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Abstract

Background: The participation of microglia in CNS development and homeostasis indicate that these cells are
pivotal for the regeneration that occurs after demyelination. The clearance of myelin debris and the inflammatory-
dependent activation of local oligodendrocyte progenitor cells in a demyelinated lesion is dependent on the
activation of M2c microglia, which display both phagocytic and healing functions. Emerging interest has been
raised about the role of Wnt/B-catenin signaling in oligodendrogenesis and myelination. Besides, cytokines and
growth factors released by microglia can control the survival, proliferation, migration, and differentiation of neural
stem cells (NSCs), contributing to remyelination through the oligodendrocyte specification of this adult neurogenic
niche.

Methods: TMEV-IDD model was used to study the contribution of dorsal SVZ stem cells to newly born
oligodendrocytes in the corpus callosum following demyelination by (i) en-face dorsal SVZ preparations; (ii)
immunohistochemistry; and (iii) cellular tracking. By RT-PCR, we analyzed the expression of Wnt proteins in
demyelinated and remyelinating corpus callosum. Using in vitro approaches with microglia cultures and embryonic
NSCs, we studied the role of purified myelin, Wnt proteins, and polarized microglia-conditioned medium to NSC
proliferation and differentiation. One-way ANOVA followed by Bonferroni's post-hoc test, or a Student’s t test were
used to establish statistical significance.

Results: The demyelination caused by TMEV infection is paralleled by an increase in B1 cells and pinwheels in the
dorsal SVZ, resulting in the mobilization of SVZ proliferative progenitors and their differentiation into mature
oligodendrocytes. Demyelination decreased the gene expression of Wnt5a and Wnt7a, which was restored during
remyelination. In vitro approaches show that Wnt3a enhances NSC proliferation, while Wnt7a and myelin debris
promotes oligodendrogenesis from NSCs. As phagocytic M2c microglia secrete Wnt 7a, their conditioned media
was found to induce Wnt/B-Catenin signaling in NSCs promoting an oligodendroglial fate.

Conclusions: We define here the contribution of microglia to Wnt production depending on their activation state,
with M1 microglia secreting the Wnt5a protein and M2c microglia secreting Wnt7a. Collectively, our data reveal the
role of reparative microglia in NSC oligodendrogenesis with the involvement of Wnt7a.
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Background

In the adult brain, it is essential that new oligodendrocytes
are continuously generated due to their role in preserving
saltatory conduction, and in the metabolic and trophic sup-
port they offer to neurons. During rodent brain develop-
ment, precursors in the ventral and dorsal telencephalon
give rise to oligodendrocytes and to oligodendrocyte pro-
genitor cells (OPCs [1];). Moreover, there is evidence that
oligodendrocytes can be generated postnatally from sub-
ventricular zone (SVZ) progenitors [2]. The SVZ is a spe-
cialized niche in the walls of the lateral ventricles of the
forebrain that contents multipotent cells known as neural
stem cells (NSCs), cells that can self-renew and differentiate
into neurons, astrocytes, or oligodendrocytes [3, 4]. Adult
NSCs are slowly dividing progenitors referred to as Bl cells,
and they generate transit amplifying progenitors (type-C
cells) that in turns differentiate into neuroblasts (type-A
cells). These neuroblasts generally migrate to the olfactory
bulb via the rostral migratory stream (RMS) to replace local
interneurons [5].

Beside major contribution of local OPCs to remyelina-
tion, it appears that the oligodendrogenic potential of
the SVZ is enhanced in response to demyelination, gen-
erating new oligodendrocytes in the corpus callosum,
fimbria fornix, and striatal white matter tracts [6—14].
Specifically, oligodendrogenic signals are enriched in the
dorsal SVZ relative to the lateral SVZ, controlling the
expression of the Olig2 and Sox10 transcription factors,
and Wnt/p-Catenin signaling [15]. Given the proximity
of this niche to the white matter tracts of the corpus cal-
losum, the capacity of this zone to generate oligodendro-
cytes may be a result of its physical location.

There is increasing evidence that microglia fulfill an es-
sential role in postnatal neurogenesis in the adult dentate
gyrus, participating in active phagocytosis [16] and cytokine
release upon activation [17], thereby influencing SVZ
neurogenesis, and supporting the migration and survival of
neuroblasts along the rostral migratory stream (RMS) [18].
Microglia enhance NSC neurogenesis in vitro [19, 20], and
they promote the migration and differentiation of embry-
onic NSCs [21, 22]. Indeed, microglia are pivotal cells in
remyelination, mediating the phagocytosis of myelin debris,
OPC recruitment, and their differentiation [23, 24]. Hence,
microglia could control adult oligodendrogenesis upon de-
myelination, targeting local OPC populations and NSC pro-
genitors in the SVZ.

