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Abstract

Arthropod-borne viruses or arbovirus, are most commonly associated with acute infections, resulting on various
symptoms ranging from mild fever to more severe disorders such as hemorrhagic fever. Moreover, some arboviral
infections can be associated with important neuroinflammation that can trigger neurological disorders including
encephalitis, paralysis, ophthalmological impairments, or developmental defects, which in some cases, can lead to
long-term defects of the central nervous system (CNS). This is well illustrated in Zika virus-associated congenital brain
malformations but also in West Nile virus-induced synaptic dysfunctions that can last well beyond infection and lead to
cognitive deficits. Here, we summarize clinical and mechanistic data reporting on cognitive disturbances triggered by
arboviral infections, which may highlight growing public health issues spanning the five continents.
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Background
Neurological sequelae, including cognitive deficits, are
emerging as potential long-term impairments associated
with some arboviral infections. Among emerging viruses,
some arboviruses are able to reach the central nervous
system (CNS) and cause neuropathology. Accumulating
evidence highlighted by follow-up studies is now
showing that neurological symptoms such as memory,
behavior, and other psychomotor deficits are found in
patients, months after the initial infection and decrease
in some cases their quality of life. The aim of this review
is to provide a comprehensive view of the neurological
impairments found in some arbovirus infections that can
have long-lasting effects, and to correlate these observa-
tions with molecular and cellular studies aiming to
decipher the effects of CNS arbovirus interaction.

Introduction
Accumulating evidence illustrate now the fact that neuro-
tropic viruses have developed numerous strategies to
invade the brain and, depending on the mode of entry,
cellular tropism and mechanism of infection, trigger a wide
range of neuronal symptoms, which can lead in some cases
to severe cognitive impairments [1–3]. Once in the brain,
altered neuronal homeostasis triggered by long-term in-
flammatory microenvironment and/or viral replication can
have dramatic effects and lead to cognitive disorders [1, 3,
4]. For example, around 50% of human immunodeficiency
virus (HIV)-infected patients are suffering from mild to se-
vere neurological impairments in a syndrome called HIV-
associated neurocognitive disorder (HAND) consisting of a
range of cognitive deficits such as memory and attention
disorders, motor and sensory impairment, mood and be-
havior changes and, in some extreme cases, dementia or
HAD (HIV-associated dementia) [5]. HIV nervous system
infection may also be linked to the etiology of some brain
disorders such as amyotrophic lateral sclerosis [6] or Alz-
heimer’s disease (AD) [7]. Another example is found
among members of the Herpesviridae family, such as
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cytomegalovirus (CMV), which can be associated with
neurodevelopmental defects, as well as herpes simplex
virus 1 (HSV-1), which induces latent infection in the ner-
vous system and in some cases can trigger encephalitis
when reactivated. Notably, both viruses were found to in-
duce significant cognitive impairment in the general popu-
lation [8] and were also proposed to be involved in the
etiology of AD [9, 10]. “Hit and run” mechanisms leading
to progressive neuronal pathology may be also considered,
such as subacute sclerosing panencephalitis, a rare progres-
sive neurological disease caused by complications associ-
ated with measles virus infection, which can have major
impact including behavioral impairment cognitive decline
and seizures [11].
Due to its peculiar architecture, the central nervous

system (CNS) is relatively protected from toxic and
pathogenic factors that can be found in the blood, and
in this light, it is considered as immune-privileged. This
however does not exclude that some toxins, viruses,
bacteria, or parasites can access this organ and cause
mild to severe impairment. This can be done directly
through pathogen-mediated effects on neurons, or indir-
ectly through inflammation-associated mechanisms when
glial cells are affected for instance. To reach the central
and peripheral nervous systems (PNS), pathogens have
been selected throughout evolution for their ability to
interact with various barriers and machineries [12, 13].
Notably, the blood brain barrier (BBB) is a tight endothe-
lium that physically separates systemic circulation from
the parenchyma. It is formed by closely interacting cells,
which form the neurovascular unit (NVU): vascular endo-
thelial cells that actually form the barrier, pericytes, astro-
cytes, and neurons (Fig. 1) [14]. Endothelial cells are
closely interacting through tight and adherens junctions
(TJ and AJ respectively), which ensure the (relative) im-
permeability of the barrier, although anatomical sites, such
as the choroid plexus (CP), are more vulnerable due to
their loose inter-endothelial cell junctions. Selective
passage nevertheless exists as small lipophilic molecules,
cytokines, and cells of the immune system can cross the
BBB using different mechanisms such as transcytosis
through receptor-mediated endocytosis, transport with
efflux/influx pumps, transcellular lipophilic pathways, and
transcellular diapedesis [15]. Direct infection of endothe-
lial cells can also provide viral access to both sides of the
barrier. Numerous viruses have been shown to directly
and/or indirectly (e.g., through infection of cells of the im-
mune system, a mechanism called “the Trojan horse”)
cross the BBB [16–19] (Fig. 1).
Many arboviruses (for arthropod-borne viruses), the

