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Abstract

Hypoxic-ischemic encephalopathy (HIE) is an important cause of permanent damage to central nervous system
(CNS) that may result in neonatal death or manifest later as mental retardation, epilepsy, cerebral palsy, or
developmental delay. The primary cause of this condition is systemic hypoxemia and/or reduced cerebral blood
flow with long-lasting neurological disabilities and neurodevelopmental impairment in neonates. About 20 to 25%
of infants with HIE die in the neonatal period, and 25-30% of survivors are left with permanent neurodevelopmental
abnormalities. The mechanisms of hypoxia-ischemia (HI) include activation and/or stimulation of myriad of cascades
such as increased excitotoxicity, oxidative stress, N-methyl-D-aspartic acid (NMDA) receptor hyperexcitability,
mitochondrial collapse, inflammation, cell swelling, impaired maturation, and loss of trophic support. Different
therapeutic modalities have been implicated in managing neonatal HIE, though translation of most of these
regimens into clinical practices is still limited. Therapeutic hypothermia, for instance, is the most widely used
standard treatment in neonates with HIE as studies have shown that it can inhibit many steps in the excito-
oxidative cascade including secondary energy failure, increases in brain lactic acid, glutamate, and nitric oxide
concentration. Granulocyte-colony stimulating factor (G-CSF) is a glycoprotein that has been implicated in
stimulation of cell survival, proliferation, and function of neutrophil precursors and mature neutrophils. Extensive
studies both in vivo and ex vivo have shown the neuroprotective effect of G-CSF in neurodegenerative diseases
and neonatal brain damage via inhibition of apoptosis and inflammation. Yet, there are still few experimentation
models of neonatal HIE and G-CSF’s effectiveness, and extrapolation of adult stroke models is challenging because
of the evolving brain. Here, we review current studies and/or researches of G-CSF’s crucial role in regulating these
cytokines and apoptotic mediators triggered following neonatal brain injury, as well as driving neurogenesis and
angiogenesis post-HI insults.
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Background
Numerous studies have shown that the most common
contributor to early neonatal mortality is birth asphyxia
with prematurity, infections, and low birth weight being
other major contributors [1]. Birth asphyxia leads to sig-
nificant brain injury with about 20-25% of asphyxiated
newborns with hypoxic ischemic encephalopathy (HIE)
dying within the newborn period and another 25% devel-
oping long-term sequelae, most commonly, cerebral
palsy, epilepsy, autism spectrum disorder, and sensory
deficits [2]. These neurological insults result in signifi-
cant short-term and long-term physical, emotional, and
financial cost [3]. HIE has a myriad of etiologies com-
monly categorized into prenatal and perinatal [4]. The
pathophysiological presentation of HIE has been exten-
sively explored, including but not limited to activation of
inflammatory agents, apoptotic cascades, excitotoxicity,
activation of microglia and astrocytes, N-methyl-D-
aspartic acid (NMDA) receptor hyperexcitability, mito-
chondrial impairment and oxidative stress, and delayed
cell death post-HI [5–8], categorized into three phases
outlined in Fig. 1 [1, 9].
The clinical manifestations of neonatal HIE are insidi-

ous because the immature brain is more resistant to in-
jury from hypoxia-ischemia (HI) events due to lower
cerebral metabolic rate, plasticity of immature central
nervous system (CNS), and immaturity in the

development of balance in the functional neurotransmit-
ters [10]. Thus, neonates suffering from HIE will go un-
noticed during the early stages of HI, rendering them
more susceptible to secondary injury occurring 6 to 72 h
after the initial insults (Fig. 1). Similarly, clinical assess-
ments are sometimes inconclusive or vague due to the
nature of disease status and presentation in these infants.
Diagnostic guidelines have been set out in neonates with
HIE by the American Academy of Pediatrics (AAP) and
the American College of Obstetrics and Gynecology
(ACOG) [4] for initial assessment and appropriate man-
agement strategies. Routine serum biomarkers, magnetic
resonance imaging (MRI), and electroencephalogram
(EEG) [11–15] are the most commonly used diagnostic
tools in recognizing brain injury in neonate that helps
guide timely intervention and assessment of treatment
outcome and prognostication.
Potential neuroprotective strategies targeting different

pathways leading to neuronal cell death in response to
hypoxic-ischemic insult have been investigated, includ-
ing hypothermia, erythropoietin, magnesium, allopur-
inol, xenon, melatonin, growth factors (G-CSF, SCF,
Epo), barbiturates, statins, and stem cells in various ani-
mal models of neonatal HIE [2, 16–18]. Therapeutic
hypothermia (TH) is the most widely used standard
treatment in neonatal HIE [19, 20], by inhibiting inflam-
matory cascades, reduced production of reactive oxygen