Here, we analyzed the generation and maturation of oli-
godendrocytes from NSCs and the possible implication of
microglial cells in these processes, acting via Wnt signaling.
To study the contribution of the dorsal SVZ to remyelina-
tion, we used the Theiler’s murine encephalomyelitis virus-
induced demyelinating disease (TMEV-IDD) model of
multiple sclerosis (MS), in which spontaneous remyelina-
tion in the corpus callosum is driven by OPC mobilization
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and differentiation, and M2c microglia [25]. The TMEV
model is a viral model of progressive MS with a preclinical
phase with prominent demyelination in the corpus callo-
sum and other brain areas at 35 days post-infection (dpi)
due to a pro-inflammatory reaction against the virus (acute
encephalomyelitis). When the antiviral reaction diminishes,
endogenous mechanisms of repair begin and partial remye-
lination is evident at 60 dpi which is subsequently lost with
progression into the chronic phase of the disease with de-
myelination and axonal damage mainly in the spinal cord
and with the onset of the motor disability [26]. We found
that corpus callosum demyelination was paralleled by an in-
crease in Bl cells and of pinwheels in the dorsal SVZ
in vivo, contributing to the generation of new mature oligo-
dendrocytes. The expression of genes in the canonical
(Wnt3a, Wnt7a) and non-canonical (Wnt5a) Wnt/p-Ca-
tenin signaling pathway was dysregulated in the demyeli-
nated corpus callosum and during remyelination. In the
TMEV paradigm, we speculate that Wnt signals and the
SVZ-derived cells are surrounded not only by inflammatory
microglia, dead oligodendrocytes, myelin debris, axonal
damage but also by astrocyte activation and peripheral im-
mune cell recruitment among others. As myelin removal is
a critical step in the remyelination process [27] and micro-
glia are actively involved in the clearance of myelin debris
[28], we also focus in the in vitro culture approaches dis-
secting the scenario to the four players that we propose:
microglia, myelin debris, Wnt proteins, and NSC. Thus, we
explored whether the changes to the local environment
associated with demyelination affect the generation and
maturation of oligodendrocytes from NSCs in vitro, in-
cluding the alterations in myelin, Wnt signaling, and
microglia. We found that purified myelin affects Wnt5a
but not Wnt7a expression in microglia, and that myelin
directly promotes oligodendrogenesis from NSCs. Direct
addition of the Wnt3a protein induced NSCs proliferation,
whereas Wnt7a potentiated NSC oligodendrogenesis. For
the first time, we show that microglia secretes Wnt pro-
teins, and that their pattern secretion depends on the acti-
vation state of these cells. Indeed, conditioned media
containing the Wnt7a protein secreted by M2c microglia
promoted NSC oligodendrogenesis.

Methods

Animals and Theiler’s virus infection

SJL/] female mice were obtained from Envigo and main-
tained under standard conditions. Four- to six-week-old
mice were injected intracranially with 2x10° plaque
forming units (pfu) of the TMEV Daniel’s strain in a vol-
ume of 30 pl Dulbecco’s minimal essential medium
(DMEM) supplemented with 10% fetal calf serum (FCS:
[29]). Sham-operated mice received the vehicle alone
(30 ul). All experiments were performed following the AR-
RIVE guidelines, and in accordance with EU (Directive
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2010/63/EU) and National guidelines (Royal Decree 53/
2013 BOE No. 34 and Comunidad de Madrid: ES
280790000184). The Ethics Committee on Animal Experi-
mentation at the Instituto Cajal (CSIC) approved all the
procedures described in this study (protocol number:
2013/03 CEEA-IC).

Stereotaxic injection of retroviral particles

Mice were anesthetized with isofluorane 33 days after
TMEV infection and 1 pl of y-retroviral-SFFV-Venus viral
particles (LentiGO vectors, prepared and characterized as
described in [30]) was injected stereotaxically into the
right hemisphere at the Bregma coordinates: anteroposter-
ior — 0.6 mm, lateral 1 mm, dorsoventral 1.8 mm.

Whole mount dissections

The dorsal, medial, and lateral walls of the right brain ven-
tricle were prepared as described previously [31]. After sa-
line perfusion on day 35 post-infection (p.i.), the brains
were fixed overnight at 4 °C in 4% paraformaldehyde
(PFA)/0.1% Triton X-100. After staining, the ventricle
walls were further dissected from the underlying paren-
chyma to obtain 200-300-pm-thick tissue sections that
were mounted on a slide with Mowiol and coverslipped.
Three animals were studied for each experimental group.

Microglial cell cultures

Primary microglia cell cultures from PO-P2 (post-natal
day 0-2) Wistar rats were prepared as described previ-
ously [32, 33], with minor modifications (Mecha et al. in
doi: https://doi.org/10.1038/protex.2011.218, Open Nature
Exchange protocol only online). Purified microglia were
plated at a density of 100,000 cells/cm® for PCR and
ELISA analysis, and to obtain microglial conditioned
media, or at 50,000 cells/cm? for immunohistochemistry.
Cells were maintained for 3 days at 37 °C and in an atmos-
phere of 5% CO, in a defined medium containing 10%
horse serum (HS) and 10% fetal bovine serum (FBS). The
cells were then incubated for 1 h in serum-free DMEM
prior to a 6- or 24-h exposure to the treatments prepared
in distilled water: LPS (50 ng/ml); a combination of IL-4
and IL-13 (both at 10 ng/m;); or TGF-B1 (20 ng/ml).

Neural stem cell cultures

Rat NSCs (N7744-100) were purchased from Invitrogen,
isolated from the cortices of fetal E14 Sprague-Dawley
rats; these NSCs retain the capacity for self-renewal and
to differentiate into neurons, astrocytes, and oligoden-
drocytes [34]. Cells were expanded in Knockout DMEM:
F12 medium (12660-012, Invitrogen) supplemented with
2 mM Glutamax (35050-061, Invitrogen), 2% Stempro®
NSC SFM (A1050901, Invitrogen), 20 ng/ml bFGF (450-
33, PeproTech), 20 ng/ml EGF (E5160, Merck) and anti-
biotics, and they were then plated at 50,000 cells/cm? on
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poly-D-lysine coated coverslips (5 mg/ml, Merck) for im-
munocytochemical studies.