majority of which are responsible for acute infections,
can also access the CNS and infect a variety of cell types
[20]. Because encephalitic arboviruses encompass nu-
merous viruses belonging to various families, one cannot

tend to generalize the (neuro) pathologies associated
with these infections. However, these viruses are in the
vast majority ribonucleic acid (RNA) viruses and trans-
mitted by vectors such as mosquitoes, ticks, and sand-
flies during blood meals to a range of host including
humans [21]. The replication cycle of arboviruses gener-
ally occurs in wild hosts such as birds and mammals.
Vectors are then responsible for spreading infection
among hosts in what is called an enzootic cycle [22]. In
some situations, vectors can transmit viruses to animals
that are not the natural host (i.e., do not replicate the
virus), which are called accidental or dead-end hosts.
This is the case for example for horses and humans
following West Nile virus (WNV) or Usutu virus
(USUV) infections [23, 24]. Some arboviruses such as
dengue virus (DENV), Zika virus (ZIKV), and chikungunya
virus (CHIKV) are less relying on viral amplification in wild
animals and can be transmitted to humans during an urban
cycle, and therefore are found associated with major epi-
demic outbreaks [21, 22]. Arboviral CNS infections can
happen with a wide range of arboviruses including WNV,
ZIKV, CHIKV, USUV, and Japanese encephalitis virus
(JEV) among others, and cause diseases such as meningitis,
encephalitis, meningoencephalitis, myelitis, and acute
paralysis [20, 25]. Because arboviral infections were mostly
seen as acute, neurological symptoms, with the exception
of neurodevelopmental impairment, were also largely re-
ported on a short-time range. The recent ZIKV epidemic
and the congenital syndromes associated (e.g., microcephaly
[26]) suggest however that arboviral infections may have
long-lasting effects on the nervous system. We review here
the clinical and basic studies aiming to characterize the
long-term effects of arboviral infections, in particular re-
garding cognitive performance.

Acute and long-term cognitive deficits in arbovirus
infections—a clinical perspective
Arboviral infections and symptoms
Clinically, arboviral infections are acute (viremia is typically
few days long) and most frequently asymptomatic (60–80%
of patients) or trigger flu-like symptoms resulting in febrile
state, mild to important fever, and, depending on the virus,
can be accompanied by rash, conjunctivitis, myalgia, and
cephalic pains [22]. In rare cases, severe symptoms such as
hemorrhagic fever (e.g., for DENV and Crimean-Congo
hemorrhagic fever virus (CCHMV) infections) or neuro-
pathology (e.g., for WNV, Toscana virus, JEV, USUV,
ZIKV…) can be found associated with arboviral infections.
During epidemics however, even “moderate” symptoms
(which still necessitate hospitalization) can be of a great
burden, as it was well illustrated during the 2005–2006
CHIKV epidemic in the French island of La Réunion,
which affected up to a third of the population and had a
huge cost for the society [27, 28], or with DENV, which is
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present in 130 countries and put up to 2.5 billion people at
risk each year [29]. This is particularly relevant for endemic
arboviruses, which should be closely considered by clini-
cians [30], but given the current globalization of travelers
and merchandises, as well as climate change, it is more
than likely than emerging and remerging viruses will found
“new” or naïve territories, similarly to what happened for
ZIKV in South America or CHIKV in America [31, 32].
Moreover, long-term sequelae (lasting from weeks to

years) can be found occurring after arboviral infections
in some cases [33] (Table 1). CHIKV infections have
been linked to lasting arthralgia and arthritis, among
other symptoms, which directly impact the quality of life
[68, 80, 81]. Ocular complications, reported for several
arboviruses including WNV, CHIKV, DENV, and ZIKV
among others, are often associated with long-term im-
pairment [33, 43]. For instance, in ZIKV-infected adult
patients suffering from visual impairment in the acute

phase of infection, follow-up studies showed partial re-
covery as permanent lesions due to ZIKV infection may
be likely to persist [82, 83]. Recent data also point that
ZIKV can persist in various body fluids for weeks to
months, switching the paradigm of seeing (some)
arbovirus infections as acute, towards more persistent or
long-term infections [46, 84].

Arboviral infections and neuroinflammation
More worrying however, are the neurological impair-
ments that can be directly triggered by arboviruses, both
from congenital and adult infections (Table 1). CNS
pathology during arbovirus infection can be due to dir-
ect neuronal infection, but also from indirect effects due
to global neuroinflammation and post-infectious mecha-
nisms that can occur in distinct anatomical regions. Re-
garding the brain, while inflammation isolated to the
meninges triggers meningitis, viral replication in the brain

