronic manner
as can be seen in many neurodegenerative diseases, leads
to a shift towards receptor-independent neuronal cell
death, directly through the activation of caspase 8 and 10
and indirectly by mediating glutamate excitotoxicity inde-
pendent of receptor subtype. However, TNFR II also
seems to exhibit neuroprotective properties as TNFR II
has been shown to be critical for maintaining the oligo-
dendrocyte progenitor pool in a cuprizone model of de-
myelination [40]. Furthermore, there is upcoming
evidence on the role of TNFR II in oligodendroglial differ-
entiation and thus remyelination capacity [41]. In addition,
after knock-out of TNFR II, hippocampal neurons reveal
increased sensitivity towards TNFα toxicity, whereas loss
of TNFR I did not have this effect [42]. This raises the
question whether inhibition of TACE and thereby largely
depleting TNFR I activation while preserving tmTNFα
triggered TNFR II signaling is to be considered in MSA,
which will be discussed later on.

TNFα in neurodegenerative disorders
Neuroinflammation characterized by microglial activa-
tion with secretion of many pro-inflammatory cytokines,
in particular IL-1β and TNFα, has been implicated as
main effector of the functional consequence of neuro-
toxicity, resulting in mitochondrial dysfunction [43],
thereby contributing to the progress of neurodegenera-
tion [13, 17, 44–47]. The two cytokines are potent medi-
ators of microglial functions and modulate the complex
networks of interactions of microglial-secreted mole-
cules. The role of neuroinflammation has been demon-
strated repeatedly in animal models of PD [21, 29, 48, 49]
and of MSA [49–51]. The major pro-inflammatory cyto-
kine released by activated microglia is TNFα secreted by
the brain resident microglia/macrophages in response to
various stimuli. Microglial TNFα plays a major role in
angiotensin-induced dopaminergic cell death. Microglial
release of TNFα is mediated by activation of angiotensin
type 1 receptors, NADPH (nicotinamide adenine di-
nucleotide phosphate)-oxidase, Rho-kinase, and NFK-β
[52]. An early increase in TNF, which leads to protein
thiol oxidation resulting in activation of ASK1 (apoptosis
signal-regulating kinase 1)-p38 signaling, may be critical
for neuroprotection in PD [53]. Increased levels of TNFα
and IL-1β have been detected in the cerebrospinal fluid of
PD patients [54]; in serum of patients with MSA [55]; in p
t-mortem tissue of DLB, PD, and MSA [56, 57]; and in
animal models of PD [45, 58–62]. It has been demon-
strated to play a major role in neuroinflammation-related
cell death in PD, AD, and other CNS disorders. Experi-
mental studies indicated that TNFα is toxic for
dopaminergic neurons in vivo [63] and in vitro [64].
Long-term expression of TNFα seems to be necessary to
exert univocal toxic effects in the substantia nigra (SN)
[65]. The increased frequency of TNF1031, a high produ-
cer allele of TNF, in Japanese MSA patients compared
with controls [66] and increase of TNFα rs1799964 and
IL-1β rs16944 polymorphisms in Chinese patients with
MSA [67] suggest that they may represent genetic risk fac-
tors for MSA and that TNF may have a toxic effect in
MSA. Interleukin-8, intercellular adhesion molecule-1,
and TNFα polymorphisms significantly increased the risk
of MSA [68].
The importance of TNFα in the processes of develop-