Reagents

LPS from Escherichia. coli serotype 026:B6 (L3755) was
purchased from Merck, human TGFB1 (100-21), rat IL-4
(400-04), and rat IL-13 (400-16) were obtained from
PeproTech, and mouse Wnt3a (1324-WN), human/
mouse Wnt5a (645-WN), and mouse Wnt7a (3008-WN)
were purchased from R&D Systems.

Immunohistochemistry

Immunohistochemistry was performed on fixed tissue
from six animals from each experimental group. The
mice were anesthetized with pentobarbital (50 mg/kg
body weight, i.p.) and perfused with saline on day 35
and 60 post-TMEV infection (p.i), and the brain of the
mice was fixed overnight in 4% PFA prepared in 0.1 M
phosphate buffer saline (PBS). Free-floating coronal
vibratome sections of the brain (30 pum thick) were
washed three times in PBS, incubated with PBS contain-
ing 0.1% Triton-X100 (PBT), and blocked for 1 h at
room temperature in blocking buffer: PBT containing
5% normal serum (Vector Laboratories). Sections were
then incubated overnight at 4 °C with primary antibodies
against the following proteins: f-Catenin (1:400, 04-958,
Merck), CC1 (1:200, OP80, Calbiochem), Doublecortin
(DCX-1:500, SC-8066, Santa Cruz Biotechnologies),
GFAP (1:1000, G9269, Merck), Iba-1 (1:1000, 019-19741,
Wako), NG2 (1:500, AB5320, Merck), Olig2 (1:200, sc-
19967, Santa Cruz Biotechnologies), and y-Tubulin (1:
200, sc-7396, Santa Cruz Biotechnologies). On the fol-
lowing day, the sections were rinsed three times with
PBT and they were then incubated for 1 h with an Alexa
Fluor-conjugated (1:500, Molecular Probes Inc.) second-
ary antibody diluted in blocking buffer. In all cases, the
specificity of staining was confirmed by omitting the pri-
mary antibody.

Immunocytochemistry

Cells were fixed in 4% PFA for 20 min and perme-
abilized in PBT. After blocking with 5% normal serum,
cells were incubated for 2 h at room temperature with
antibodies against the following proteins, all diluted in
blocking buffer: p-Catenin (1:200, 04-958, Merck), -1I1
Tubulin (1:1000, ab7751, Abcam), BrdU (1:500, ab6326,
Abcam), GFAP (1:1000, G9269, Merck), O4 (1:1000,
MAB345, Merck), and OX-42 (1:1000, MCA275G, Sero-
tec). After rinsing, the coverslips were incubated for 1 h
at room temperature with Alexa Fluor-conjugated sec-
ondary antibodies (1:500, Molecular Probes, Inc.), which
were then mounted on slides with Mowiol and kept in
the dark at 4 °C. For BrdU analysis, NSCs were incu-
bated with BrdU (10 puM) for 24 h in complete NSC
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medium with growth factors and in the presence of the
different drugs. The cells were then fixed in 4% PFA for
20 min, treated with 2 N HCI for 10 min, blocked, and
incubated with the antibody against BrdU (Abcam, 1:
1000). After washing, the cells were incubated with
Alexa Fluor-conjugated antibody (1:500, Molecular
Probes, Inc.) and counterstained with DAPI.

ELISA

The Wnt5a and Wnt7a in the supernatants of microglia
cultures were measured using specific solid-phase sandwich
ELISA kits (CSB-EL026138RA and CSB-EL026141MO,
Cusabio) following the manufacturer’s recommendations
(four independent experiments with three replicates were
studied). The sensitivity of the assay for Wnt5a detection
was 15.6 pg/ml, and the intra and inter coefficient of vari-
ation were 8% and 10%. The sensitivity of the assay for
Wn7a detection was 0.156 ng/ml, and the intra and inter
coefficient of variation were 8% and 10%.

mRNA extraction, reverse transcriptase (RT)-PCR, and real-
time PCR

For in vitro studies, microglial cells were seeded at a
density of 100,000 cells/cm? and they were lysed 6 h or
24 h after stimulation with known agents that induce
the polarization of microglia to obtain M1 (LPS), M2a
(IL-4 and IL-13), and M2c (TGFp) microglia [35, 36]. In
another subset of experiments, the microglia cells were
lysed 6 h after the addition of purified myelin (2 pg/ml).
Up to six independent experiments were performed on
the microglia cultures. To analyze gene expression
in vivo, the corpus callosum was isolated from the whole
brain in ice-cold PBS on day 35 and 42 p.i.,, studying 6—
10 animals per experimental group. The total RNA was
extracted from the tissue using an RNeasy Lipid Tissue
Mini Kit (QIAGEN), and it was treated with DNasel
(Promega) before 1 pg of this RNA was reverse tran-
scribed using the high capacity cDNA reverse transcrip-
tion kit (Applied Biosystems). The cDNA obtained was
amplified by real-time PCR in a 7500 Real Time PCR
System (Applied Biosystems) using the Tagman™ PCR
Master Mix. Gene expression was determined with 7500
Software v2.0.4 applying the comparative Ct (cycle
threshold) method. The ACt was calculated as the differ-
ence between the Ct of each target gene and the Ct of
the RPS29/18S housekeeping gene. Taqman assays
(ThermoFisher) were used to determine the mRNA ex-
pression of the following genes: mouse Wnt3a
(MmO00437337_m1), mouse Wnt5a (MmO0437347_ml),
mouse Wnt7a (MmO0437356_m1l), mouse RPS29
(Mm02342448 _m1l), rat Wnt3a (Rn01470643_m1l), rat
Wnt5a (Rn01402000_m1), rat Wnt7a (Rn01425352_m1),
and rat RPS29 (Rn00820645_m1).
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Myelin purification