Fig. 1 The NVU and pathways of CNS viral entry through the BBB. a The NVU is formed by astrocyte end feet, perivascular microglia, neurons, as
well as brain pericytes, which are embedded in the basement membrane and envelop the endothelial cells lining cerebral capillaries. b
Description of possible mechanisms of CNS virus through the BBB. (1) Direct infection of endothelial cells that release viruses in the brain. (2)
Infection of monocytes infiltrating the CNS by the Trojan horse mechanism. (3) Infection of endothelial cells that disrupt the BBB by the release of
inflammatory mediators. (4) CNS cells participate in the disruption of CNS homeostasis by producing inflammatory molecules and allowing the
recruitment of immune cells. Images created with BioRender.com and SMART- Servier Médical ART
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parenchyma results in encephalitis. Aseptic meningitis is
classically defined as non-bacterial inflammation of the tis-
sues lining the brain. Any inflammation or pathology that
also involves the parenchyma is referred to as meningo-
encephalitis. “Neurotropic” (i.e., able to reach the CNS)
arboviruses are classically associated with encephalitis [63,
78, 85–87] but can also cause meningitis, for instance in
infections by St. Louis encephalitis virus (SLEV) [88], tick-
borne encephalitis virus (TBEV) [89], DENV [90], WNV
[91], CHIKV [92], ZIKV, Powassan virus (POWV), and
Eastern Equine encephalitis virus (EEEV) [93]. During
Toscana virus meningitis, serum levels of IFN-α, IP-10,
and eotaxin are significantly increased in the acute phase
of infection in comparison with healthy controls [94],
which could participate to an ensuing CNS infiltration of
neutrophils, monocytes, and antiviral CD8+ lymphocytes.
In patients suffering from encephalitis or meningoenceph-
alitis due to WNV, perivascular and meningeal inflamma-
tion is found, both in the brain and in the spinal cord,
which is associated with seizures and paralysis [20]. This il-
lustrates the potential neuroinflammation found in some
arboviral infections, which can cause acute and long-term
neurological impairments [95].

Congenital and pediatric arboviral infections and
neurodevelopment
Congenital arbovirus infections have been particularly re-
ported for ZIKV, mostly due to the extent of the epidemic
[47]. In this setting, microcephaly (which results in a
decrease in head circumference and brain growth) and
other cerebral malformations (called altogether congenital
Zika syndrome or CZS) have been consistently reported

throughout the American continent, but also elsewhere in
the globe [47–51]. Moreover, retrospective studies in past
epidemics, such as the one from French Polynesia, showed
indeed that microcephaly and cerebral malformations were
associated with ZIKV infection [52, 53]. Lissencephaly
(malformation in the cortical structures of the brain) has
also been reported in ZIKV-infected infants, which could
result in mental retardation in affected children [54]. Im-
portantly, there are now follow-up studies showing the ef-
fects from ZIKV-associated brain malformations or subtler
damages. Such studies in infants with CZS confirmed
strong neurological disabilities, in particular ocular and
motor impairment, as well as epileptic manifestation [48,
55–60]. A study assessed over 1400 children of at least 1
year of age born from ZIKV-infected mothers and showed
important rates of neurodevelopmental defects (up to 14%
with seizure or, neurodevelopmental delays) [61]. Report
on more than 200 children born from ZIKV-infected
mothers in the region of Rio de Janeiro also showed
important neurodevelopmental, including cognitive, im-
pairment in around 30% of patients 2 years after birth
[62]. The microcephaly status was shown to be altered
in some children, either resolving or appearing [62].
Appearance or further development of neurological
impairments can be also occur, consistent with obser-
vations that ZIKV can persist in infants after birth for a
period of months (which is adding from the several
weeks of ZIKV infection in utero) [54].
However, other arboviruses have been reported to be

associated with pediatric and/or congenital neuronal
disorders, in particular DENV [44], CHIKV [80, 69], and
rarely WNV [96]. CHIKV infection is now well

Table 1 Neurological disorders associated with arboviral infections

Virus Neurological disorders Long-term sequelae in children and in adults References

WNV Encephalitis, meningitis, meningoencephalitis,
and acute flaccid paralysis

Neurological sequelae, confusion, seizure, memory
impairment, speech disability, depression, and
ocular complications

[34–42]

DENV Encephalopathy, meningitis, stroke, cerebellar
syndrome, myelitis, and guillain-barré syndrome

Neurological sequelae, mood-, personality-,
behavior- disorders, and ocular complications

[29, 43–45]

ZIKV Meningoencephalitis, guillain-barré syndrome,
microcephaly, and congenital Zika syndrome

Mental retardation, seizure, epileptic behavior,
communication-, social cognition-, and mobility-
abnormalities, autism spectrum disorder,
intellectual disability, memory and learning
deficits, and ocular pathology

[46–62]

JEV Encephalitis, aseptic meningitis and acute
flaccid paralysis

Motor and language deficit, learning difficulties,
behavioral problems, mental retardation,
neurological-, neuropsychiatric-, and cognitive
sequelae

[63–67]

CHIKV Encephalitis, myelopathy, neuropathy,
myeloneuropathy, myopathy, and paralysis

Arthralgia, arthritis, neurological sequelae,
cognitive disturbance, and ocular complications

[68–73]

TBEV Encephalitis, meningitis, meningoencephalitis,
and myelitis

Cognitive sequelae, behavior-, memory-, and
language- dysfunctions

[74–77]

EEEV, WEEV Encephalitis Seizures, cognitive defects, psychiatric illness,
motor dysfunction, behavioral impairments,
and intellectual impairment

