Chen et al. Journal of Neuroinflammation (2020) 17:346
https://doi.org/10.1186/512974-020-02026-6 Jou rnal of Neuroinflammation

RESEARCH Open Access

Check for
updates

Crosstalk between microglia and patient-
derived glioblastoma cells inhibit invasion
in a three-dimensional gelatin hydrogel
model

Jee-Wei Emily Chen'??, Jan Lumibao®*?, Sarah Leary®, Jann N. Sarkaria’, Andrew J. Steelman®, H. Rex Gaskins**®?
and Brendan A. C. Harley'**%"

Abstract

Background: Glioblastoma is the most common and deadly form of primary brain cancer, accounting for more
than 13,000 new diagnoses annually in the USA alone. Microglia are the innate immune cells within the central
nervous system, acting as a front-line defense against injuries and inflammation via a process that involves
transformation from a quiescent to an activated phenotype. Crosstalk between GBM cells and microglia represents
an important axis to consider in the development of tissue engineering platforms to examine pathophysiological
processes underlying GBM progression and therapy.

Methods: This work used a brain-mimetic hydrogel system to study patient-derived glioblastoma specimens and
their interactions with microglia. Here, glioblastoma cells were either cultured alone in 3D hydrogels or in co-
culture with microglia in a manner that allowed secretome-based signaling but prevented direct GBM-microglia
contact. Patterns of GBM cell invasion were quantified using a three-dimensional spheroid assay. Secretome and
transcriptome (via RNAseq) were used to profile the consequences of GBM-microglia interactions.

Results: Microglia displayed an activated phenotype as a result of GBM crosstalk. Three-dimensional migration
patterns of patient-derived glioblastoma cells showed invasion was significantly decreased in response to microglia
paracrine signaling. Potential molecular mechanisms underlying with this phenotype were identified from
bioinformatic analysis of secretome and RNAseq data.

Conclusion: The data demonstrate a tissue engineered hydrogel platform can be used to investigate crosstalk
between immune cells of the tumor microenvironment related to GBM progression. Such multi-dimensional
models may provide valuable insight to inform therapeutic innovations to improve GBM treatment.
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Introduction
Glioblastoma (GBM) is the most common and deadly
form of central nervous system cancer [1, 2]. In the
USA, it is estimated that more than 13,000 patients are
diagnosed with GBM annually. Unlike many other can-
cers, GBM rarely metastasizes to a secondary organ, but
instead diffusely infiltrates throughout the brain. The
current standard of care for treating GBM consists of
maximal surgical resection, radiotherapy, and concomitant
and adjuvant chemotherapy with temozolomide (1, 3, 4].
Despite this aggressive treatment strategy, GBM tumors
commonly recur with a median survival of less than 18
months, and fewer than 5% of patients surviving to 5 years
[5-11]. A central focus for improving GBM therapy is de-
veloping new tools to understand pathophysiological pro-
cesses driving GBM invasion of the brain. Improved
therapy will likely require both an improved understanding
of which cells within the heterogeneous cell population of
GBM tumors invade surrounding tissues, and the extent to
which cell-cell crosstalk within heterogeneous cell cohorts
contribute to GBM invasion and mortality [12—-18].
Microglia (MG) are resident immune cells of the CNS
[19, 20]. In healthy individuals, microglia constantly sur-
vey their surroundings and maintain tissue homeostasis
by removing apoptotic cells and promoting neuro-
network generation [20—22]. Studies of the GBM tumor
microenvironment have demonstrated that infiltrative
and resident immune cells, such as microglia, may com-
prise up to a third of the solid tumor mass [20-22].
Morphologically, quiescent microglia typically exhibit a
ramified (branching and elongated) shape. Upon stimu-
lation in response to inflammation, disease, or tumor
growth, microglia cell processes become hypertrophic
and, in some cases, retract causing the cell to take on an
ameboid appearance. While the number and phenotype
of immune cells have been associated with patient prog-
nosis [19, 23-27], detailed analysis of crosstalk between
GBM cells and microglia are difficult to evaluate in vivo.
Thus, there is a need for an experimental platform to
rigorously investigate interactions between GBM cells
and microglia, as well as to identify factors associated
with microglia-GBM crosstalk that may alter GBM cell
invasion and therapeutic response. Cancer tissue engin-
eering platforms that integrate biomaterial mimics of the
tumor microenvironment with primary cells and biomol-
ecules are increasingly used to investigate pathophysio-
logical processes difficult to examine in vivo [28, 29].
We previously developed a gelatin-based hydrogel model
platform to investigate pathophysiological processes under-
lying GBM cell invasion and therapeutic response. Notably,
we observed that biophysical (hyaluronan content and mo-
lecular weight) and metabolic (hypoxia) transitions in the
GBM tumor microenvironment both significantly alter
GBM invasion [30-32]. More recently, we adapted this
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system to profile cytokine-based crosstalk between cells
within the GBM tumor microenvironment, identifying se-
creted factors generated by an artificial perivascular niche
that can accelerate GBM cell invasion [33]. The objective of
the present study was to adapt this established hydrogel
platform and cytokine analysis protocols to examine the ef-
fects of microglia within the GBM tumor microenviron-
ment on GBM gene expression and invasiveness using
patient-derived GBM specimens that maintain patient-
specific morphologic and molecular phenotypes [34, 35].