Mpyelin from 9-week-old Wistar rat brains was isolated by se-
quential centrifugation on a discontinuous sucrose gradient,
as described previously [25]. Briefly, 2 g of rat brain tissue was
mechanically disaggregated in a 0.3 M sucrose solution, and
then layered onto a sucrose gradient composed of 0.3 M and
0.83 M sucrose. Sequential ultracentrifugation was performed
at 4 °C using a Thermo Scientific SureSpin 630 Rotor: 75,
000 g, 30 min; 75,000 g, 15 min; and 12,000 g, 15 min. After
two rounds of hypo-osmotic shock with a Tris-HCl buffer
solution, the myelin was resuspended in sodium carbonate
buffer (0.1 M NaHCO;-Na,COs3, pH 9.4: [37]) and stored at
- 80 °C. The myelin protein content was determined by the
Bradford method using bovine serum albumin as a standard.

Image acquisition and analysis

All confocal images were acquired on a Leica TCS SP5 con-
focal microscope and for in vivo studies individual images
of 4-5 sections were analyzed. Immunostaining and cell
counts were quantified using Fiji software (designed by the
National Institutes of Health), evaluating the proportion of
staining relative to the total area in Sham animals and the
total number of cells/mm?® In the case of DCX" cells,
three-dimensional images were created using the Imaris
software using the “Absolute intensity” filter. In whole
mount preparations, a single image of the surface of the
dorsal, lateral, and medial wall of the cerebral ventricle was
acquired, and up to three independent experiments from
each experimental condition were assessed for in vitro ana-
lyses. Confocal stacks with 2 um step size were captured in
the z-direction from five fields per experimental condition
and experiment, using a x 20 objective (three to four inde-
pendent experiments were performed). The proportion of
BrdU™ cells, neurons, astrocytes, and oligodendrocytes was
evaluated using the cell counter Fiji plug-in. To assess
oligodendrocyte maturation, the area occupied by O4 was
analyzed and divided into three states of oligodendrocyte
maturation: type 1, OPCs (0-500 pm?); type 2, immature
oligodendrocytes (501-1500 um?); and type 3, mature oli-
godendrocytes (above 1501 pum?). The same threshold was
set for all the cells and all experimental conditions.

Statistical analysis

GraphPad Prism 5.0 (GraphPad Software Inc., San Diego,
USA) was used to analyze the data using either a one-way
ANOVA followed by Bonferroni’s post-hoc test, or a Stu-
dent’s ¢ test, as appropriate: *p < 0.05; **p < 0.01; ***p < 0.001.

Results

Dorsal SVZ in the TMEV-IDD model

TMEV infection induces pronounced demyelination in
the corpus callosum before clinical symptoms are evident
(e.g., day 35 p.i.), which is followed by spontaneous yet in-
complete remyelination (day 60 p..) that is no longer
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evident on progression into the chronic phase of the dis-
ease [38]. Corpus callosum demyelination is concomitant
with an increase in GFAP+ type B astrocytes in the SVZ and
increased proliferation of this area by day 35 p.i. [38]. En-face
preparations of the dorsal ventricle wall (Fig. 1) confirmed
an increase in the number of Bl cells and pinwheels in
TMEV-infected mice (Fig. 1a, b), without affecting the num-
ber of ependymal E1 and E2 cells. Astrocyte, microglial, and
intermediate progenitor populations were also studied in
dorsal SVZ. DAPI labelling confirms an increase in cell dens-
ity analyzed relative to the length (um) and total area (um?)
of the dorsal SVZ (Fig. 2a, d). This increase was associated
with GFAP occupying a larger area of this tissue (Fig. 2b, e)
and by an increase in the total number of Ibal® cells/mm?>
(Fig. 2¢, f). Some minor changes to the morphology of the
microglia in the dorsal SVZ were evident, whereas no such
differences were evident in the corpus callosum (Fig. 2g).

We next examined the intermediate DCX" progenitor cells
in the dorsal SVZ and no changes in the area occupied by
these cells were produced by TMEV infection (Fig. 2h, i).
Imaris reconstructions revealed a heightened intensity of
DCX labelling in the corpus callosum compared to the SVZ,
probably related to an increase of this microtubule-
associated protein in migrating progenitors that exit the SVZ
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toward the demyelinated areas (see the isolated DCX" cell in
the corpus callosum with a typical migratory morphology,
consisting in a leading process orientated toward the direc-
tion of migration: Fig. 2j). An analysis of the area occupied
by DCX" cells and the intensity of their labelling in the
demyelinated corpus callosum revealed a relative decrease in
both parameters in TMEV mice (Fig. 2k, i).