[78, 79]
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established as triggering serious neurological sequelae,
particularly in children [70, 71]. Vertical transmission
has been documented in several studies and highlights
the risk of congenital infection associated with this virus
[71–73]. Neurocognitive outcome of a La Réunion co-
hort of 33 CHIKV-perinatal exposed infants showed
neurodevelopmental delays in around 50% of children
compared to controls [69]. Cases of encephalopathy,
microcephaly, and cerebral palsy were also described,
some of them not detectable at birth and developing
afterward, similarly to ZIKV-infected children
[69]. Moreover, in a cohort of 87 children CHIKV+

(CHIKV RNA found in cerebrospinal fluid (CSF)) (55 in-
fants less than 1 year old with an acute infectious syn-
drome and 32 children 2 to 10 years old with a
convulsive attack or encephalopathy), evaluated 3.5 to
4.5 years after acute chikungunya, 20% of children pre-
sented developmental delays including cognitive impair-
ment (our unpublished data).
Infants and children are also particularly at risk for

DENV infection, potentially with severe forms [29].
Among these disorders, severe encephalopathy can be
found (e.g. [45, 90],) but no long-term follow-up that
suggests potential cognitive sequelae was reported as far
as we know. This would definitely need to be addressed
as DENV affects hundreds of thousand persons each
year. Noteworthy, Rift valley fever virus (RVFV) is asso-
ciated with vertical transmission and fetal demises in an-
imals and with neurological and ocular impairment in
humans [97]. Its epidemic potential is strongly consid-
ered as the WHO classified it as “severe emerging dis-
ease with potential to generate a public health
emergency, and for which no, or insufficient, preventive
and curative solutions exist” and is a reported as a cat-
egory A priority pathogen [98]. Rare human vertical
transmission have been reported, one of which resulted
in infant death within a week [99]. Whether this is due
to intrinsic properties of the virus (see below) or of poor
surveillance diagnosis needs to be characterized. WNV
vertical transmission does not seem a common feature
but infections in children occur regularly [100]. These
infections can give rise to meningitis, encephalitis, and
acute flaccid paralysis, the latter of which can cause
long-lasting disabilities but, curiously, neuroinvasive dis-
ease in children is less frequently found than in adults
[100]. TBEV can also affect children but, similarly to
WNV, infections are in general milder than in adults
[74]. However, European cohort’s studies in children
demonstrate important rate of neurological and cogni-
tive sequelae after TBEV infection [74, 75]. In the same
light, other arboviral infections such as JEV or La Cross
Virus (LACV) in children may be associated in some
cases with neurological and cognitive sequelae [63,
87]. In a follow-up study over 2 years post-JEV

infection in children showed mental retardation in
over 20% of patients [64].
Altogether, these observations highlight the existence

of potential risks associated with arboviral infections
during pregnancy or in early life for child neuronal de-
velopment [101]. In this context, it was also discussed
that the neurodevelopmental defects associated with
ZIKV infection in utero could potentially favor autism
spectrum disorder [102]. Moreover, generally infectious
encephalopathies in children represent important risks
to develop neurological and cognitive sequelae [103],
suggesting that arboviral infections in children may have
severe consequences for the neuronal health of the
individuals.

Arboviral infections and acute and long-term cognitive
impairment in adults
Encephalitis, meningitis, and other neuronal complications
following arboviral infections are also found in adults, with
sometimes long-term cognitive impacts. In particular,
neurological sequelae have been well described in WNV
adult patients [34–39]. For instance, in a 1-year post-
infection follow-up study of WNV patients who were diag-
nosed neuroinvasive disease, several neurological sequelae
were reported including memory impairment, speech
disability, and depression [34]. Similarly, mental health and
social functioning were altered in some Canadian neuro-
WNV patients in a 2-year follow-up study [40] and in
another 2 to 4-year follow-up study [41]. Moreover, in 1–3
and 8–11 year follow-up study of the Houston West Nile
Cohort, new neurological symptoms developed in some pa-
tients, highlighting the need to closely monitor post-
encephalitic patients [42]. Similarly, the highly neurotropic
JEV when infecting adults also led to significant increase in
cognitive and behavior impairment in patients several years
post-infection [65]. A prospective study of over 1300 Indian
adult patients initially diagnosed with JEV infection
highlighted the potential risk to develop neurological and
cognitive sequelae after JEV infection: the authors showed
in these patients of four epidemics between 1978 and 1989,
neuropsychiatric and neurological sequelae at the time of
discharge [66]. Some of these patients were then enrolled
in follow-up studies (up to 14 years) that showed important
neuronal sequelae including corticospinal impairment such
as hyperkinetic movement and dystonia and seizures [67].
Psychiatric and psychological disturbances were also ob-
served as long lasting: some patients were reported even
though some recovery occurred [67]. Intellectual disability,
memory, and learning deficits were also seen in a small
proportion of patients [67].
Cognitive sequelae are also clearly associated with