Fig. 1 Schematic illustration of pathogenic mechanisms of HIE following HI brain injury. Primary energy failure occurs immediately after the
hypoxic–ischemic insult. After reperfusion, there is a secondary energy failure, which can extend in duration from 6 to 48 h. Brain injury (tertiary
phase) continues to occur months to years after the injury resulting in decreased plasticity and reduced number of neurons. Latent period
following resuscitation is ideal for interventions to decrease the impact of secondary energy failure. However, strategies are developed to
attenuate tertiary brain damage which will expand the therapeutic window, substantially increasing the beneficial effects of neuroprotection in
these infants and hence its impact on long-term outcome. The up arrows represent an increase while the down arrows show a decrease in the
corresponding metabolite/process
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species, inhibited apoptosis, an endogenous neuropro-
tective effect, reduced concentrations of free radicals,
and neurotransmitters such as glutamate, glutamine,
GABA, and aspartate [17, 21, 22], while others report in-
effectiveness and/or adverse effects [23–25]. For in-
stance, Arteaga et al. [9] reported that about 50% of
infants treated with TH had adverse outcomes, such as
cognitive impairment. A randomized control trial (RCT)
by Shankaran et al. [26] concluded that cooling for 120 h
or to 32.0 °C, or both, may be deleterious. Subsequently,
TH did not improve EEG recovery when cooling was ex-
tended from 72 to 120 h and that it further impaired
neuronal survival [27]. Thus, other neuroprotective
agents are being explored that offer promise either as a
monotherapy or in combination with therapeutic
hypothermia.
Granulocyte-colony stimulating factor (G-CSF) is a

20-kDa protein that readily crosses the blood-brain bar-
rier (BBB), which is a member of the hematopoietic
growth factor family, that promote the proliferation,
differentiation, and survival of hematopoietic stem cells
with the obvious protective effect on neurons in periph-
eral and central nervous system [28–30]. The past few
decades have explored its role from neutropenia-
induced chemotherapy to neurological diseases and
traumatic brain injury through regulation of both in-
flammatory and apoptotic mediators and enhancing
neurogenesis and angiogenesis (Fig. 2) [29, 31–34]. G-
CSF and its receptors are expressed by neurons, and

their expression is regulated by ischemia, which points
to an autocrine protective signaling mechanism [35].
Extensive studies in both in vivo and ex vivo have
shown the neuroprotective effect of G-CSF in neurode-
generative diseases (Table1) such as Parkinson’s disease
[53, 54], Alzheimer’s disease [55], and stroke [56–58],
and clinical trials are ongoing to determine its efficacy
and safety in these neurological diseases [59, 60]. Re-
cent studies have focused on its neuroprotective effect
in neonatal brain injury by regulating inflammatory and
apoptotic mediators, thus attenuating neuroinflamma-
tion and neuronal apoptosis as well as enhancing
neurogenesis and angiogenesis. Indeed, there are
current reviews on HIE that have detailed its pathogen-
esis [4, 27], diagnostic modalities [13, 15], treatment in-
terventions [2, 17], and emerging therapeutic agents
[1], including G-CSF. In addition to these reviews, ours
mainly focused on G-CSF role in modulating inflamma-
tory and apoptotic mediators, driving of neurogenesis
and angiogenesis, and signalling pathways mediated by
G-CSF in attenuating neonatal ischemic brain damage.
We therefore review current studies and/or researches
of G-CSF’s crucial role in regulating these cytokines
and apoptotic cascades triggered following neonatal
hypoxia-ischemia injury and subsequently its role in
promoting neurogenesis and angiogenesis, thus shed-
ding more light on the current understanding of G-
CSF’s potential protective mechanism(s) in neonatal
brain injury.

Fig. 2 Schematic illustration of the potential mechanism of G-CSF action in hypoxia ischemia injury. In the acute phase of cerebral ischemia, G-
CSF can protect the brain by inhibiting glutamate release, anti-inflammatory, anti-apoptotic, and inhibit edema formation. In subacute phase,
GCSFR can stimulate endogenous neuronal regeneration, mobilization of bone marrow stem cells, driving neuronal regeneration and functional
repair, and promote neovascularization (angiogenesis and neurogenesis) during the chronic phase
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Regulation of cytokines and apoptosis by G-CSF
in neonatal HIE
There are numerous studies that have shown the neuro-
protective effect of G-CSF via inhibition of apoptosis
and inflammation as well as by stimulating angiogenesis
and neurogenesis both in adults and neonatal animal HI
models [61–64]. Indeed, G-CSF is implicated in the
regulation of cytokines that are being disrupted follow-
ing HI insults by decreasing pro-inflammatory and in-
creasing anti-inflammatory cytokines. Similarly, G-CSF
inhibits pro-apoptotic factors and increases anti-
apoptotic factors.