To further evaluate the contribution of the SVZ to corpus
callosum remyelination, we took advantage of the fluorescent
retroviral vector (LentiGO), which only labels cells that are ac-
tively proliferating, including SVZ progenitors. These vectors
have been shown to track glial progenitors originated from
the SVZ [30]. SFFV-Venus y-retroviral particles were injected
into the lateral cerebral ventricle on day 33 p.i. (Fig. 3a, b) and
the progeny of the SVZ proliferative progenitors mobilized
was studied in the corpus callosum 27 days later, highlighting
the presence of Venus® oligodendrocytes that did not express
the OPC marker NG2 and but that did express the mature
oligodendrocyte markers CC1 and Olig2 (Fig. 3c).

Wnt proteins are differentially expressed during corpus
callosum remyelination

Active MS lesions express multiple elements of the Wnt
signaling pathways not evident in chronic silent plaques
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or in the apparently normal white matter [39]. During
remyelination, Wnt glycoproteins can affect the differen-
tiation and maturation of OPCs and other precursors
(e.g., progenitor cells) that migrate from the SVZ to gen-
erate new oligodendrocytes and myelin sheaths. We first
analyzed the expression of genes encoding canonical and
non-canonical Wnt ligands in the demyelinated corpus
callosum, and during active remyelination (day 35 and
42 p.., Fig. 4a). In the demyelinated corpus callosum of
TMEV-infected mice, Wnt3a expression on day 35 p.i.
was not modified relative to the Sham mice in the RT-
PCR analysis, whereas less Wnt5a and Wnt7a mRNA

was expressed (Fig. 4b). During active remyelination,
Wnt3a downregulation was concomitant to an upregula-
tion of Wnt5a and Wnt7a gene expression, suggesting
different roles for Wnt signaling during remyelination.

Myelin alters the expression of the Wnt5a gene by
microglia, and it stimulates the generation and
maturation of oligodendrocytes from NSCs

Microglia are pivotal cells in corpus callosum remyelina-
tion, controlling the phagocytosis and clearance of myelin
debris [25]. As Wnt glycoproteins can influence microglia
functions [40, 41], we wanted to assess whether myelin
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affects Wnt gene expression by microglia in vitro. Micro-
glial cells in culture were exposed to purified myelin (2 pg/
ml) and the expression of Wnt3a, Wnt5a, and Wnt7a was
analyzed by RT-PCR (Fig. 4c). While no Wnt3a expression
was detected (data not shown), Wnt5a was expressed less
strongly by microglia in the presence of myelin in the ab-
sence of any effect on Wnt7a gene expression (Fig. 4d).
Contact with central nervous system (CNS) myelin
appears to inhibit the maturation of immature A2B5"*
OPCs in vitro [42]. Since CNS myelin could also influ-
ence the differentiation and maturation of intermediate
progenitors that migrate from the SVZ and encounter
an inhibitory environment in the demyelinated corpus
callosum, we studied whether myelin affected the gen-
eration and maturation of oligodendrocytes derived
from NSCs in vitro. NSCs in culture were exposed to
purified myelin (1, 2.5, and 5 pg/ml, see Fig. 5a), and
the proliferation (24 h) and differentiation (2 and 5 days

in vitro -div) of NSCs and generated oligodendrocytes
was analyzed. CNS myelin did not affect the prolifera-
tion of NSCs as the proportion of cells that incorpo-
rated BrdU" was similar to that seen in basal conditions
(Fig. 5b, ¢). NSCs spontaneously developed into neu-
rons (B-III Tubulin®), astrocytes (GFAP"), and oligo-
dendrocytes (O47) after two div (Fig. 5d, e), yet the
lowest dose of myelin (1 pg/ml) diminished the propor-
tion of neurons, concomitant with an increase in the
percentage of oligodendrocytes derived from NSCs. By
contrast, in the presence of the highest dose of CNS
myelin (5 pg/ml), an increase was only observed in the
proportion of astrocytes generated. After five div in the
presence of the lowest dose of CNS myelin (1 pg/ml),
the area occupied by O47-labeled cells and the propor-
tion of mature oligodendrocytes was enhanced, param-
eters that were not affected in the presence of the
higher doses of myelin (Fig. 5f, g).
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sis of Wnt5a and Wnt7a gene expression of microglia following the

Wnt7a induces the generation of oligodendrocytes from
NSCs

The proliferation and differentiation of NSCs on exposure
to Wnt3a, Wnt5a, and Wnt7a (200 ng/ml) was assessed
in vitro (see scheme in Fig. 6a). The activation of canonical
(Wnt3a, Wnt7a) and non-canonical (Wntb5a) pathways by
these ligands was confirmed by p-Catenin labelling, an in-
crease in nuclear B-Catenin staining evident 24 h after
stimulation with Wnt3a and Wnt7a (Fig. 6b). BrdU incorp-
oration revealed a proliferative effect of Wnt3a on NSCs
(Fig. 6d), which resulted in an increase in GFAP" astrocytes
after two div (Fig. 6e, f). Wnt5a did not induce any effect
on the proliferation or differentiation of NSCs, whereas
Wnt7a significantly reduced the differentiation of NSCs
into neurons while increasing the number of oligodendro-
cytes generated (Fig. 6e, ). After five div, the differentiation
and maturation of NSCs stimulated with Wnt3a, Wnt5a, or
Wnt7a into O4" oligodendrocytes was delayed when com-
pared to the basal conditions (Fig. 6g, h). Wnt3a increased
the proportion of OPCs, while both Wnt5a and Wnt7a de-
creased the percentage of mature oligodendrocytes (Fig. 6i).