TBEV infection in adults; here, it can sometime be asso-
ciated with neurological symptoms such as meningitis,
encephalitis, and meningoencephalitis. Long-term
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follow-up studies highlighted the risk for cognitive
sequelae: for instance, in a study following 36 Polish
farmers diagnosed with TBEV infection during the
1994–2001 period, the authors reported cognitive im-
pairment related to the pre-dementia stage of AD or
memory and language dysfunction [76]. Similarly, in a
Scandinavian adult cohort of 96 TBE patients, cognitive
disorders such as changes in behavior and learning dis-
abilities were reported in a follow-up study 2 to 15 years
post-infection [77]. CHIKV can also lead to neurological
disorders in adults, mainly encephalitis but also acute
paralysis [71]. Importantly, neurological sequelae, in-
cluding cognitive disturbance were found in adults who
developed at the time of infection CNS disorders in a 2-
year follow-up examination [85]. Albeit neurological
complications associated with ZIKV infections have been
mainly described in pediatric cases, adults can also de-
velop brain disorders [104]. For instance, behavioral
changes were observed up to 15 weeks in a ZIKV-
infected teenager [105].
Exposure to other emerging neurotropic arboviruses

can have long-term deleterious effect on mental health
as illustrated by a case of a 73-year-old patient infected
with California Serogroup Virus who developed post-
encephalitic dementia and was transfered to a nursing
home [106]. More than 6months post-infection, the
patient still scored low on a mental state examination
(11/30) [106]. Evenly worrisome, a follow-up study con-
cerning Murray Valley encephalitis virus showed that
even in patients discharged without evident sequelae,
long-term cognitive disturbance such as depression and
cognitive dysfunction were reported [107]. Alphaviruses
have also been associated with neuronal impairment
with long-term effects. Eastern, Western, and Venezuelan
Equine encephalitis virus (EEEV, WEEV, VEEV) human
infections have also been described, some of which led to
cognitive sequelae [78, 108, 109]. Outbreaks of WEEV in
the USA and in Canada in the 40–50s were proposed to
be associated with important neuronal sequelae including
behavioral impairments [79, 110]. Follow-up studies of
later WEEV outbreaks showed that some children and
adult suffered from intellectual impairment [108].

Impairment of neuronal functions by
arboviruses—molecular and cellular mechanisms
Cognitive deficits can stem from different mechanisms,
whether from impairment of neuronal development,
neuronal dysfunction from a direct impairment of neur-
onal homeostasis (e.g., direct neuronal infection and
function perturbation), or through indirect effects medi-
ated by inflammatory molecules released by infected glia
or immune cells. To understand the interaction and its
effects between arboviruses and the nervous system,
numerous studies aimed at characterizing the effect of

infections on brain development, CNS entry mechanisms,
and the cellular and molecular effects associated with
brain infection and neuroinflammation.

Mechanisms of neuronal development modulation by
arboviruses
Studies in animal models clearly showed that in utero or
early post-natal ZIKV infections may have deleterious
effect on neurodevelopment and trigger cognitive disor-
ders in growing mice [111–113]. Importantly, ZIKV has
been shown to potently cross the placenta using several
mechanisms including infection of trophoblasts in the
placenta, which further allow spread in the fetal nervous
system [114].
Further studies showed that other arboviruses can in-

fect human placenta and could be associated with fetal
demise in animal models: a study showed that in human
placental explants ZIKV, WNV, Mayaro virus (MAYV),
and POWV, but not CHIKV, were able to replicate
within different components of the tissue [115]. Simi-
larly, RVFV can cross rat placenta and trigger deleterious
effects on developing embryos [116]. Importantly, high
viral load was detected in the pup brains [99]. Moreover,
human placenta explants were also found permissive to
RVFV replication [116], confirming the observations of
human vertical transmission [99].
Numerous studies showed potent ZIKV infection of

neuroprecursors and important neurodevelopmental
defects (e.g. [117],). This infection is deleterious for the
subsequent neuronal differentiation and the establish-
ment of synapses [118]. Globally, in utero ZIKV infec-
tion led to cortical thinning resulting from neuronal
growth defect and neuronal death [119]. This was ac-
companied by a reduction in neuronal network, suggest-
ing important neurodevelopmental defects in
developping animals, consistent with cognitive distur-
bances observed [112, 120]. Cell cycle dysfunction has
been linked with ZIKV infection of neuroprogenitors
[119, 121–123], which is likely to explain effects in neur-
onal differentiation and apoptosis as progenitor division
is strictly necessary for neurogenesis. Due to extensive
research following ZIKV epidemic and with the above
observations in mind, researchers and clinicians agree
around a consensus regarding the cause of ZIKV-
mediated microcephaly: potent infection of neuropro-
genitors, coupled with cell death, differentiation, and
neuronal network impairment are believed to be respon-
sible for this congenital brain development disorder
[124]. Regarding effects on the developing brain, much
less data is available for other arboviruses. Similarly, JEV
impairs subventricular zone neuroprogenitor prolifera-
tion and cell cycle progression through modulation of
checkpoint proteins in wild-type (WT) mouse pups and
in vitro [125]. Surprisingly, albeit clear
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neurodevelopmental and cognitive impairment have
been shown in CHIKV-infected children [69], very little
information is found on the physiopathology associated
with these effects, albeit it was hypothesized that CHIKV
could target neural progenitors and affecting neurogen-
esis [126]. Even though rare cases of congenital infec-
tions have been reported with WNV, in utero infection
in a mouse model showed effect on brain development
[115]. These studies corroborate observations in arbo-
viral congenital or perinatal infections and their effect
on neurodevelopment and cognitive functions.