Regulation of cytokines by G-CSF in neonatal HIE
Prior studies have shown that interleukin-1 beta (IL-1ß)
and tumor necrosis factor alpha (TNF-α) are early re-
sponse cytokines in neuronal injury [65]. Increased ex-
pression of TNF-α induces neutrophil infiltration that
increases endotheliocyte permeability and activates the
matrix metalloproteinases (MMPs), which damage the
blood-brain barrier (BBB) leading to swelling and degen-
eration of neurons and glial cells [66], while IL-1ß acts
primarily through transcriptional activation of inducible
nitric oxide synthase (iNOS) gene and nitric oxide (NO)
generation thereby exacerbating brain injury [42]. These
cytokines’ inflammatory response even persist in school-
age children with neonatal encephalopathy (NE) showing
poor neurodevelopmental outcome [48, 67]. Increased
TNF-α expression also results in increase of caspase-3
cleavage and causes neuronal apoptosis [68]. Thus,
TNF-α not only participates in neuronal inflammation
but also in inducing apoptosis in neonatal HI injury. The
imbalance between pro- and anti-inflammatory cyto-
kines caused by HI damage also favors oligodendrocyte
precursor proliferation into astrocytes instead of oligo-
dendrocytes, and as a result, there is subsequent impair-
ment of myelination, increased production of pro-
inflammatory cytokines (PICs), and suppression of anti-
inflammatory cytokine levels [69]. Activated astrocyte
(astrogliosis) has both positive and negative roles in
cytokine regulation following brain injury [70]; activated
microglia have similar effects by expressing both pro-
inflammatory and anti-inflammatory mediators depend-
ing on the degree and duration of insult being inflicted
[4, 5, 71, 72].
The effect of G-CSF is demonstrated by preventing

neuronal and glial pro-inflammatory cytokine expres-
sion. This is evidenced by preventing an overactivation
of monocytes and lymphocytes by reducing the release
of pro-inflammatory mediators while simultaneously ac-
tivating the anti-inflammatory defense neutrophils [73].
Our previous study has shown that TNF-α and IL-1ß
were upregulated after HI in neonatal rat model and
were further elevated by rapamycin treatment with

increased immunoreactivity of neuronal cell bodies.
Their expression levels were subsequently decreased by
G-CSF treatment [74]. Treatment with IL-10 is thought
to decrease the level of TNF-α and IL-1ß after traumatic
brain injury (TBI) [38]. Similarly, our previous study
showed a decreased level of IL-10 expression after HI in-
jury, while G-CSF administration was associated with its
increased expression level thereby reducing further
surges of TNF-α and IL-1ß and thus improving neuro-
logic outcomes [74]. Xiao et al. [40] demonstrated that
G-CSF treatment increased the mobilization of circulat-
ing CD34+ cells, polarizes T cell differentiation from
Th1 to Th2 cells, and induces Th2 responses with the
production of IL-4 and IL-10, accompanied by a de-
crease in production of IFN-ɣ and IL-2, thereby sup-
pressing T cell proliferative responses to allogeneic
stimulation that are anti-inflammatory and decreasing
HI-induced injury, especially in the dentate gyrus by
generating new neurons. G-CSF is said to significantly
elevate the CD4 + CD25+ regulatory T cell subset in
microglia-mediated reactive T cells as well as to inhibit
MHC-II expression of microglia after lipopolysaccharide
(LPS) activation or in the interactions of microglia and
reactive T cells [75]. Other studies have shown that G-
CSF effectively mobilized CD34-positive hematopoietic
stem cells (HSC) in the preterm sheep thereby promot-
ing proliferation of endogenous neural stem cells [76].
G-CSF can also stabilize the BBB and modulate neuroin-
flammation, and G-CSF is more neuroprotective in neo-
natal HI injury compared to adults [77].
Certain other studies have reported mixed results

about the effectiveness of G-CSF treatment in ischemic
stroke in terms of improving neurodegenerative and
neurobehavioral outcomes, especially during the hyper-
acute and acute stage of HI injury [64, 78–80]. One
study reported that G-CSF exacerbate brain damage as
G-CSF increases the availability of neutrophils, which in
turn enhances the inflammatory response in the brains
of newborns [81]. Kallmunzer et al. [36] also reported a
lack of neuroprotective or neuroregenerative effects of
G-CSF in a rodent model of intracerebral hemorrhage.
In a meta-analysis, England et al. [80] reported that G-
CSF did not improve stroke outcome in individual pa-
tient with ischemic stroke when assessed by the National
Institute of Health Stroke Scale (NIHSS) or Barthel
Index (BI) while Huang et al. [64] analyzed 14 trials of
G-CSF therapy in stroke and did not identify adequate
evidence for the beneficial effects of this treatment mo-
dality in patients. Specifically, no favorable effects were
noted on stroke outcomes including NIHSS score, the
incidence of severe adverse events (SAEs), and mortality
in patients treated with G-CSF versus control or
placebo-treated patients. In another trial, the efficacy
and tolerability of G-CSF were examined in patients with

