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Exosomal miR-409-3p secreted from
activated mast cells promotes microglial
migration, activation and
neuroinflammation by targeting Nr4a2 to
activate the NF-kB pathway
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Abstract

Objective: Neuroinflammation plays a critical role in central nervous system diseases. Exosomal miRNAs released
from various cells are implicated in cell-to-cell communication. Prior studies have placed substantial emphasis on
the role of cytokines in mast cell-microglia interactions during neuroinflammation. However, it has never been
clearly determined whether exosomal miRNAs participate in the interaction between mast cells and microglia and
thus mediate neuroinflammation.

Methods: The characteristics of exosomes isolated from cell culture supernatants were confirmed by transmission
electron microscopy (TEM), nanoparticle-tracking analysis (NTA) and Western blot. The transfer of PKH67-labelled
exosomes and Cy3-labelled miR-409-3p was observed by fluorescence microscopy. Migration and activation of
murine BV-2 microglial cells were evaluated through Transwell assays and immunofluorescence staining for Ibal
and CD68. CD86, IL-1B, IL-6 and TNF-a were assessed via gRT-PCR and ELISA. MiR-409-3p was detected by gRT-PCR.
Nr4a2 and NF-kB levels were measured by western blot. Regulatory effects were identified by luciferase reporter
assays.

Results: Lipopolysaccharide (LPS)-stimulated murine P815 mast cells secreted exosomes that were efficiently taken
up by murine BV-2 cells, which promoted murine BV-2 cell migration and activation. LPS-P815 exosomes increased
the CD86, IL-1p3, IL-6 and TNF-a levels in murine BV-2 microglia. Furthermore, activated mast cells delivered
exosomal miR-409-3p to murine BV-2 microglia. Upregulated miR-409-3p promoted murine BV-2 microglial
migration, activation and neuroinflammation by targeting Nr4a2 to activate the NF-kB pathway.
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may provide new insights into neuroinflammation.

Conclusion: Exosomal miR-409-3p secreted from activated mast cells promotes microglial migration, activation and
neuroinflammation by targeting Nr4a2 to activate the NF-kB pathway, which provides evidence that not only
cytokines but also exosomal miRNAs participate in neuroinflammation. In the future, targeting exosomal miRNAs

Keywords: Microglia, Neuroinflammation, Exosome, miR-409-3p

Introduction
Neuroinflammation is a response of the central nervous
system (CNS) to external stimuli, including surgery, infec-
tion and toxins, that is partly manifested by microglial ac-
tivation and proinflammatory cytokine release [1].
Recently, an increasing number of studies have reported
that central and peripheral mast cells play a critical role in
neuroinflammation. For instance, inhibiting the neuroin-
flammation caused by mast cell activation can slow the
progression of Parkinson’s disease [2]. Mast cells are one
of the first responders that affect the neuroinflammation
[3, 4]. Groot Kormelink et al. revealed that activated mast
cells can release CD63-positive extracellular vesicles [5].
Exosomes, which are 30-150 nm in size, are mem-
branous vesicles that contain mRNAs and miRNAs, are
released from various cells, and are implicated in cell-to-
cell communication [6]. Increasing studies have revealed
that miRNAs can be derived from parent cells via exo-
somes and transferred into recipient cells, thereby
modulating the biological characteristics of recipient
cells, such as tumour metastasis or inflaimmatory re-
sponses [7]. miRNAs, which are one kind of noncoding
RNA, decrease the expression of proteins related to bio-
logical characteristics by posttranscriptionally negatively
regulating gene expression [8]. Many studies have con-
firmed that miRNAs participate in neuroinflammation
and influence the pathogenesis of CNS diseases [9].
Moreover, in response to lipopolysaccharide (LPS)
stimulation or histamine receptor triggering, mast cells
can secrete cytokines and exosomes [10]. By using
microarray analysis, Ekstrom [11] and Valadi [12] dis-
covered that mast cell-derived exosomes contain miR-
NAs, which can be transferred to other cells and
continue to function in these recipient cells. Li et al. re-
ported that mast cells can secrete exosomal miR-223
and then deliver it to intestinal epithelial cells, resulting
in the destruction of intestinal barrier function [13].
Interestingly, secretory exosomes from mast cells har-
bouring miRNAs are involved in communication with
the nervous system [14]. In fact, microglia have been
shown to be recipient cells for exogenous exosomes.
Exosomes harvested from LPS-treated donor mice were
infused into recipient mice and lead to enhanced neuro-
inflammation, and the most prominent effect was on
microglia [15].