Materials and methods

Cell culture

Human GBM cells

Patient-derived GBM cells (PDCs) were obtained from
Mayo Clinic (Rochester, Minnesota). All specimens used
in this study (GBM12 and GBM39) were derived from
tumors from different patients then maintained as
patient-derived xenografts in nude mice [34, 35]. All pa-
tients consented to the use of their tumor tissue in sup-
port of this research, and the use of the patient tissues
received prior institutional review board authorization.
GBM12 exhibits overexpressed epidermal growth factor
receptor (EGFR®F) and displays medium invasive poten-
tial in vivo. GBM39 possesses an EGFR variant III muta-
tion (EGFR"™) and displays low invasive potential in vivo
[34, 35]. GBM PDCs were established in Dulbecco’s modi-
fied Eagle’s medium (DMEM; Gibco, MD) supplemented
with 10% fetal bovine serum (FBS; Atlanta Biologicals,
Atlanta, GA) and 1% penicillin/streptomycin (Lonza,
Basel, Switzerland) at 37 °C in a 5% CO, environment.
PDCs were shipped by overnight courier and seeded into
hydrogel cultures immediately upon arrival.

Human microglia cell line

HMC3 microglia cells (ATCC°CRL-3304, ATCC) were
cultured in DMEM supplemented with 10% FBS and 1%
P/S. Cells were incubated at 37 °C in 5% CO, and pas-
saged upon reaching confluence.

Primary mouse microglial cultures

All animal care protocols were in accordance with NIH
Guidelines for Care and Use of Laboratory Animals and
were approved by the University of Illinois Laboratory
Animal Care and Use Committee. Both male and female
C57BL/6] mice (The Jackson Laboratory, Bar Harbor,
ME) were used to obtain primary microglial cultures as
described previously [36]. In brief, neonatal (P1-2)
mouse pups were decapitated with scissors, the brains
were extracted, and the meninges removed under a dis-
section microscope (Leica, Wetzlar, Germany). Brain tis-
sues were pooled from entire litters, dissociated in
Accutase (Thermo Fisher Scientific, Waltham, MA)
followed by washing and removal of excess debris. Cells
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were seeded onto poly-d-lysine-coated (Sigma-Aldrich,
St. Louis, MO) T75-flasks. After approximately eight
days of culture, the flasks were shaken at 37 °C for 1 h
at 170 rpm in an orbital shaker (Max Q 4000; Thermo
Fisher Scientific). The supernatant containing microglia
was then collected [36].

Methacrylated gelatin hydrogel fabrication and
characterization

Synthesis and fabrication

Methacrylamide-functionalized gelatin (GelMA) macro-
mers and GelMA hydrogels were synthesized and pre-
pared as previously described [30, 37]. GeIMA degree of
functionalization was determined by 'H NMR spectros-
copy (~ 50% degree of functionalization).

Hydrogel characterization

The compressive modulus of GelMA hydrogels was
measured using an Instron 5943 mechanical tester [31].
Hydrogels were tested under unconfined compression at
the rate of 0.1 mm/min, with their Young’s modulus ob-
tained from the linear region of the stress-strain curve
(2.5-17.5% strain).

Cell number determination

Cell-containing hydrogels were made similarly but with
addition of cell suspensions (5000 cells per 25 pL hydro-
gel) or cell spheroids (5000 cells per spheroid per 25 pL
hydrogel) to the pre-polymer solution prior to being
placed into Teflon molds (0.2 mm thick, 5 mm radius)
and then photopolymerized.