Dumbuya et al. Journal of Neuroinflammation           (2021) 18:55 Page 6 of 15



amyotrophic lateral sclerosis (ALS), a neurodegenerative
disease, and the authors concluded that it has no clinical
benefit in subjects with ALS [41], in contrast to previous
studies [82, 83].
As some of these results and findings are mainly fo-

cused on adult ischemic stroke, it should be noted that
differences do exist between the adult and neonate reac-
tion to HI-induced brain insults, possibly due to imma-
turity of neonatal neurons. Specifically, there are
differences in functional BBB response to acute experi-
mental stroke between neonates and adults, as well as in
gene expression of cerebral endothelial cells [25]. Other
striking factors include initiation of G-CSF treatment,
that is, the timing of G-CSF treatment might influence
its neuroprotective effect; different dosages have been
used both in ischemic stroke and neonatal HIE animal
models, ranging from 10 to 250 μg/kg for subcutaneous
injection and 5 to 60mg/kg for intravenous injection
[43, 61, 78]; route of administration varies according to
each study; and duration of treatment ranges from 3 to
10 days [64, 80, 84]. Intranasal administration of G-CSF
has also been examined in ischemic brain injury as po-
tentially more effective and feasible [57]. All these fac-
tors influence the effectiveness of G-CSF across
treatment modalities both in vivo and ex vivo. Therefore,
such results should be judiciously interpreted and trans-
lated into neonates with HIE. Hence, there are still some
loopholes and more studies are needed to examine the
neuroprotective effect of G-CSF in neonatal brain injury
at different times, doses, and duration in relation to
regulation of neuroinflammatory and apoptotic cascades.
Similarly, long-term neurofunctional assessment of G-
CSF in neonatal hypoxia-ischemia brain injury should be
warranted.

Regulation of apoptosis by G-CSF in neonatal HIE
Apoptosis can be triggered via the extrinsic pathway,
which involves activation of cell surface death receptors,
or the intrinsic pathway, which requires mitochondrial
outer membrane permeabilization (MOMP) [85], which
leads to loss of mitochondrial transmembrane potential,
formation of transition pores, and production of reactive
oxygen species, subsequently leading to release of cyto-
chrome c from mitochondria resulting in activation of
caspases and other effectors of DNA fragmentation and
cell death [7, 86, 87]. Increased expression of pro-
apoptotic mediators causes translocation of apoptosis-
inducing factor (AIF) from the mitochondria to the
nucleus, where it interacts with DNA and stimulates
chromatin condensation. Overexpression of AIF can ag-
gravate neonatal brain injury after HI that further in-
creases its translocation [39].
Studies have shown that neonatal HI injury is associ-

ated with Bax translocation to mitochondria with a

concomitant decrease in BCL-2, resulting in activation
of caspase-3 leading to apoptotic cell death that peaks
from 24 to 72 h post HI brain injury [33]. BAD is in-
volved in apoptotic and nonapoptotic processes, and
these dual activities are regulated by post-transcriptional
modifications. Activation of BAX and BAD also promote
MOMP [88]. The BCL-2 family proteins are key regula-
tors of MOMP and play critical role in the intrinsic
apoptotic pathway, classified into anti-apoptotic (Bcl-2,
Bcl-xl, Bcl-w) and pro-apoptotic (Bax, Bak, Bim, Bid,
Bad) [45]. The increased expression of pro-apoptotic
markers is also influenced by the hormones involved in
the pituitary–adrenal response [89], while in the extrin-
sic pathway, binding ligands to death receptors (TNF-α,
Fas, TRAIL, etc.) leads to activation of caspase-8 [49]. In
addition, BCL-2 has been demonstrated to play a critical
role in preventing apoptosis induced by rapamycin de-
rivatives that have been approved for the treatment of
patients with various malignancies, thus suggesting that
overexpression of antiapoptotic proteins such as BCL-2
might serve as a surrogate marker for resistance to rapa-
logues [90]. GSK-3ß is highly expressed in brain regions
including the cerebral cortex, hippocampus, and cerebel-
lum, and its overactivation is involved in neuronal pro-
apoptosis, and dysregulation of this kinase has a devas-
tating effect on neurodevelopment [91]. Its overexpres-
sion can increase caspase-3 activity [92], which in turn
activates apoptosis.
G-CSF administration downregulates GSK-3ß activity,