Previous studies have placed substantial emphasis on
the roles of cytokines and chemokines in neuroinflam-
mation [16]. However, to date, whether exosomal miR-
NAs participate in the interaction between mast cells
and microglia, thus promoting neuroinflaimmation, has
never been clearly investigated. Our previous study
found evidence that products secreted from activated
murine P815 cells could induce microglial activation and
neuroinflammation [17]. Thus, based on this finding, the
aim of this study was to show that exosomal miR-409-3p
derived from LPS-stimulated murine P815 mast cells
could be transferred to murine BV-2 microglial cells.
Moreover, transferred miR-409-3p promoted microglial
migration, activation and neuroinflammation by target-
ing Nr4a2 to activate the NF-kB pathway.

Methods

Cell culture

The source and culture method of the murine P815
mast cell line were the same as those described in our
previous study [17]. LPS was obtained from Sigma-
Aldrich (St. Louis, MO, USA). Murine P815 cells were
stimulated with LPS (1 pug/ml) for 24 h. Then, exosomes
were extracted from the cell culture supernatants. The
exosomes were added to murine BV-2 cells for another
24 h. Murine BV-2 microglia were obtained from the
Cell Bank of the Chinese Academy of Science (Shanghai,
China). The cells were cultured in high-glucose Dulbec-
co’s modified Eagle’s medium (DMEM) with 10% foetal
bovine serum (FBS) (Invitrogen, Carlsbad, CA) and 1%
pen/strep. Cell culture experiments were performed in
triplicates.

Exosome isolation, identification and labelling

Exosomes were isolated from cell culture supernatants
by ultracentrifugation. The culture supernatant samples
were centrifuged at 300xg for 10 min, 2000xg for 10
min, 10,000xg for 30 min and 110,000xg at 4 °C for 70
min in succession. After washing the pellets with
phosphate-buffered saline (PBS) and resuspending, the
cell suspension was centrifuged again at 110,000xg at 4
°C for 70 min. Transmission electron microscopy (TEM,
Tecnai G2 Spirit Bio TWIN, FEI, USA) was used to ob-
serve the size of the exosomes. All the isolated exosomes
were fixed with glutaraldehyde (5%) and then placed into
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a carbon-coated copper grid that was covered with phos-
photungstic acid solution (2%, pH 7.0) for 30 s.
Nanoparticle-tracking analysis (NTA) was used to ob-
serve the size and distribution of the exosomes. The exo-
somes (10-20 mg) were dissolved in PBS (1 ml) and
vortexed for 1 min. The size and distribution of the exo-
somes were measured by ZetaView 8.04.02 software.
The exosomes were incubated with PKH67 membrane
dye (4 pl, Sigma) and Diluent C (1 ml) for 4 min. The la-
belled exosomes were filtered by using Exoquick exo-
some precipitation solution, followed by suspension in
basal medium. Murine BV-2 cells were incubated with
the above liquid (250 pl) for 3 h and then incubated with
4% paraformaldehyde (1 ml) for half an hour. The nuclei
were stained with 4',6-diamidino-2-phenylindole (DAPI,
Sigma). The images were observed by using a fluores-
cence microscope (Zeiss, LSM700B, Germany). Cell cul-
ture experiments were performed in triplicates.

RT-qPCR

RNA was extracted from cells and exosomes. The
method was the same as that described in our previous
study [7]. The primers were as follows: miR-409-3p, for-
ward, 5'-TGGTACTCGGAGAGAGGTTACCC-3’, and
reverse, 5 -ATGGACTATCATATGCTTACCGTA-3’;
IL-1B, forward, 5'-TTGACGGACCCCAAAAGAT-3’,
and reverse, 5-GAAGCTGGATGCTCTCATCTG-3';
CD86, forward, 5-GACCGTTGTGTGTGTTCTGG-3’,
and reverse, 5'-GATGAGCAGCATCCAAGGA-3’; and
GAPDH, forward, 5-AACTTTGGCATTGTGGAAGG-
3’, reverse, 5'-GGATGCAGGGATGATGTTCT-3". Cell
culture experiments were performed in triplicates.

Cell transfection

Cells were transfected with miR-409-3p mimics/mimic
negative control (mimics NC) or miR-409-3p inhibitor/
inhibitor negative control (inhibitor NC, GenePharma,
Shanghai, China) with 8 pl Lipofectamine 3000 (Thermo
Fisher Scientific, Shanghai, China). Murine BV-2 cells
were transfected with miR-409-3p mimics, followed by
transfection with lentiviral vectors that overexpressed
Nr4a2 (Lv-Nr4a2). The empty lentiviral vector (Lv-vec-
tor) was used as the control. Cell culture experiments
were performed in triplicates.