Hydrogel identification: To distinguish hydrogels con-
taining PDCs versus microglia, all hydrogel specimens
containing microglia were cut into half-disks before be-
ing placed into culture while GBM seeded hydrogels
were maintained as full disks.

Protein Isolation and Western Blotting

Proteins from HMC3 microglia cultured in hydrogels
(cell suspensions) were isolated using protocols described
previously [30-32]. Western blots (2 pg per lane) were
probed with primary antibodies specific for CD68 [38]
(ab213363, 1/500 in blocking buffer; Abcam, Cambridge,
UK) or B-actin (49678, 1/1000 in blocking buffer; Cell Sig-
naling Technology, Danvers, MA), stained via secondary
antibody (7074S, 1/2500 in TBST; Cell Signaling Technol-
ogy), then imaged via an Image Quant LAS 4010 chemilu-
minescence imager (GE Healthcare, Chicago, IL). Band
intensities were quantified using Image] and normalized
to B-actin intensities.

Immunofluorescence staining and imaging
Image-iT™ Fixative Solution (Invitrogen, Carlsbad, CA)
was used to fix HMC3 microglia seeded hydrogels (cell
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suspensions). Cells were permeabilized with 0.1% Triton
X-100 (Sigma-Aldrich) in PBS and stained with Alexa
Fluor™ 488 Phalloidin (Invitrogen) for F-actin and
Hoechst 33342 (Invitrogen) for nuclei following the
manufacturer’s protocol. Stained samples were imaged
using a Zeiss LSM 700 confocal microscope.

RNA extraction and quality analysis

Total RNA of GBM cell-seeded hydrogels (cell suspen-
sions) was extracted using an RNeasy Plant Mini Kit
(Qiagen, Hilden, Germany) with an additional step using
an RNase-free DNase set (Qiagen) for DNase digestion.
RNA integrity number (RIN) was determined using an
Agilent 2100 bioanalyzer with all samples exhibiting a
RIN > 8.

RNAseq analysis

Libraries for RNA sequencing were prepared using the
TruSeq Stranded mRNAseq Sample Prep Kit (Illumina,
San Diego, CA). The libraries were quantitated by qPCR
and sequenced on one lane for 101 cycles from one end
of the fragments on a NovaSeq 6000 (Illumina) using a
NovaSeq SP reagent kit and yielded 400 to 500 million
single reads per lane. Library quality check was done
using FastQC (version 0.11.8). Salmon version 0.13.1
was used to quasi-map reads to the transcriptome and
quantify the abundance of each transcript. Filtering was
set with the threshold of 0.5 counts per million and
resulted in 15,901 genes to be analyzed for differential
expression that contained > 99.5% of the reads. After fil-
tering, trimmed mean of M values (TMM) normalization
in the edgeR package was performed and log2-based
count per million values (logCPM) were calculated [39—
41]. Differential gene expression analysis was performed
using the limma-trend method. Multiple testing correc-
tion was done using the false discovery rate (FDR)
method [42-44]. Functional annotation was performed,
gene ontology (GO) KEGG pathways were identified
using an overrepresentation test [45]. The 50 genes with
the highest fold-changes were subsequently examined in
Cytoscape using the application iRegulon to predict
transcriptional regulators [46, 47]. Putative transcription
factors or motifs with a normalized enrichment score
larger than three (NES > 3) is considered to be potential
regulators.

Spheroid invasion assay

We have previously reported a robust, three-dimensional
assay to quantify GBM cell invasion in three-dimensional
hydrogels [48-50]; GBM cell invasion is reported as total
radial invasion distance or as a normalized value such as
the average radius fold change (mean radius of the inva-
sion front of GBM cells from a GBM spheroid versus the
starting radius of the spheroid). Briefly, GBM12 PDCs
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were counted and resuspended into 5000 cells/200 pL
media per well and distributed to Corning spheroid mi-
croplates. Plates were centrifuged for 100xg for 1 min to
assist spheroid formation then placed into incubator (37
°C, 5% CO,) for 24 h. Plates were then incubated for add-
itional 24 h with horizontal shaking at 60 rpm. Spheroids
were then transferred and mixed with pre-polymerized
GelMA solution and photopolymerized into hydrogels.
Spheroid images were acquired using a Leica DMI 400B
florescence microscope (Leica, Germany) at days 0 (imme-
diately upon seeding), 1, 3, 5, and 7. Invasion was then
quantified via Image] and invasion distance reported as
fold change of their average radius compared to day O as
described previously [30, 31].