M1 microglia secrete the Wnt5a protein, while M2c
microglia secrete Wnt7a

While several soluble factors released by microglia can
direct neural precursor cell migration and differentiation,
including cytokines and growth factors [21], the secretion
of Wnt proteins by microglia has yet to be assessed. We
evaluated this by polarizing microglia into the M1, M2a,
and M2c activation states in vitro (Fig. 7a), and then, ana-
lyzing the expression of Wnt5a and Wnt7a mRNA and

protein (note that Wnt3a was not detected in polarized
microglia in RT-PCR studies, data not shown). Compared
to unstimulated cells, M1 microglia transiently upregu-
lated their Wnt5a expression, which in turn provoked an
increase in the release of this glycoprotein into the culture
medium (Fig. 7b, c). The opposite effect was found in
M2c microglia, in which the decrease in Wnt5a mRNA
24 h after stimulation was associated with a decrease in
the Wnt5a protein released. No changes were found in
M2a polarized microglia in relation to the Wnt5a mRNA
or protein levels. By contrast, M2c microglia upregulated
the expression of Wnt7a and its secretion (Fig. 7d, e),
whereas M1 microglia dampened their Wnt7a expression.
Similarly, M2a microglia showed no changes in the
mRNA expression or protein levels of this glycoprotein.

M2c microglia conditioned medium induces the
generation of oligodendrocytes from NSCs

Given the oligodendrogenic effects of the Wnt7a pro-
duced and secreted by M2c microglia on NSCs, we evalu-
ated the effect of medium conditioned by these microglia
on the proliferation and differentiation of NSCs (see
scheme in Fig. 8a). The nuclear pB-catenin staining con-
firmed that the canonical Wnt/B-catenin pathway was ac-
tivated in NSCs cultured in conditioned medium from
M2c microglia (M2cCM) relative to the unstimulated con-
trol microglia (MCM, Fig. 8b). MCM or M2cCM had no
effect on the proliferation of NSCs (Fig. 8c, d), yet these
media reduced the proportion of neurons while they en-
hanced the presence of astrocytes relative to the basal
NSC medium. Furthermore, M2cCM promoted the
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(See figure on previous page.)

Fig. 6 Effects of Wnt3a, Wnt5a and Wnt7a on the generation of oligodendrocytes from NSCs. (@) Scheme of the in vitro assays performed to
evaluate the effects of Wnt3a, Wnt5a and Wnt7a on the proliferation and differentiation of NSCs. (b) b-Catenin labelling following the addition of
Whnt proteins. (¢, d) BrdU labelling and the proportion of proliferative NSCs following the addition of Wnt proteins (200 ng/mL). (e) Triple
immunocytochemistry performed after 2 days of NSCs differentiation to identify neurons (b-lll Tubulin, red), astrocytes (GFAP, green) and
oligodendrocytes (04, yellow), and analyzed in (f). (g) O4 labelling performed after 5 div in the presence of Wnt proteins (200 ng/mL), and analyzed in
(h) as the total area occupied by 04 and, the proportion of OPCs, Immature and Mature oligodendrocytes. N = 3 independent experiments. Statistics
*p £0.05; **p < 0.01; ***p <0001 vs Basal; ANOVA followed by Bonferroni’s post-hoc test. Scale bar: 25 mm in a; 50 mmin ¢, e, g

production of oligodendrocytes (Fig. 8e, f). Finally, MCM sig-
nificantly increased the area occupied by O4" cells and the
percentage of immature oligodendrocytes, while M2cCM de-
creased the area occupied by O4" cells and it increased the
proportion of mature oligodendrocytes (Fig. 8h, i).

Discussion

Myelin remodeling in the adult CNS requires the differenti-
ation of oligodendrocytes in order to generate myelin sheaths
around naked axons. New mature oligodendrocytes mainly
originate from local precursors distributed along the nervous
parenchyma, although the involvement of the SVZ niche
must be considered when contemplating remyelination in
adjacent white matter areas like the corpus callosum. To
study the contribution of the dorsal SVZ niche to corpus

callosum remyelination, we used the viral TMEV-IDD model
that resembles MS pathogenesis, involving inflammation, de-
myelination, and neurodegeneration [43, 44]. In this model,
there is prominent corpus callosum demyelination 35 days
p.i. in parallel with SVZ proliferation [38] due to the promin-
ent inflammatory reaction against the virus known as acute
encephalomyelitis [26]. In addition, we used in vitro ap-
proaches to analyze the effect of local signals present in the
demyelinated corpus callosum on NSC proliferation and dif-
ferentiation, including myelin debris, Wnt signaling, and acti-
vated microglia.