Western blot

Proteins were extracted from cells and brain tissues and
treated with RIPA lysis and extraction buffer (KeyGen
Biotechnology, Nanjing, China), and then, the concentra-
tions of these samples were measured by bicinchoninic
acid (BCA) assay. The specific steps of Western blotting
were the same as those described in our previous studies
[17]. The antibodies were anti-CD63 (ab217345, Abcam),
anti-TSG101 (ab125011, Abcam), anti-Calnexin (ab10286,
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Abcam), anti-Nr4a2 (ab176184, Abcam), anti-NF-kB p65
(ab16502, Abcam) and anti-GAPDH (ab9485, Abcam).
Cell culture experiments were performed in triplicates.

Transwell assay

Using chamber inserts in a Transwell apparatus (Milli-
pore, MA, USA), murine BV-2 cells (2 x 10*) were re-
suspended in DMEM, plated in the upper chamber and
treated with isolated exosomes or mimics NC/mimics.
DMEM (600 pl) were added into the lower chamber.
The cells were incubated for 24 h at 37 °C, fixed in 4%
paraformaldehyde for half an hour, and stained with
0.2% crystal violet for an hour. The images were ob-
tained by using NIS Elements software (Nikon, Tokyo,
Japan). Cell culture experiments were performed in
triplicates.

ELISA

ELISA kits (R&D Systems) were used to detect the
amounts of TNF-a and IL-6 in the cell culture superna-
tants. Cell culture experiments were performed in
triplicates.

Immunofluorescence staining

Ibal and CD68 were used to evaluate murine BV-2
microglial activation. Cells or brain tissues were fixed
with 4% paraformaldehyde for half an hour. Nonspecific
binding was blocked by incubating the cells in 5% BSA
(0.1% Triton X-100) for an hour. The slides were incu-
bated with Ibal antibody (GB11105, 1:500 dilution),
CD68 antibody (GB11067, 1:1000 dilution) and horse-
radish peroxidase (HRP)-conjugated goat anti-rabbit IgG
(H+L) (GB23303, 1:500 dilution) (Servicebio Technology
Co. Ltd., Wuhan, China) and then incubated with fluor-
escein isothiocyanate (FITC) or Cy3. In cell culture ex-
periments, Ibal (FITC, green), CD68 (Cy3, red). Cell
culture experiments were performed in triplicates. In
vivo experiments, Ibal (Cy3, red), CD68 (FITC, green).
After 10 min, the slides were washed with Tris-buffered
saline tween (TBST) 3 times for 5 min each. The nuclei
were stained with 4'6-diamidino-2-phenylindole (DAPI)
and incubated for 10 min. The images were observed by
using a confocal microscope.

Luciferase

The 3'-UTRs of the Nr4a2 wild-type (WT) or mutant
(Mut) binding sequences were synthesized by Gene-
Script (Nanjing, China). Murine BV-2 cells transfected
with miR-409-3p mimics or mimics NC were seeded
into 96-well plates and co-transfected with Nr4a2-WT
or Nr4a2-Mut. The firefly and Renilla luciferase values
were measured by using a Dual-Luciferase® Assay Kit
(Promega, Madison, W1, USA). Cell culture experiments
were performed in triplicates.
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In vivo experiment

Mice (male, 6-10 weeks old) were purchased from the
Model Animal Research Center of Nanjing University
(China) and were housed at 22.0 + 1.0 °C and 40% hu-
midity. Our animal experiments were approved by the
Nanjing Medical University Animal Care and Use Com-
mittee. Murine P815-miR-409-3p-mimics NC-exosomes
(mimics NC exo) and murine P815-miR-409-3p mimics-
exosomes (mimics exo) (200 pg exosomes precipitated
in 200 ul PBS per mouse for each day) were adminis-
tered to C57BL/6 mice by tail vein injection for three
days. The same volume of PBS was administered to the
control group. The mice were anaesthetized (2.1% iso-
flurane anaesthesia) and sacrificed, and then, brain tis-
sues were obtained for immunofluorescence and
Western blotting.

Statistical analysis

The statistical analysis was performed by using STAT11
and GraphPad software 8.0. This study conducted Stu-
dent’s t test for two-group comparisons and one-way or
two-way ANOVA for more than two-group compari-
sons. The data are presented as the mean + SEM. P <
0.05 was considered statistically significant.