Mechanisms of arbovirus brain access
To reach the adult CNS, neurotropic arboviruses use
different mechanisms at the BBB such as direct viral
infection of brain vascular endothelial cells or using cells
of the immune system (“Trojan horse” pathway) [127]. It
was proposed that WNV enters the CNS by infecting
monocytes, dendritic cells, or macrophages that natur-
ally cross the BBB [128, 129]. Similarly, JEV and DENV
have been shown to use such pathways [127]. Direct in-
fection of endothelial cells may have different outcomes
for viral access: some viruses such as ZIKV may not have
important effect on BBB integrity but can be released
through the basolateral compartment and reach the
CNS [130]. Others may have more potent effects on
BBB permeability through production of inflammatory
cytokines, which can modulate BBB integrity. For
instance, WNV by infecting directly brain vascular endo-
thelial cells will lead to the production of inflammatory
molecules that will disrupt BBB integrity and further
allow virus CNS access through the Toll-like receptor
(TLR)-3 response and tumor necrosis factors alpha
(TNF-α) secretion, resulting in a transient change BBB
permeability [131]. DENV can directly infect human
microvascular endothelial cells and induce cell apoptosis
[132]. Moreover, modulation of TJ and AJ protein ex-
pression by arboviruses can also occur and increase viral
and immune cell CNS access by paracellular pathway
[133]. Studies also showed that neurotropic arboviruses
can upregulate cell adhesion molecules in brain vascular
endothelial cells, which in turn favor leukocyte recruit-
ment and CNS invasion [134, 135]. Furthermore, some
arboviruses can invade the brain at the blood-CSF inter-
face [136–138]. Some flaviviruses are able to use the
olfactory pathway to enter the CNS such as Murray
Valley encephalitis virus and Saint Louis encephalitis
virus. Others will use retrograde axonal transport to ac-
cess it using peripheral nerves such as WNV [139–141].

Arbovirus and interaction with the neurovascular unit
Once in the brain, neurotropic arboviruses can also infect
others types of NVU cells such as pericytes, astrocytes, neu-
rons, and microglia and lead to general neuroinflammation

and BBB impairment [14, 142]. Because astrocytes are me-
diators of neuroinflammation, these infections may further
impair BBB homeostasis [143] and disrupt neuronal viabil-
ity and induce cognitive dysfunction [144, 145]. Astrocytes
can be infected by numerous arboviruses such as TBEV,
WNV, ZIKV, and JEV [146]. In this context, WNV-infected
astrocytes have been shown to secrete various inflammatory
cytokines and matrix metalloproteinase (MMP), which will
lead to BBB disruption [147, 148]. ZIKV-infected human
astrocytes produce pro-inflammatory cytokines that induce
neuroinflammation [149] and in mouse embryo brain,
astrocytes-infected ZIKV induce progressive astrogliosis,
which disrupts BBB properties and function [119]. Simi-
larly, astrocytes infected with JEV lead to secretion of
MMP, interleukin (IL)-6, and vascular endothelial growth
factor (VEGF) and led to BBB destabilization [150]. JEV-
infected astrocytes also led to an increase of the chemokine
(C-X-C motif) ligand 10 (CXCL10) production, which
modulates the migration of natural killer (NK) cells and
monocytes into the CNS [151]. Moreover, arbovirus infec-
tion of astrocytes often results in the production of
cytokines such as IL-6, TNF-α, or IL1-β, which have been
shown to modulate BBB permeability by several mecha-
nisms, including downregulation or relocalization of junc-
tion proteins such as occludin and zona occludens (ZO)-1
[147, 152–154]. The NVU is also composed of pericytes,
which support BBB homeostasis and function, and are
emerging as key regulators in neuroinflammation [155,
156]. JEV, WNV, and ZIKV have been shown to target
pericytes. JEV-infected pericytes in turn induce a degrad-
ation of TJ proteins such as zonula occludens (ZO)-1
protein and an upregulation of ubiquitin E3. Moreover,
JEV-infected pericytes produce IL6, which disrupted the
integrity of endothelial barrier [157, 158]. Noteworthy, the
BBB is also impaired during congenital infection as in utero
ZIKV infection in mice led to abnormal vasculature, which
triggered BBB leakage [119].
Arboviral interaction/modulation with the NVU may

have important and potentially long-term effects as BBB
and vasculature impairment are associated with cogni-
tive disturbance either in an acute fashion, or in a long-
term manner, for instance in aging [14]. Neurodegenera-
tive disorders such as AD are multifactorial. In this con-
text, vascular impairment has been proposed to
contribute to the etiology of such diseases [14, 159]. BBB
dysfunction, coupled to pericyte degeneration may pro-
voke toxic accumulation in the brain and neuronal dys-
function [14]. Similarly, repeated BBB injuries have been
proposed to trigger neurodegeneration and neurocogni-
tive dysfunction [160, 161].