resulting in reduced neuronal cell death, apoptosis, and
infarct volume, as well as upregulating anti-apoptotic
protein Bcl-2 expression levels [45, 77]. Our previous
study has demonstrated that increased Bax expression
levels and cleaved caspase-3 (CC3) activation were atten-
uated significantly by G-CSF treatment and simultan-
eously increasing BCL-2 expression levels that were
decreased following HI-induced injury. We further
stated that the effect of G-CSF in modulating these
apoptotic factors was abolished by rapamycin, an inhibi-
tor of mTOR [74]. Other studies have reported similar
neuroprotective effects of G-CSF by inhibiting apoptosis
[63]. The neuronal anti-apoptotic action of G-CSF may
also be mediated in part by the anti-apoptotic protein
cIAP2 [93]. G-CSF also inhibits the mitochondrial-
dependent activation of caspase-3, an apoptotic activator
during HI injury [94]. Thus, G-CSF’s underlying mecha-
nism(s) in the neuronal anti-apoptotic effect can be in-
direct through suppression of TNF-α, which increases
caspase-3 cleavage or directly inhibiting caspase-3 and
other pro-apoptotic mediators.

G-CSF in neurogenesis and angiogenesis
Neurogenesis is an important process for the reconstruc-
tion of neural networks and recovery of functional
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outcomes that are believed to continue throughout
adulthood. It mainly occurs in the subventricular zone
(SVZ) and subgranular layer of the hippocampal dentate
gyrus, where the local environment tightly regulates
neurogenesis [2]. Nonetheless, endogenous neurogenesis,
stimulated by cerebral ischemia is not sufficient for the
recovery of neurological functions [2]. The SVZ is more
susceptible to neonatal HI brain injury located in the
hippocampal dentate gyrus. Previous studies have shown
that G-CSF facilitates bone marrow cell mobilization to
the brain and drives neurogenesis and synaptic efficacy
recovery thereby improving long-term functional out-
come, which is mainly observed in the SVZ of the in-
jured neonatal brain post-HI insult [61, 95, 96]. G-CSF
also enhances concentrations of neurotrophic factors
(GDNF and BDNF) that stimulate hippocampal neuro-
genesis as well as neuroplasticity by altering synaptic
activity and possesses anti-apoptotic properties aug-
menting the neurogenic response to brain injury [97].
Endogenous role of G-CSF in the brain neuroprotective
mechanism has also been demonstrated in ischemic
model, where mice deficient of G-CSF showed over-
whelming upregulation of matrix metalloproteinase 9
(MMP-9), a key factor in the activation of microglia and
astrocytes, while treatment of G-CSF suppresses its ex-
pression [2, 98].
Angiogenesis is a physiological process by which new

blood vessels are formed from pre-existing blood vessels.
It is a complex and highly ordered process that relies
upon extensive signaling networks both among and
within endothelial cells (ECs) and their associated cells
such as vascular endothelial growth factor (VEGF) pro-
teins and angiopoietin-1 (Ang-1), which are required for
angiogenesis [99]. Hypoxia-inducing factor-1 alpha
(HIF-1α) is involved in early brain development and pro-
liferation of neuronal progenitor cells. HIF also modu-
lates cerebral hypoxic stress responses and activates
endogenous neuroprotective systems during acute and
late stages of HI damage of the developing brain [100].
HIF-1α induces VEGF expression and its receptors
FMS-like tyrosine kinase (FLK-1) and fetal liver kinase-1
(Flk-1) in neurons facilitating blood reperfusion recov-
ery, correlating with angiogenesis [25]. Late-stage of
HIF-1α induction increases VEGF production that im-
proves functional recovery and brain repair [101].
G-CSF administration increases local VEGF expres-

sion, which is necessary for vascular angiogenesis [102],
thus corroborating its role in promoting angiogenesis
through upregulation of VEGF expression via signaling
pathways. Angiopeitin-1 (Ang-1), which is upregulated
by G-CSF, is thought to reduce vascular solute perme-
ability and contributes to vascular maturation and BBB
stabilization by increasing the expression of BBB-related
tight junction proteins (occludin, claudin-5, and zonula

occludens protein 1) [103]. G-CSF treatment regulates
the expression of VEGF and early growth response-1
(Erg-1) thereby ameliorating acute ischemic cerebral in-
jury [29]. Mobilization of monocyte into blood vessels
by G-CSF also stimulate angiogenesis [40]. Other reports
argued that VEGF and MMP are involved in the initial
opening of BBB within hours of an HI insult, which dis-
rupt the basilar membrane and cause further damage to
the BBB, especially VEGF-A which increases vascular
permeability by uncoupling endothelial cell-cell junc-
tions, resulting in BBB leakage and worsened outcomes
[2, 103, 104]. Zhang et al. [25] stated that acute increases
of VEGF results in the BBB leakage, whereas delayed up-
regulation of VEGF around the ischemic boundary area
may prompt angiogenesis and reconstruction of the neu-
rovascular unit (NVU). Thus, further research is needed
to elucidate the pertinent role of VEGF after neonatal
HI injury and its subsequent regulation by G-CSF.