Quantification of cell number

GBM12 cell proliferation in cell suspension hydrogels was
determined using a commercial Vybrant” MTT Cell Pro-
liferation Assay Kit (Invitrogen) adapted from the manu-
facturer’s protocol as described previously [30, 32, 51].

Secretome profiling

Cell culture media was collected from the following
group: GBM-MG co-cultures (co-culture), GBM cells
alone (GBM single), or M@ cells alone (MG single). The
media were spun down (300xg, 10 min) to remove any
debris. As an additional control, we created a 1:1 mix-
ture of GBM single and MG single media (Mix) that
would not account for any GBM-MG crosstalk mediated
shifts in secretome. The secretome for each specimen
was profiled using a Proteome Profiler™ Human Angio-
genesis Array Kit (Ary007, R&D Systems, Minneapolis,
MN) following the manufacturer’s protocol. Blots were
imaged using an Image Quant LAS 4010 chemilumines-
cence imager (GE Healthcare). Dot intensities were
quantified with the Image] macros toolset Protein Array
Analyzer (Table S1). Data was first normalized by divid-
ing the pixel intensity for each blot by the average posi-
tive control pixel intensity (on each membrane). We
calculated intensity fold change between co-culture and
mix groups, identifying factors that displayed a larger
than 1.5-fold change; targets showing > 0.75-fold change
relative to positive reference spot intensities was plotted.

Statistical analysis

Statistical analysis for Western blot was performed via ¢
test. Analysis of MTT was performed via one-way
ANOVA followed by Tukey’s HSD post hoc test. Ana-
lyses of invasion were performed via two-way ANOVA
followed by Tukey’s HSD post hoc test. Significance level
was set at p < 0.05 unless stated otherwise (p < 0.01 and
p < 0.0001). A minimum of n = 3 samples was used for
all analyses and specified in each result section. Error
bars are plotted as the standard error.
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Results
Co-culture system assembly and mechanical testing of
GelMA hydrogel
We have previously developed a family of gelatin hydro-
gels to investigate pathophysiological processes under-
lying glioblastoma invasion and progression. Extensive
biophysical performance data has previously been re-
ported including network architecture and mechanical
performance [52, 53], water and small-molecule diffusiv-
ity [54-56], and the capacity to support growth and
phenotypic studies of primary glioblastoma cells and
cells from the neurovascular unit [57, 58]. For this project,
GBM and MG cells were maintained in three-dimensional
culture in a 4 wt% methacrylamide-functionalized gelatin
(GelMA) that exhibited a physiologically relevant Young’s
modulus (1.04 + 0.10 kPa; n = 14; Fig. 1a) [59, 60]. For this
study, individual (GBM single, MG single) cultures were
generated as either GBM

or MG-seeded hydrogel disks in separate culture wells.
Alternatively, GBM and MG seeded hydrogel disks were
cultured together in the same well (co-culture), allowing
exchange of secreted factors between hydrogel disks but
not allowing direct cell-cell contact (Fig. 1b).

Microglia become activated when co-cultured with GBM
cells

Microglia displayed significant morphological changes as
a result of GBM-MG crosstalk (Fig. 2). HMC3 microglia
cultured individually in GelMA hydrogels (MG single)
exhibited the characteristic elongated shape of quiescent
MG. However, in response to co-culture with GBM12-
seeded hydrogels (GBM-MG co-culture), MG adopted a
rounded ameboid shape associated with activation (Fig.
2a). To confirm this shift in activation status, changes in
the expression of the lysosomal protein CD68 were ex-
amined via Western blot (n = 3). While CD68 is nor-
mally expressed at low levels in quiescent microglia,
CD68 expression was increased in microglia co-cultured
with GBM cells (Fig. 2b, c). Raw image files of Western
blot analyses are provided in Figures S1 and S2.