Arbovirus and modulation of synaptic function
Some studies aimed to address synaptic homeostasis

both during and after arboviral infections using animal
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models, which allow testing for cognitive disturbance. Cog-
nition is a complex and multifactorial mechanism, where-
upon synaptic plasticity plays a central role. This is
occurring early in development when synaptogenesis and
maintenance are taking place, and during adulthood with a
balanced regulation of synapse formation and removal, col-
lectively termed synaptic plasticity [162]. To these mecha-
nisms can be added adult neurogenesis, in particular in the
hippocampus, where new neurons are constantly generated
and integrated in existing circuits to modulate learning and
memory mechanisms [163]. In the context of arboviral in-
fections, mature neurons can be directly infected by some
arboviruses including ZIKV, WNV, TBEV, and JEV among
others [139, 164–166]. For instance, ZIKV has been shown
to replicate in mature neurons ex vivo in human cortex
and in vivo in mouse models [165]. However, synaptic plas-
ticity does not only involve only neurons but also interac-
tions with glial cells such as astrocytes and microglia [162].
Microglia are key regulator of neurodevelopment, neuroin-
flammation, and BBB integrity [167]. An important mech-
anism involved in cognition is microglia-dependent
synaptic removal, which allows synapse remodeling called
synapse pruning [167]. This mechanism, when exacerbated,
can cause cognitive dysfunction [168, 169]. In an infection
paradigm, activated microglia can be directly associated
with neurodegeneration and cognitive defects [170].
Microglia infection/modulation has been described in

several cases: ZIKV can lead to a potent inflammatory
response in human fetal brain microglia [171]. JEV and
DENV have also been shown to target microglia, which

induce inflammatory environment [172, 173]. Using the
rat as an animal model, authors showed that JEV led to
behavioral changes including memory impairment that
could be correlated with a decrease in the synaptic pro-
tein choline acetyl transferase (ChAT), a marker of
dopaminergic neuron function [174]. Microglia-
dependent synaptic pruning has been proposed as a po-
tential mechanism underlying neurocognitive impair-
ment in patients recovering from WNV neuroinvasive
disease. Indeed, observations in mice infected with a
WNV mutant NS5 (E218A) suggest that the comple-
ment components (C3 and C3aR) mediate presynaptic
terminal loss in the hippocampi of mice that exhibit
spatial learning defects during recovery from neuroinva-
sive disease [175] (Fig. 2). Microglia and recognition of
C3 cleavage products by the complement receptor C3aR
were shown responsible for this process [175]. Indeed,
disease-recovered animals (who survived the neuroinva-
sive disease) showed learning deficits that were mirrored
by the presence of engulfing microglia at synapses in the
hippocampus. In particular, synaptic terminal of the C3
regions were reduced both in animal models and in biop-
sies of human patients [175]. Furthermore, in adult mice
that recovered from WNV and ZIKV infections, activated
microglia through the release of interferon (IFN)-γ from
infiltrating T cells were responsible of synaptic removal
without repair in the case of WNV, and with associated
neuronal apoptosis for ZIKV [176, 177]. It was proposed
that CD8+ T cells, through the release of inflammatory
molecules and microglia activation and subsequent

Fig. 2 Elimination of synapses by microglia via the complement pathway. Activation of microglial complement receptors during arboviral
infection triggers the phagocytosis of synapses. Complement components C1q, C4b/C2a, and the C3 fragment (C3b) tag synapses. Microglial cells
bind C3b through their CR3 receptors and partially phagocyte tagged synapses, resulting in selective synapse elimination. Images created with
SMART- Servier Médical ART
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synaptic removal, were participating in the establishment
of post-infection cognitive sequelae [176]. In another
study, ZIKV replication in the hippocampus was shown to
lead to the inhibition of long-term potential, a key mech-
anism regulating cognitive process such as memory [165].
The authors demonstrated the presence of activated
microglia in close proximity to synaptic terminals and
memory impairment in infected mice [165].
Some studies also point towards the modulation of

adult neurogenesis by some arboviruses. During the
acute phase of WNV infection, myeloid cell-derived IL1
alters the proliferation and differentiation fates of neural
progenitor cells, leading to a shift from neurogenesis to
astrogenesis [178]. Data indicate that the combinatorial
effect of synapse loss and reduced neurogenesis can
negatively impact hippocampal spatial learning and
memory long beyond the initial episode of infection via
a shift in sources of cytokines cells [178]. ZIKV-infection
on human astrocytes led to disruption of pathways and
cellular protein levels involved in synaptogenesis axonal
guidance signaling [179]. This could also participate to
ZIKV-induced impairment of neuronal circuits and
network development [179]. ZIKV also targets adult
neuroprogenitors and was shown to alter hippocampal
neurogenesis by inhibiting neuroprogenitor development
[180]. The modulation of adult neurogenesis, for in-
stance during inflammatory process, has been clearly
linked to cognitive disturbances [181]. Whether modula-
tion of adult neurogenesis is a process commonly find in
arboviral brain infection still remained to be addressed
but could contribute, partly, to acute and potentially
long-term cognitive impairment.