Combinational therapy with other agents
Recent reports have advocated for combination strat-
egies in neonatal HI brain injury and that it is more
effective than G-CSF monotherapy. For instance, Yu
and colleagues [105] demonstrated that both erythro-
poietin (Epo) and G-CSF combined produce func-
tional recovery in a mouse model of hypoxic-ischemic
brain injury in a time-dependent manner, and the
underlying mechanisms may be the induction of HIF-
1α activity in both cytosol and nucleus, and an early
change in the cell fate determination from astrogliosis
toward neurogenesis. Erythropoietin (EPO) a glyco-
protein that controls erythropoiesis is expressed in
neural progenitor cells, mature neurons, astrocytes,
oligodendrocytes, microglia, and endothelial cells. Epo
has anti-apoptotic and anti-inflammatory effects and
supports tissue remodeling by promoting neurogen-
esis, oligodendrogenesis, and angiogenesis [106]. Both
G-CSF and EPO can readily cross the BBB, making
them a possible candidate in neonates with HI insults.
Liu et al. [107] reported that combination of G-CSF
and EPO could synergistically promote proliferation
of neural progenitor cells residing in the hippocampus
and subventricular region of the brain. Another study
examined the repetitive and long-term use of G-CSF+
EPO in stroke patients and reported similar neuro-
protective effect with good tolerability and no associ-
ated adverse effects observed [108]. But in Yu and
colleagues’ study, they reported that combined G-CSF
and EPO does not show improvement during the
chronic phase of HI injury [105]. Thus, the neuropro-
tective effects of combinational therapy of G-CSF and
EPO in neonatal HIE need to be elucidated further to
understand the underlying mechanisms.
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Doycheva et al. [109] also concluded that G-CSF +
SCF (stem cell factor) improved body weight, reduce
brain-tissue atrophy, and improved neurological out-
come following HI in the neonatal rat pup. Specifically,
G-CSF + SCF induced more stable and long-lasting
functional improvement in chronic strokes by increasing
angiogenesis and neurogenesis through bone marrow-
derived cells and the direct effects on stimulating neu-
rons to form new neuronal networks [110, 111]. Hence,
both G-CSF and SCF may work synergistically in im-
proving the overall outcome of neonatal HI brain dam-
age. Caspase-3 activation is reduced when G-CSF and
SCF treatment are combined resulting in decreased
apoptotic cell death, though other studies further re-
ported that G-CSF/SCF and FL treatment did not affect
apoptosis-inducing factor-dependent apoptosis or cell
proliferation, and thus does not convey neuroprotection
in neonatal HIE [112, 113]. Indeed, there are mixed re-
ports about the neuroprotective effect of combinational
G-CSF and SCF treatment in neonatal HI-induced brain
injury. One study on HI mice demonstrated that G-CSF
and SCF, given separately or in combination, have no
neuroprotective effect, but rather a deleterious impact
on neonatal excitotoxic brain damage [81].
G-CSF + hUCB can also decrease the number of MHCI

I+ cells not only in the corpus callosum and fornix but
also in the cerebral peduncle. As G-CSF crosses the BBB,
it acts upon neurons and glial cells through the G-CSF re-
ceptor. Indeed, glial cell activation has been demonstrated
to downregulate expression of proinflammatory cytokines
and to enhance neurogenesis [114]. One study demon-
strated that intranasal administration of umbilical cord
mesenchymal stem cells (UC-MSCs) significantly reduces
neuroinflammation and protects hippocampal neurons, as
well as increased concentration of the anti-inflammatory
cytokine IL-10 in serum, thus contributing to neuropro-
tection [23]; similarly, UCB, especially its subtype EPCs
(endothelial progenitor cells), has the ability to modulate
neuroinflammation and reduce brain injury and behav-
ioral deficits in perinatal HI brain injury [115]. Mesenchy-
mal stem cells (MSCs) derived from human umbilical
cord blood (hUCB) conferred neuroprotective and neuror-
egenerative benefits by improving angiogenesis and vascu-
logenesis [116]. MSCs plus G-CSF also decreased
oxidative stress factors aggravated by HI brain injury
[117]. G-CSF in combination with taurine is protective in
primary cortical neurons against excitotoxicity induced by
glutamate as well as suppresses endoplasmic reticulum
(ER) stress [118]. Thus, synergistic therapies may exert
and offer better functional improvements in neonatal HI
brain injury, though more research is needed to explore
the underlying mechanism(s).
Recently, Griva et al. [119] reported that the combin-