Soluble factors produced by microglia altered GBM
transcriptomic profiles

RNAseq analysis was used to examine global shifts in
the transcriptomic profile of GBM12 specimens as a re-
sult of MG crosstalk. Two RNAseq datasets were com-
pared: (1) a co-culture specimen containing RNA isolated
from the GBM-seeded hydrogels kept in physically sepa-
rated co-culture with HMC3 MG-seeded hydrogels; and
(2) a GBM single culture specimen containing RNA iso-
lated from GBM-seeded hydrogels cultured independ-
ently (n = 3 for each group). This comparison allowed
investigation of global shifts in GBM gene expression
profiles only due to GBM-MG crosstalk (Fig. 3).
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Fig. 1 GeIMA hydrogel biophysical parameters and experimental schematic. a Mechanical testing results of GeIMA hydrogel confirmed its
physiologically relevant Young's modulus (1.04 + 0.10 kPa; n = 14). b Schematic representation of the culture system, that either has a single type
of cell-seeded hydrogel disk per well (GBM single, MG single) or contains two distinct hydrogel disks (GBM-MG co-culture). GBM-MG co-culture
allows soluble signaling without physical GBM-MG contact

Differential gene expression (DE) analysis was performed
using an FDR-adjusted p value set to 0.05. In total, there
were 3409 DE genes, of which 1563 were upregulated
and 1846 were downregulated as a result of co-culturing
GBM cells with microglia. Gene ontology (GO) analysis
for biological process ontology showed upregulated
genes were associated with proliferation and RNA/DNA
replication and proliferation, while downregulated genes
were associated with motility, adhesion, and invasion
(Supplementary Table S1; Fig. 3b).

KEGG pathway analysis was used to identify the top
20 up- and downregulated pathways (Table S2; Fig. 3c).
GBM-MG co-culture downregulated multiple immune
response-related pathways in GBM cells including
nucleotide-binding and oligomerization domain (NOD)-
like receptors (NLRs), tumor necrosis factor (TNF) sig-
naling, nuclear factor kappa-beta (NF-«xB) signaling, toll-
like receptor signaling (7LRs), and mitogen-activated
protein kinase (MAPK) signaling. GBM-MG co-culture
decreased focal adhesion pathway activation. Upregu-
lated KEGG pathways included those involved in cell
proliferation and survival included thyroid hormone sig-
naling, Janus kinase-signal transducer and activator of
transcription pathway (JAK-STAT) signaling, central carbon
metabolism, forkhead box transcription factors (FOXO) sig-
naling, and adenosine monophosphate-activated protein
kinase (AMPK) signaling. Intriguingly, EGFR tyrosine kin-
ase inhibitor resistance was also increased, indicating that
the co-culture might also alter the therapeutic response to
classes of drugs targeting receptor tyrosine kinase inhibi-
tors. iRegulon analysis of upregulated genes showed high
normalized enrichment scores for SUZI2 (NES = 7.021),
RCORI (NES = 5.834), and REST (NES = 5.475). iRegulon
analysis also showed high normalized enrichment scores
for downregulated genes STAT1/2/3 (NES = 15.831/
13.455/3.002) and IRF1/5/8 (NES = 8.029, 8.440, 13.813).
Together, these analyses indicate that co-culture with
microglia induces significant shifts in GBM transcriptome

linked to increased proliferative behavior and decreased in-
vasive potential.

Microglial soluble factors inhibit GBM invasion

GBM proliferation and invasion was subsequently exam-
ined as a function of MG co-culture. The proliferative
activity of GBM12 cells, reported as a fold change in-
crease in MTT activity (MTT of GBM cells at day 3 vs.
MTT of the same cultures at day 0), increased signifi-
cantly in response to GBM-MG co-culture (Fig. 4a). MG
co-culture strongly inhibited GBM12 invasion over the
course of a seven-day spheroid-based invasion assay,
with effects observed as early as after 24 h (Fig. 4b, ). A
consistent inhibitory effect of MG co-culture on GBM
invasion was observed as well for a different source of
microglia (primary neonatal microglia, nMG) and a dif-
ferent patient-derived GBM cell population (GBM39:
EGER'™). GBM39 show reduced invasive potential
in vivo compared to GBM12, but nonetheless GBM39
invasion was again significantly inhibited in the multi-
dimensional hydrogel model in response to nMG co-
culture, with effects observed as early as day 3 (Fig. 5).