ment of PD is strengthened by animal models of PD,
where elevated levels of TNFα are seen in a manner
consistent with that of clinical PD [59, 61, 62]. Agents
that interfere with TNFα synthesis and release seem to
be protective in experimental models of PD [69, 70]. In
other mouse models, conflicting findings regarding the
protective effects of TNFα receptor deletion in
toxin-induced PD have been reported [45, 64]. However,
if lower levels of TNFα were expressed in the SN, a tran-
sient neuroprotective effect against 6-hydroxydopamine
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toxicity was observed [71]. On the other hand, when the
synthesis of TNFα is unregulatory overproduced, this re-
sults in inappropriate cell death. TNFα and NF-κB expres-
sion and microglial activation in MSA [72] indicate an
important role of TNFα in oligodendroglial cell death in
this disease. High expression of TNFα in degenerating re-
gions suggests that this potent pro-inflammatory cytokine
is a mediator of neuronal injury. Furthermore, markers of
inflammation such as serum T-lymphocyte-associated cyto-
kine concentrations give evidence of immune mechanisms
contributing to PD and MSA disease progression [73]. The
pathobiological effects of TNFα in neurodegeneration
and, in particular, in PD have been critically reviewed re-
cently [17]. Figure 1 illustrates the effects of chronic
TNFα-mediated neuroinflammation on oligodendroglia
and neurons: TNFα drives oligodendroglial and neuronal
cell death via activation of pro-apoptotic pathways and by
increasing αS misfolding and aggregation.
Due to the possible cyclic nature of αS aggregation/re-

lease and gliosis in MSA, interventions that target neuro-
inflammation may have the potency to slow the
progression of the disease and increase the quality of life
[23]. Recent studies have approached α-synucleinopathies
including MSA, by use of immunotherapy [74–76]. They
have been shown to reduce αS co-localization in oligoden-
drocytes and astrocytes but increased microglial uptake,

with decreasing demyelination, neuronal death, and motor
deficit [76]. Other studies aimed at microglia as thera-
peutic target, e.g., treatment of the PLP-αS mouse model
with minocycline reduced the density of activated micro-
glia and inducible nitric oxidase synthase and toll-like
receptor 4 immunoreactivity [51]. Recently, an inducer of
heat shock proteins (HSP), carbenoxalone, was shown to
decrease pro-inflammatory cytokines and OS in a rote-
none model of PD [77]. Other treatments targeting neuro-
inflammation in glia and immune cells may be promising
therapeutic strategies for MSA [23].

TNFα inhibition as treatment strategy
Therapeutic regimes that interfere with either the syn-
thesis of TNFα or the downregulation of TNFα/receptor
interactions may have a considerable benefit to patients
with such conditions. The use of agents similar to
thalidomide and its analogs will inhibit TNFα protein
biosynthesis, which will circumvent classical receptor
subtype agonistic effects on signaling pathways. Further-
more, thalidomide will display biological activity in the
CNS as it is a relatively small molecule and can cross
the blood-brain barrier (BBB). Thus, it offers a better
strategy for treating TNFα overproduction-induced dis-
orders than that of currently available large proteins that
bind and lower soluble TNFα [22]. Agents that interfere

Fig. 1 TNFα in MSA pathogenesis. Misfolded αS leads to microglial activation and subsequent microglial release of pro-inflammatory cytokines.
High levels of TNFα in vulnerable brain areas in MSA contribute to αS aggregation and establish a pro-apoptotic environment in chronic disease
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with pro-inflammatory events connected with TNFα
synthesis and release have been shown to be protective
in animal models of PD. Thalidomide has been shown to
afford partial protection to striatal dopaminergic neu-
rons in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
(MPTP) model [69, 70]. In transgenic mice, in which the
gene for TNFα was functionally deleted, dopaminergic
neurons in the striatum exhibited a greater degree of
protection than wild-type littermates when challenged
with MPTP [70]. However, in other mouse models
employing gene targeting events on either one or both
of the TNFα receptors (p55TNFR or p75TNFR), con-
flicting results regarding the protective effects of TNFα
receptor deletion were reported [45, 64].
Thalidomide is widely known for its deleterious side

effects since the late 50s/early 60s when birth defects
were observed after pregnant women were prescribed
thalidomide to treat morning sickness [78]. In addition,
neuropathies may occur [79]. Meanwhile, however, thal-
idomide has been re-evaluated for immunomodulatory
purposes as it enhances TNFα mRNA destabilization
and degradation and, thereby, lowers its rate of synthesis
and secretion [80, 81]. Furthermore, it is a co-stimulator
of both CD8+ and CD4+ T cells [82], an inhibitor of
angiogenesis [83] via its inhibitory actions on basic fibro-
blast growth factor (bFGF) and vascular endothelial
growth factor (VEGF), and an inhibitor of the transcrip-
tion factor NF-κB, whereas TNFα-induced leucine-rich
α-2-glycoprotein-1 (LRG1) promotes angiogenesis and
mesenchymal stem cell migration, this inhibition being a
potential therapeutic approach [84].
Inhibition of the biological effects of sTNFα by etaner-