ation of neuroprotective treatments of G-CSF and

enriched environment (EE) may enhance neuroprotec-
tion and it might be a more effective strategy for the
treatment of neonatal hypoxic-ischemic brain injury by
altering synaptic plasticity reflected by increased synap-
tophysin expression levels thus further enhancing cogni-
tive function. Doycheva et al. [30] demonstrated that G-
CSF + Ab improved body weight, reduced brain tissue
damage, and improved long-term neurological function
when assessed at 96 h and 5 weeks post HI in the neo-
natal rat pups, as well as conferring greater neuroprotec-
tion by depleting neutrophil accumulation, while G-CSF
+ metyrapone treatment not only lower caspase-3 ex-
pression level but also reduce corticosterone levels in
neonates after HI injury [89]. Surprisingly, there has not
been any study evaluating combinational therapy of G-
CSF and therapeutic hypothermia (TH), as other modal-
ities have been tried and underwent and/or are undergo-
ing clinical trials in neonatal HIE, such as with epo and
TH [120–122], xenon and TH [51, 123, 124], melatonin
and TH [46, 47], and allopurinol and TH [125]. Thus,
more study is needed to explore and evaluate the neuro-
protective effect of G-CSF in combination with thera-
peutic hypothermia as well as other emerging agents.

G-CSF-mediated signaling pathways in neonatal
HIE
Stimulation of G-CSF by its receptor activates many
downstream signaling pathways such as the Janus kinase
(JAK)/signal transducer and activator of transcription
(STAT), the Ras/mitogen-activated protein kinase
(MAPK), and the phosphatidylinositol 3-kinase (PI3K)/
protein kinase B (Akt) pathways [50] thereby exerting its
neuroprotective effect.
The JAK-STAT signaling pathway is a chain of interac-

tions between protein cells and is involved in many cellu-
lar processes that communicate information from
chemical signals outside of a cell to the cell nucleus,
resulting in the activation of genes through transcriptional
processes [126]. The neuroprotective effect of G-CSF is
manifested by activating the anti-apoptotic pathway via
the JAK/STAT3 signaling, and it does so by suppressing
the pro-apoptotic mediators and upregulating anti-
apoptotic mediators via binding to its receptors (G-CSFR)
in neurons. Moreover, G-CSF increases the activation of
STAT3 pathway in glial cells together with increased
cIAP2 expression which is a member of the inhibitor of
apoptosis protein (IAP) family, subsequently regulating
the activity of both initiator (caspase-9) and effector cas-
pases (caspase-3 and -7) in ischemic mouse models [40,
94]. It can directly activate the JAK/STAT3 pathway as
well [33, 93, 127], thereby promoting neurogenesis. Pim-1
increases cell survival through the regulation of bcl-2 pro-
teins and that its upregulation after HI is enhanced by G-
CSF treatment. Its expression is said to be paralleled to
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STAT3 expression, suggesting an association between the
two in ischemic pathology [33, 94]. G-CSF also increased
expression of STAT3 in the penumbra mediated by G-
CSFR [128]. In short, these substrates and/or proteins are
regulated by G-CSF and its receptor along the JAK/
STATS signaling pathway following HI injury, which in
turn favors neuroprotection.
The PI3K/AKT pathway is a key signaling pathway

that participates in various cellular processes such as cell
proliferation, survival, differentiation, and apoptosis
[129, 130]. G-CSF enhances neurogenesis and neuroblast
migration after stroke by regulating the PI3K/Akt path-
way as well as modulates the NMDA receptor of glial
cells exposed to PLS-induced brain damage [68]. The
nuclear factor-kappa B (NF-κB) is a central transcrip-
tional factor that is regulated and activated by Akt ac-
companied by activation of the inhibitor of κB (IKB)
kinase (IKK) [131]. Activation of NF-κB, especially the
canonical pathway, triggers the production of pro-
inflammatory cytokines (PICs) and nitric oxide (NO)
[132]. Phosphorylated Akt by G-CSF inactivates the ca-
nonical NF-κB pathway and inhibit the production of
PICs and NO, further ameliorating neuroinflammation.
Moreover, G-CSF phosphorylates Akt leading to down-
stream inactivation of GSK-3ß that will ultimately de-
crease apoptosis. G-CSF as well reduces adherens
(VCAM-1 and ICAM-1) and increases tight junction
(claudin 3 and 5) protein expression levels via the G-
CSFR/PI3K/Akt/GSK-3ß signaling pathway [50].
The mammalian target of rapamycin/p70 ribosomal S6

protein kinase (mTOR/p70S6K) pathway has been impli-
cated in neurogenesis as well, by decreasing the expres-
sion of PICs [133], as well as increasing IL-10 expression
[134]. mTOR acts as a molecular system integrator to
support organismal and cellular interactions with the en-
vironment [135], which regulates cellular metabolism,
growth, and proliferation through two protein com-
plexes, mTORC1 and mTORC2. mTOR activity is also
thought to upregulate the translation of synaptic mRNAs
via 4E-BP and S6K [136] by facilitating neuronal plasti-
city and activity [137]. Previous studies have demon-
strated a decreased activation of S6K by rapamycin, an
mTOR inhibitor, as well as loss of S6K function leads to
increased astrocyte death in ischemic models, while G-
CSF treatment increases S6K expression levels [138,
139], driving cellular functions as S6K phosphorylates
and activates several substrates that promote mRNA
translation initiation and other cellular processes [140].
Our previous study has shown that treatment with G-
CSF decreases inflammatory mediators and apoptotic
factors, attenuating neuroinflammation and neuronal
apoptosis via the mTOR/p70S6K signaling pathway,
which represents a potential target for treating HI in-
duced brain damage in neonatal HIE [74].