Profiling MG-GBM secretome using cytokine array

A secretome screen was performed to compare cell cul-
ture media from GBM-MG co-culture versus GBM or
MG monocultures (GBM single, MG single) and a Mix
media (1:1 mixture of GBM single and MG single
medias; Fig. 6; raw data are available in Table S3). Eight
factors exhibited a > 1.5 fold change in co-culture vs. sin-
gle cultures: chemokine ligand 2 and 3 (CCL2, CCL3);
insulin-like growth factor binding protein 3 (IGFBP-3);
angiogenin (ANG); heparin-binding epidermal growth
factor-like growth factor (HB-EGF); dipeptidyl peptidase-4
(DPP4); Serpin F1; and coagulation factor III (F3). Six fac-
tors were expressed at levels greater than 0.75 of the posi-
tive reference intensity value within each secretome array
(Fig. 6¢). Of these, CCL2 showed the largest activation
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MG co

MG single (elongated quiescent) or GBM-MG co-culture (ameboid,

(> 2-fold change) for GBM-MG co-culture versus the
Mix media control. Granulocyte-macrophage colony-
stimulating factor (GM-CSF, or CSF2) and pentraxin-
related protein (PTX3) were both highly expressed in
cultures containing MG (MG-single, Mix, co-culture)
media but lowly expressed in GBM-single hydrogels.
Serpin El, tissue inhibitor of metalloproteinase-1 (TIMP-
1), and vascular endothelial growth factor (VEGF) were
expressed across all culture conditions.

Discussion

Cellular crosstalk within the tumor microenvironment
provides a powerful avenue of interaction that may sig-
nificantly shape disease progression. Tools to interrogate
cellular crosstalk offer an opportunity to identify novel
therapeutic compounds to improve treatment of glio-
blastoma. This work demonstrates the use of a tissue en-
gineering platform to investigate the role of crosstalk
between patient-derived GBM specimens and microglia
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on shifts in the phenotypic, proteomic, and transcrip-
tomic signatures of GBM. GBM-MG crosstalk is bidirec-
tional and induces microglia activation along with shifts
in GBM cell activity consistent with the go-or-grow
phenomenon [61]. This work extends technical capabil-
ities beyond more traditional Transwell membrane or
mixed culture methods for examining cell-cell crosstalk.
Importantly, this effort provides a platform for analysis
of individual cell populations, each maintained within
discrete multi-dimensional models of the tumor micro-
environment, while maintaining the ability to examine
the nature and role of cell-cell crosstalk during mixed
culture on cell activity.

While microglia display a quiescent phenotype in sin-
gle culture, hallmarks of microglial activation were ob-
served via both morphological changes and increased
CD68 expression as a result of GBM-MG co-culture.
These results are consistent with hallmarks of microglial
activation seen in cases of disease and histopathological
analysis of GBM tumors [24, 62]. The nature of this tis-
sue engineering platform allows significant post-culture
analysis of GBM cell activity at functional (invasion, pro-
liferation), transcriptomic (RNAseq), and secretomic
levels. We recently reported the use of gelatin hydrogels

to profile to role of localized hypoxia on activation of
cells associated with the neurovascular unit [58]. Indeed,
while a single hydrogel formulation was used for all
microglial culture in this study, significant opportunities
exist to use multi-dimensional hydrogels culture to re-
fine our understanding of the role of the matrix micro-
environment on microglia activation itself.

While advanced sequencing techniques such as RNA
sequencing offer the opportunity to define the transcrip-
tomic signature of cells to aid treatment planning and
outcome prediction [40, 43, 44, 63], the design of the
hydrogel culture system reported here enabled analysis
of shifts in the transcriptome of individual cell popula-
tions as a result of heterotypic cell (GBM, MG) crosstalk.
GO analyses revealed GBM-MG co-culture upregulated
genes in a patient-derived GBM specimen associated
with cell cycle, RNA/DNA division and metabolic activ-
ity. However, genes involved in cell adhesion/migration
showed significant downregulation as a result of GBM-
MG co-culture. These findings indicate tradeoffs in
GBM proliferation versus invasion due to MG crosstalk
consistent with the go-or-grow dichotomy of GBM cells
[32, 61, 64, 65]. Significant decreases were observed in
expression of genes associated with NLR, TNF, NF-«B,
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starting radius of the spheroid. GBM12 cells exhibited significantly decreased invasion (n = 8) in response to co-culture with HMC3 microglia (vs.
GBM12 alone; n = 10). *p < 0.05, **p < 0.01, ****p < 0.0001

MAPK, and TLR pathways in GBM specimens in re- inflammation and tumor progression [66—68]. Of these,
sponse to MG co-culture. NLR and TLR signaling path-  the NF-«xB signaling pathway is known to be sensitive to
ways are involved in pathophysiological responses to  TNF signaling [69-71] which plays a major role in
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Day5 Day7

immune activation [72, 73], breast cancer invasion [74],
and driving TLR and MAPK signaling involved in cell mi-
gration and tumor invasion. These pathways contribute to
heightened immune responsiveness and are involved in
angiogenesis and cell migration [66, 67, 69-71], suggesting
GBM-MG interactions may inhibit GBM invasiveness.