In the adult SVZ, the presence of Bl NSCs contacting
the ventricles confers an unusual cytoarchitecture to the
ventricle wall, where the apical surfaces of B1 cells are sur-
rounded by ependymal E1 and E2 cells in a pattern similar

-
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to a pinwheel that is fundamental for adult neurogenesis
[31]. Using whole mount preparations to study this cyto-
architecture, we analyzed the number of NSCs and the
pinwheel distribution at the dorsal wall of the lateral ven-
tricle in TMEV-infected mice at day 35 p.i. As in our pre-
vious work [38], the B1 cells in the dorsal SVZ increased
significantly, together with an increase in GFAP staining
and cell density. The number of pinwheels also augments,
supporting the activation of the dorsal SVZ in response to
corpus callosum demyelination. This is consistent with
other reports showing an increase in B1 cell proliferation
after inflammatory demyelination [45, 46], and the activa-
tion of the SVZ following cuprizone demyelination [47],
TMEYV infection [48], and in MS patients [7]. The contri-
bution of SVZ precursors to corpus callosum remyelina-
tion has been addressed in the EAE model of MS [9] and
after toxic demyelination, using in vivo genetic fate map-
ping [13], single-cell tracking with B-actin GFP [11] and
retroviral GFP injections [49]. Here, in vivo y-retroviral
vectors facilitated the single-cell tracking of newborn adult
oligodendrocytes originating from B1 proliferative cells in
the dorsal SVZ, indicating the contribution of this niche
to corpus callosum remyelination in the TMEV-IDD
model. Concomitant to dorsal SVZ activation, the inten-
sity and area occupied by DCX precursors in the demyeli-
nated corpus callosum diminished but not in the dorsal
SVZ. The glial fate of DCX" progenitors that contribute to
the generation of new oligodendrocytes in the corpus cal-
losum has been addressed after lysolecithin injection [50],
with a loss of this marker as precursors start to express
mature oligodendrocyte markers [51]. Hence, together
with the mobilization and activation of local OPCs follow-
ing demyelination [25], some signals from the damaged
corpus callosum cause stem cells in the dorsal SVZ to pro-
liferate, inducing the generation of DCX" oligodendrocyte
intermediate progenitor cells (oIPCs) that are not commit-
ted to the neuronal lineage but rather, that migrate to the
lesion site and differentiate into mature oligodendrocytes.
Demyelination is associated with the generation of myelin
debris that impairs OPC differentiation [27, 42], although
myelin direct effect on NSC differentiation has not yet been
studied. Here, we show that purified myelin may promote
the generation of oligodendrocytes from NSCs, supporting
their differentiation in vitro. We speculate that the myelin
debris generated in the demyelinated corpus callosum not
only affects local OPCs but also the SVZ niche, contribut-
ing to the specification of oIPCs committed to the oligo-
dendroglial fate and their differentiation into mature
oligodendrocytes. In this scenario, we found a dysregulation
of Wnt expression following demyelination in TMEV-IDD
mice, with a decrease in Wnt5a and Wnt7a mRNA tran-
scripts in the demyelinated corpus callosum and a decrease
in Wnt3a during remyelination. The temporal discordance
in Wnt expression would suggest a role for these proteins
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in NSC proliferation in the dorsal SVZ and the differenti-
ation of these cells in the demyelinated corpus callosum.
The dorsal SVZ is enriched in pro-oligodendrogenic signal-
ing molecules like those in the Wnt/pB-catenin pathway, in-
dicating a greater capacity to generate oligodendrocytes
than the lateral or medial SVZ [15]. Wnt signaling has a ca-
nonical and a non-canonical branch depending on the
downstream involvement of the p-catenin pathway [52]. A
shift from the non-canonical to canonical Wnt pathway has
been associated with the activation of quiescent NSCs in
the lysolecithin model of focal demyelination [53], and f-
Catenin signaling is active during remyelination [54].
Indeed, canonical [-catenin dependent [55] and non-
canonical (-catenin independent [53] Wnt signaling has
been attributed a crucial role in remyelination, although
this issue remains controversial [55]. Furthermore, active
MS plaques express Wnt signaling genes more strongly and
accumulate more Wnt protein than chronic lesions and
normal appearing white matter [39, 56]. Here, canonical
Wnt3a promotes NSC proliferation in vitro, whereas ca-
nonical Wnt7a enhances the production of oligodendroglial
cells from NSCs. Although Wnt5a may activate [-catenin
signaling, predominantly activates non-canonical cascades
as planar cell polarity (Wnt5a/INK route) and calcium
pathway (Wnt5a/Ca2") [57]. Indeed, Wnt5a produced no
effects on NSCs in our cultures. Moreover, Wnt3a can en-
hance sub-ependymal zone cell proliferation in culture, in
conjunction with the specification of these cells toward
NG2" OPCs [58]. Actually, direct effects of Wnt proteins
on OPCs should be further considered during remyelina-
tion, since these proteins play multiple roles in CNS devel-
opment, adult oligodendrogenesis [59], and during
myelinogenesis [60].