Modulation of the neuro-epigenome by arboviruses
Another crucial mechanism in brain development and
maintenance and associated cognitive functions, are the
regulation of neuroepigenetic modifications [182, 183].
The ability of some arboviruses to establish productive
infection in brain cells, to evade their antiviral responses,
and to impair neurodevelopment and neuronal homeo-
stasis relies on their intrinsic capacity to evolve complex
and multifaceted modes of interactions with their
various cellular hosts. Among these modes of virus-host
relationship, manipulation of the viral and cellular
epigenome and epitranscriptome during infection has
recently appeared as a complex and dynamic landscape
of deoxyribonucleic acid (DNA) and RNA “decorations”
that can be hijacked by arboviruses to promote their
replication and could also participate to neuropathogen-
esis and long-term defects. ZIKV has been shown to
alter the DNA methylome of neural progenitors, astro-
cytes, and differentiated neurons at genes that have been
implicated in the pathogenesis of a number of brain dis-
orders, most prominently mental retardation, autism,

and schizophrenia [184]. The virus-mediated alteration
of gene and gene products of DNA modifiers involved in
the control of the dynamic cycle of methylation/demeth-
ylation of cytosine is currently investigated [185, 186].
These studies might reveal how arboviruses may take
over the dynamic C/5mC/5hmC switching process
known to be critical for normal brain development
and neuronal functions [187]. Manipulation of the viral
and cellular epitranscriptome by positive-sense RNA vi-
ruses during infection may also control cellular and viral
RNA stability and translatability drive subversion of the
host and evasion of cellular surveillance systems [188,
189], preferentially promoting viral RNA translation, and
eventually facilitating viral production. RNA modifica-
tions, including several nucleoside methylations, have
long been known to be essential in the proper function
of transfer (t)RNA and ribosomal (r)RNA. Recent
analysis of RNA post-transcriptional modifications
(PTMs) in the context of arboviral infections has under-
scored their complex and dynamic nature on either
cellular or viral RNAs. In infected target cells, erasure of
N6-methyladenosine (m6A), the most abundant modifi-
cation of messenger (m)RNA, was shown to be profit-
able for particle production for several flaviviruses
including hepatitis C virus (HCV) and ZIKV [190, 191].
In contrast, Flaviviridae infection has recently been
shown to increase the expression of specific cellular fac-
tors (such as RIOK3 and CIRBP) that turned to enhance
viral infection, through the modification of the m6A
levels on their corresponding mRNAs [192]. Moreover,
virus-specific PTMs (such as dimethylcytosine species
m5Cm and m44C) were only present in the ZIKV and
HCV RNA genomes isolated from virions and enhanced
viral replication though the recruitment of the nuclear
DEAD-box containing RNA helicase DDX6 [193]. In
addition, members of the IFIT family of antiviral RNA-
binding proteins restrict infection by cytoplasmic RNA
viruses through their ability to strongly bind 5′ capped
non-self mRNAs (cap0) thereby preventing their transla-
tion. Alphaviruses antagonize IFIT1 function directly by
inhibiting association with viral RNA through the gener-
ation of stable secondary structures in the 5′-UTR
(untranslated region) [194]. The control of RNA PTM
could therefore play a critical role in the ability of RNA
viruses to escape innate antiviral responses.
The remarkable diversity of PTMs that have already

been identified on both cellular [192] and viral RNAs
[193] suggests not only very broad functional conse-
quences, but also the likelihood that the high degree of
modification of the PTM landscape induced by RNA
viruses, illustrated by the Zika-induced alteration of
m6A topology in host mRNAs, may have deleterious ef-
fects on a wide range of mechanisms involved in the de-
velopment and control of cognitive function.
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Conclusions
Acute or chronic neuroinflammation is emerging as a key
mechanism in various neuronal disorders [95, 195]. Vi-
ruses are now strongly considered as potential
environment factors favoring the onset of brain diseases.
For instance, viral “hit and run” occurring during pediatric
Measles infection can be linked with the appearance of
neuronal disorders few years after the initial infection [11].
In this context, arboviral infections may have long-lasting
effects on the nervous system, as a result of the direct
interaction of viruses with cells of the brain, or, indirectly,
because of the neuroinflammatory status found associated
with the infections. However, the mechanisms underlying
potential viral persistence and the contribution of neuro-
inflammation to CNS pathophysiology are unclear.
Notably, other environmental factors such as toxins and
chemicals are now well linked to neurological diseases.
Among these multifactorial causes, one has to consider
the burden of arboviral infections, in particular in endemic
regions where annual epidemics are occurring. Cohort
studies are still highly needed, in particular to study long-
term sequelae.
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