KEGG analysis also showed strong upregulation in TH
and STAT3 signaling, indicating that secreted factors
from microglia may promote GBM proliferation, reduce
apoptosis, and enhance chemotherapeutic resistance
[75-77]. Recently, our group showed STATS3 is strongly
activated in GBM, and inhibiting STAT3 can reduce
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data are available in Table S3

Fig. 6 Profiling GBM-MG (GBM12-HMC3) secretome linked to decreased GBM cell invasion. a Proteome Profiler™ Array analysis of secretome
profiles from conditioned media of 4 distinct culture conditions: GBM-MG co-culture; GBM single; MG single; 1:1 Mix of GBM single; and MG single. b
Eight factors that displayed > 1.5 fold change in GBM-MG co-culture versus Mix media groups. ¢ Six factors (from GBM-MG co-culture) that
displayed greater than 0.75-fold change versus the positive reference dots. Numbers (1-13) correspond to positions labeled on blots in a. Raw

CCL3 IGFBP-3 ANG HB-EGF CCL2 DDP4 SerpinF1 F3
1.0
0.5 -
0.0 - .
CcCL2 GM-CSF PTX3 Serpin E1 TIMP-1 VEGF

GBM cell proliferation [52, 78]. More, GBM-MG co-cul-
ture upregulated FOXO signaling, which has been linked
to therapeutic resistance due to its contribution to DNA
repair as well as mediation of oxidative stress. iRegulon
analysis showed GBM-MG crosstalk increased enrich-
ment for SUZI2, previously shown to be increased in
high grade astrocytoma and involved in pathways that
regulate glioma proliferation and metastasis [79, 80].
iRegulon analysis also showed GBM-MG crosstalk in-
creased REST and RCORI, known to regulate the onco-
genic properties of GBM stem cells [81] that associate
with therapeutic resistance and recurrence [82, 83]. The
IRF family has been shown to be significant tumor sup-
pressors, inhibit tumor proliferation and loss of IRF
genes may contribute to tumor metastasis and invasion
[84, 85]. Together, analysis of transcriptomic data sup-
port the functional responses of increased proliferation
but decreased invasion for GBM cells as a result of
GBM-MG interactions [32, 65, 86-88]. Inclusion of
RNAseq analyses to examine the role of microglia-GBM
crosstalk provides a valuable dataset to motivate ongoing
efforts. Indeed, while this study highlighted the import-
ance of examining GBM-microglia interactions via RNA-
seq methods, ongoing efforts are using this approach to
consider the role of microglia signaling on GBM sub-
tractions such as glioblastoma stem cells (GSCs) as well
as examining the behavior of GSCs within a larger co-
hort of GBM cells.

The hydrogel platform was subsequently used to experi-
mentally interrogate the influence of GBM-MG crosstalk
on GBM proliferative and invasive phenotypes in patient-
derived GBM12 cells. GBM12 cells exhibited significantly
increased proliferation and significantly inhibited invasion
in response to MG co-culture. Strikingly, MG-induced in-
hibition of GBM12 invasion was observed for multiple
combinations of patient-derived GBM specimens and
microglia: EGFR?® GBM12 cells co-cultured with HMC3
microglia and EGFR"" GBM39 cells co-cultured with pri-
mary mouse neonatal microglia.

Analysis of the combined GBM-MG secretome re-
vealed multiple targets driving the observed shifts in
functional and transcriptomic activity. CCL2 and CCL3
are associated with monocyte and macrophage recruit-
ment [89-91] and may act as chemoattractant [89]. Of
these, further study of the role of CCL2 in GBM inva-
sion may be particularly warranted, as expression levels
were not only significantly increased in GBM-MG co-
culture (vs. GBM-single or MG-single cultures) but also
compared to the Mix control, consistent with synergistic
activation of CCL2 secretion due to GBM-MG crosstalk.
IGFBP-3, known to regulate cell proliferation, was also
increased in GBM-MG crosstalk, though its role in can-
cer progression remains to be fully understood [92—94].
DPP4 (plasma membrane protein that contributes to im-
mune and metabolic regulation [95, 96]) and HB-EGF
(cell metabolic activity and tumor suppression in other