Microglial activation mediates activities that range from
protection against harmful conditions to the restoration of
CNS homeostasis following inflammation. Studies have
begun to realize that alterations in microglia immune phe-
notypes, gene protein expression, and morphology are
highly complex processes that exist on a broad spectrum
[61, 62]. Actually, microglia activation is not a completely
polarized M1 or M2 activation state with clear differenti-
ated expression of inflammatory mediators but a balanced
one, with higher levels of pro- or anti-inflammatory mole-
cules depending on the stimuli which define the actions
and function of microglia [61]. Despite the limitations of
applying the M1/M2 framework to microglia, in neuroin-
flammatory situations such as in TMEV-IDD and focusing
on microglia, we found different activation dynamics
along time that include and initial pro-inflammatory shift
followed by an anti-inflammatory shift. Activated micro-
glia secreting pro-inflammatory cytokines, chemokines,
and nitric oxide can be found in the initial acute antiviral
responses (7-21 days p.i.) as well as in the beginning of
the chronic phase of the disease (70-85 d.p.i.) [26].
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Between both M1 activation profiles, microglia acquired
an alternatively activated state M2 characterized by the
limited secretion of pro-inflammatory cytokines, the pro-
duction of factors involved in repair and tissue reconstruc-
tion, and that of anti-inflammatory cytokines [63]. M2c
microglia also mediate the clearance of myelin debris, as well
as synthesizing pro- and anti-inflammatory cytokines in the
corpus callosum following demyelination in TMEV-IDD
mice, resulting in partial remyelination [25]. Here, we show
that concomitant to dorsal SVZ activation, there is an in-
crease in the number of microglial cells with some minor
morphological changes in this area. Microglial cells residing
in the SVZ exhibit characteristics of an alternatively activated
state, supporting adult neurogenesis, proliferation, and migra-
tion [18]. Indeed, pro-oligodendrogenic effects of microglia
have been described in the early postnatal SVZ [64] and in
the adult SVZ following nearby demyelination [47, 65]. Se-
lective depletion of microglia suggests that the direct
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contact of stem cells with microglia is not necessary for
neurogenesis. Soluble factors present in microglia-
conditioned media from the SVZ or cerebellum can drive
neurogenesis rather than supporting NSC maintenance
[20]. Thus, microglia may instruct stem cells to contribute
to remyelination by secreting soluble signals that promote
the oligodendroglial fate. Moreover, we found that the
addition of purified myelin to microglia cultures dimin-
ished the expression of Wnt5a but not of Wnt7a. Since
microglia express Wnt receptors and Wnt3a per se is pro-
inflammatory [40], whereas Wn3a/Wntba counteracts the
pro-inflammatory actions of LPS in these cells [41], the
activation state of microglia could be related not only to
the differential effects of Wnts but also to the specific pro-
duction and secretion of Wnt proteins by these cells.

The secretion of pro-inflammatory cytokines by micro-
glia, including IL-1B, IL-6, TNF-a, and IFN-y, promotes
neurogenesis and oligodendrogenesis in the SVZ, and in
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Fig. 9 Myelin debris and M2c microglia contribute to oligodendrocytes generation from dorsal SVZ stem cells. Coronal mouse brain reflecting the
capacity of the corpus callosum and dorsal SVZ to generate oligodendrocytes via environmental signals. The myelin debris generated during
demyelination provokes microglial activation towards the phagocytic M2c state that secretes the Wnt7a protein. The Wnt7a/B-Catenin pathway
drives the specification of dorsal SVZ stem cells towards an oligodendrocyte intermediate progenitor cell (olPC) fate, committed to the
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Oligodendrogenesis may not only be mediated by the mobilization and differentiation of local OPCs but also, by the specification and
differentiation of stem cells in the dorsal SVZ through the activity of M2c microglia and the collateral effects of the myelin debris generated
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co-cultures in vitro [64]. Depending on the activation state
of microglia, their secretome produces different effects on
the survival, migration, and differentiation of NSCs [66].
Specifically, conditioned medium from M2a microglia pro-
motes neurogenesis and oligodendrogenesis of NSCs
through PPARY signaling [67]. Here, we describe the select-
ive synthesis and secretion of Wnt proteins depending on
the activation state of microglia, with M1 microglia secret-
ing Wntb5a and M2c microglia secreting Wnt7a, while no
detectable levels of Wnt3a mRNA were found irrespective
of the microglial activation state. We focused on M2c
microglia to further analyze the effects of this activation
state on NSCs, conditioned media from these cells enhan-
cing the B-Catenin in the nucleus of NSCs, suggesting the
activation of the canonical Wnt7a/B-Catenin pathway. Fur-
thermore, M2c conditioned medium promoted oligo-
dendrocyte differentiation from NSCs when compared to
the non-polarized microglia or basal conditions, reducing
the area occupied by O4" cells, in accordance with the dir-
ect effects when NSCs are exposed to Wnt7a in culture.
This finding highlights the importance of Wnt7a in the
secretome of M2c microglia, suggesting new functions of
these cells in neurogenesis depending on their activation
state. Although we did not find any effect of Wnt5a on the
proliferation or specification of NSCs, the effects of pro-
inflammatory microglia via the non-canonical Wnt pathway
in NSCs should still be further explored.

Conclusions

In conclusion, our data suggest that the myelin debris gen-
erated during corpus callosum demyelination can directly
affect the specification and differentiation of multipotential
cells in the dorsal SVZ (see Fig. 9). Stem cells generate
oIPCs that are committed to the oligodendroglial lineage
and that migrate to the lesion site, where they differentiate
into mature remyelinating oligodendrocytes. Myelin break-
down also induces the activation of microglia from a resting
state toward an M2c phagocytic state. M2c cells secrete a
plethora of factors, including Wnt7a that can influence the
specification of dorsal SVZ multipotential cells to the oligo-
dendroglial lineage. Hence, these data reinforces the role of
M2c microglia in NSC oligodendrogenesis which may be
driven through the canonical Wnt7a signaling pathway
among others factors. Our study also evidences the possible
role of microglia in adult oligodendrogenesis upon demye-
lination, targeting local OPC populations and NSC progeni-
tors in the SVZ.
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