The PI3K/AKT/mTOR pathway is an intracellular sig-
naling pathway important in regulating the cell cycle.
Therefore, it is directly related to cellular quiescence,
proliferation, cancer, and longevity. PI3K activation
phosphorylates and activates AKT, localizing it in the
plasma membrane [52, 141]. G-CSF can upregulate
brain-derived neurotrophic factor (BDNF) which in turn
induces autophagy through the PI3K/Akt/mTOR path-
way [2]. The neurotrophic nuclear transcription factor
phosphorylated cAMP-responsive element-binding pro-
tein at serine 133 (pCREBSer-133) serves an important
role in neurological regulation of ion channel function,
neuronal differentiation and maturation, and the pro-
cesses of learning and memory. This transcription factor
is decreased during HI insult, while treatment of G-CSF
was shown to significantly increase the expression of
pRaf-pERK1/2-pCREBSer-133 pathway in neonates ex-
posed to perinatal hypoxia [61]. One study has demon-
strated that G-CSF treatment inhibits steroidogenesis
through activation of the JAK2/PI3K/PDE3B signaling
pathway by reducing the levels of cAMP expression in
HI-induced brain injury [142]. Activation of ERK has
been shown to be neuroprotective, both in adults and
neonatal brain injury, while MAPK p38 is best known
for transduction of stress-related signals, regulation of
inflammatory gene production, and NF- κB recruitment
to selected targets, and both ERK and MARK p38 are
regulated by G-CSF [37]. G-CSF downregulates the acti-
vation of the phosphorylated JNK and c-jun pathway in
the cerebral ischemia-reperfusion rats model [44].
Thus, G-CSF plays diverse roles in neonatal HIE

through diverse signaling pathways. Modi et al. [45]
summarizes the steps and effect of G-CSF across the sig-
naling pathways that have been implicated in neonatal
HI injury either through inhibition or upregulation and
phosphorylation of their substrates thereby eliciting
neuroprotection.

Conclusion
There are numerous studies that have shown the im-
portant role G-CSF plays in neurodegenerative diseases,
ischemic stroke, and traumatic brain injury both using
in vivo and ex vivo models. Recent research has specific-
ally focused on its neuroprotective effect in neonatal
HIE with both positive and mixed results. Indeed, G-
CSF exerts a pivotal role in the control of immune re-
sponse and acts as an anti-inflammatory cytokine, pre-
venting an overactivation of monocytes and lymphocytes
by reducing the release of pro-inflammatory cytokines as
well as stabilizing the BBB and modulating neuroinflam-
mation; inhibits pro-apoptotic mediators; enhances con-
centration of neurotrophic factors and facilitates bone
marrow cell mobilization thereby driving neurogenesis;
increases local VEGF expression necessary for vascular
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angiogenesis; upregulates Ang-1 that reduces vascular
solute permeability; and contributes to vascular matur-
ation and BBB stabilization. Despite these progresses be-
ing made, there are still few experimentation models of
neonatal HIE and G-CSF’s neuroprotectiveness either dir-
ectly or through signaling pathways, and extrapolation of
adults’ stroke models is challenging due to the evolving
neonatal brain. Also, there are mixed results about the ef-
fectiveness of G-CSF in improving HI-induced brain in-
jury in neonates, specifically in the area of initiation of
treatment, dosage, route of administration, and duration
of treatment; this calls for more in-depth research to elu-
cidate its underlying mechanisms and pertinent role in
neuroprotection, as well as its long-term effect in neuro-
logical and behavioral outcomes.
Recent studies have focused on combinational treatment

in neonatal HI brain injury and that it is more effective
than G-CSF monotherapy. Therapeutic hypothermia has
also been advocated for with other agents such as EPO,
melanin, xenon, stem cells, and anticonvulsants with
promising results. As most of these agents have controver-
sial effectiveness in improving HI-induced brain injury
and most of them are under clinical trials for efficacy and
safety, at present, it appears that combination of these
therapeutic agents with TH could be the promising inter-
vention strategies to treat newborns suffering from HIE,
while awaiting the outcomes of both preclinical and clin-
ical trials that are under investigation.
In this review, we highlighted recent researches in the

role of G-CSF in regulating cytokines and inhibition of
apoptotic mediators, as well as promoting neurogenesis
and angiogenesis thereby enhancing cell survival and
proliferation, and modulation of inflammatory responses
in the injured neonatal brain through activation of mul-
tistep signaling pathways.
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