Chen et al. Journal of Neuroinflammation (2020) 17:346

cancers [95-97]) were also strongly upregulated in
GBM-MG co-culture, as was ANG, well-known for its
role in angiogenesis and cell proliferation [98, 99], and
Serpin F1, known as for its role in suppression of tumor
growth and prostate cancer metastasis [100—-103]. Previ-
ous study by Shinozaki et al. [104] also indicated that cy-
tokines produced by microglia could potentially drive
astrocytes towards a neuroprotective phenotype upon
brain injuries. While results here provide critical data re-
garding highly expressed factors within the combined
MG-GBM secretome, ongoing opportunities exist to
consider a wider range of secreted factors, consider the
role of alternative signaling pathways such as extracellu-
lar vesicles in crosstalk, and to use machine learning al-
gorithms to identify critical subsets of factors most
highly associated with GBM cell response. Notably, we
recently reported an iterative partial least squares regres-
sion machine learning methods to identify [105] secre-
tome signals generated by niche-associated cells that
enhance quiescence of hematopoietic stem cells in
hydrogel culture. So, while further efforts are needed to
more fully investigate the potential mediators of GBM
invasion that arise from GBM-MG crosstalk, we present
a robust platform to pursue such investigations here.

The immune system and immune cells and their rela-
tionship with cancer have been a hot topic in recent
years. Tumor-associated macrophages/microglia, or
GBM-associated macrophages/microglia here, has drawn
a large amount or research efforts [19-21]. While some
studies showed that the infiltrated microglia facilitates
the tumor growth and targeting those infiltrated im-
munes cells could be a promising therapeutic approach
[19-21, 106], the exact role of them remains controver-
sial [107]. In the study, the combination of increased
proliferation but decreased invasion aligns with the go-
or-grow hypothesis [64], but more importantly demon-
strates that crosstalk between MG and GBM cells in the
tumor microenvironment may have powerful effects on
GBM activities tied directly to tumor progression and
patient survival.

Finally, we note the value and limits of a tissue engin-
eering approach described herein. Glioblastoma tumors
contain a heterogeneous mix of cells, including a sub-
population of tumor initiating cells (GBM stem cells,
GSCs) [108-110], critical for invasion, recurrence, and
mortality [109, 111-117]. Tumors contain a mix of fi-
brillar matrix (e.g., collagens, laminins) and hyaluronic
acid (HA), complex perivascular niches, regions of hyp-
oxia [118], and multiple immune-associated cells includ-
ing microglia and macrophages. Here, we report a multi-
dimensional hydrogel platform to examine pathophysio-
logical processes linked to GBM progression and mortal-
ity using patient-derived GBM specimens in response to
microglia. We have also recently described hydrogel-
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based platforms to investigate the role of angiocrine sig-
naling from engineered perivascular cultures on GBM
cell invasion and resistance to the frontline chemother-
apy temozolomide [57]. We also reported adaptations to
the hydrogel environment via localized formation of
hypoxic zone to support culture of a broader diversity of
cells from the neurovascular unit [58]. While we ac-
knowledge understanding the role of the coordinated ac-
tivity of tumor-associated macrophages and microglia on
the activity of GBM cell cohorts (or on specific cells
from the GBM microenvironment such as GSCs) are es-
sential, this manuscript provides a conceptual framework
for pursuing such studies while also providing critical in-
formation regarding the role of reciprocal GBM-
microglia signaling on GBM invasion.

Conclusion

This study describes a tissue engineering platform to
examine the role of GBM-microglia crosstalk on pro-
cesses associated with GBM progression. It also shows
the ability to use bioinformatic tools to identify tran-
scriptomic shifts underlying these responses. We show
dynamic, two-way interactions between patient-derived
GBM cells and microglia via paracrine signaling influ-
ence both microglia and GBM cell phenotype. Microglia
in the presence of patient-derived GBM cells showed
morphological shifts associated with activation. Micro-
glia co-culture significantly inhibited GBM invasion but
enhanced proliferation that could be captured via three-
dimensional spheroid invasion assays and transcriptomic
analyses. Future efforts will seek to understand the con-
tribution of GBM-microglia crosstalk on tumor resist-
ance to therapeutics, to reveal candidate signaling axes
for rational combinatorial targeting.
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