cept and infliximab displayed beneficial properties
against rheumatoid arthritis and other peripheral inflam-
matory diseases. Unfortunately, these agents are large
macromolecules that minimally pass the BBB and thus
will preclude their utility in CNS neurodegenerative dis-
orders. BMS-561392 reduces the amount of sTNFα by
inhibiting TACE; however, clinical phase II trials for
rheumatoid arthritis have been halted due to mild hep-
atotoxicity [85], which might be due to the accumulation
of tmTNFα and TNFRII increase. This effect has been
described in available anti-TNF treatment, but in this
case, hepatic injury usually takes a self-limiting course.
In addition, BMS-561392 has shown poor ability to
penetrate the BBB and can therefore not be considered a
suitable candidate substrate. In contrast, thalidomide an-
alogs can readily and rapidly pass through the BBB and,
if well tolerated in animal studies, may be of potential in
a wide spectrum of CNS diseases. The mechanisms
underlying thalidomide’s actions have been summarized
by [22]. In brief, the agent comprises two conjoined het-
erocyclic moieties—a phthalimide and a glutarimide ring
showing structural modifications [86–89]. Recent studies

confirmed that the actions of thiothalidomide agents
were identical to that of thalidomide. They caused a
concentration-dependent reduction in luciferase activity—
consistent with the mechanism destabilizing the mRNA of
TNFα [80], and thereby reduce TNFα synthesis. Thus,
thalidomide and its analogs are excellent candidate agents
for use in anti-TNFα therapies in a variety of diseases as-
sociated with neuroinflammation, particularly since they
act at the levels of TNFα synthesis rather than for scav-
enge released protein or inhibit its interaction at a recep-
tor level [22]. Infusion of mesenchymal stem cells in a
transgenic mouse model of MSA inducing a downregula-
tion of cytokines involved in neuroinflammation suggested
a potent effect on immunomodulation and neuroprotec-
tion [90].
A recent study investigated the therapeutic efficacy of

combining an unconventional anti-inflammatory therapy
(lenalidomide, a small thalidomide derivative with
immunomodulatory activity and therapeutic effects in
multiple myeloma [91–93], with inhibition of TNFα pro-
duction [93, 94]) with an αS-reducing immunotherapeu-
tic approach (CD5-D5 single chain antibody) in a novel
transgenic mouse model of MSA pathogenesis. The
combined treatment achieved better results than each
method alone; it reduced astro- and microgliosis, αS
levels, and partially improved deficits in MBP (myelin
basic protein)-αS transgenic mice. These effects were as-
sociated with an activation of the Akt signaling pathway,
which may mediate cytoprotective effects downstream
TNFα [75]. Other recent studies demonstrated the neu-
roprotective and anti-inflammatory activities of allyl iso-
thiocyanate (AITC), an aliphatic isothiocyanate derived
from the precursor sinigrin present in vegetables of the
Brassica family, on microglial cells through attenuation
of JNK/NF-κB/TNFα signaling, which may have signifi-
cance in neurodegeneration [95]. Combined active
humoral and cellular immunization approaches, which
are capable of triggering neuroprotective responses of
regulatory T cells (Tregs), support the further develop-
ment of multifunctional (vaccine) approaches for the
treatment of synucleinopathies [96]. These results open
the door for the design of more complex clinical trials in
which a carefully planned combination of therapeutic
approaches can complement each other to target mul-
tiple aspects of the pathobiology and pathogenesis of
MSA and related neurodegenerative disorders.

Conclusions
TNFα-dependent neuroinflammation may play a key
role in MSA pathogenesis, and its relevance has been
underlined in various models of synucleinopathy. Target-
ing TNFα with readily available drugs may constitute a
promising disease-modifying treatment in this hitherto
incurable disease.
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