Results

Exosomes secreted from activated mast cells promoted
microglial migration, activation and neuroinflammation
First, exosomes were extracted from murine P815 cell
culture supernatants, and their shapes were observed by
TEM. The exosomes were 40—150-nm-diameter vesicles
with a uniform cup-shaped morphology, and the size
distribution was measured by NTA (Fig. 1a). To further
determine whether the collected vesicles were exosomes,
representative exosome markers were detected by west-
ern blot. As shown in Fig. 1b, increased CD63 and
TSG101 expression and decreased calnexin expression
were observed in the isolated exosomal fraction. Next,
murine BV-2 cells were cultured with PKH67-labelled
exosomes. Fluorescence microscopy showed that the
exosomes were efficiently taken up by murine BV-2 cells
(Fig. 10).

Microglial migration is one of the pathological charac-
teristics of the CNS after injury. Migrating activated
microglia mediate inflammation through phagocytosis,
antigen presentation and factor secretion [18, 19]. To in-
vestigate the effect of exosomes on murine BV-2 micro-
glial migration, we performed a Transwell assay. As
shown in Fig. 1d, the number of migrating cells in the
LPS-P815 exosomes group (LPS exo) was greater than
that in the control group (Control exo), suggesting that
LPS-P815 exosomes accelerated murine BV-2 microglial
migration.
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Immunofluorescence staining for Ibal and CD68 was
used to evaluate microglial activation. Significantly, LPS-
P815 exosomes induced murine BV-2 microglial activa-
tion (Fig. le). To further explore the effect of LPS-P815
exosomes on murine BV-2 microglial activation, CD86,
IL-1B, IL-6 and TNF-a were detected. Notably, LPS-
P815 exosomes led to increased levels of CD86 and IL-
1B (Fig. 1f, g). The secretion of IL-6 and TNF-a was re-
markably increased in the LPS-P815 exosomes group
(Fig. 1h, i). These results revealed that LPS-P815 exo-
somes promoted microglial activation and
neuroinflammation.

Activated mast cells delivered exosomal miR-409-3p to
murine BV-2 microglia

Using microarray analysis, we found that compared with
the control group, in the LPS-treated group, 7 exosomal
miRNAs (mmu-miR-6240, mmu-miR-3069-3p, mmu-
miR-5100, mmu-miR-7234-5p, mmu-miR-470-5p, mmu-
miR-5619-5p and mmu-miR-409-3p) were upregulated,
and 14 exosomal miRNAs (mmu-miR-7647-3p, mmu-
miR-6979-3p, mmu-miR-7022-5p, mmu-miR-6973a-5p,
mmu-miR-3065-5p, mmu-miR-5709-3p, mmu-miR-
7082-3p, mmu-miR-7221-5p, mmu-miR-532-5p, mmu-
miR-6377, mmu-miR-1947-5p, mmu-miR-700-5p, mmu-
miR-3109-5p and mmu-miR-499-3p) were downregu-
lated (P < 0.05, FC > 1.5, Fig. 2a). Furthermore, through
qRT-PCR confirmation, we found that miR-409-3p was
increased in LPS-P815 cells and in the corresponding
exosomes (Fig. 2b). Then, we also found that miR-409-
3p was increased in murine BV-2 cells incubated with
LPS-P815 exosomes (LPS exo) (Fig. 2¢).

Moreover, as shown in Fig. 2d, miR-409-3p was in-
creased 7-fold and exosomal miR-409-3p was increased 4-
fold in the mimic group relative to the mimic NC group.
Moreover, an increased level of miR-409-3p was observed
in the murine BV-2 cells cultured with P815-miR-409-3p
mimics exosomes (mimics exo) (Fig. 2e). Additionally,
murine P815 cells were transfected with Cy3-labelled
miR-409-3p, and exosomes were isolated from the murine
P815 cell culture supernatants. The isolated exosomes
were labelled with PKH67 and then incubated with mur-
ine BV-2 cells (Fig. 2f). Fluorescence microscopy revealed
that miR-409-3p could be efficiently taken up by murine
BV-2 cells via exosomes (Fig. 2g).

Upregulated miR-409-3p promoted microglial migration,
activation and neuroinflammation

To make the effect of increased miR-409-3p on murine
BV-2 cells more significant, we transfected miR-409-3p
mimics into murine BV-2 cells to simulate the delivery
of exosomal miR-409-3p secreted from activated murine
P815 cells (Fig. 3a). Transwell assays revealed an in-
creased number of migrating cells in the miR-409-3p
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Fig. 1 Exosomes secreted from activated mast cells promoted microglial migration, activation and neuroinflammation. a Exosomes were extracted
from the cell culture supernatants of murine P815 cells (Control exo) or LPS-P815 cells (LPS exo). The shapes and size distributions of these exosomes
were observed through TEM and NTA. Scale bar 100 nm. b Representative exosomal markers were detected by Western blot. ¢ Fluorescence
microscopy showed the uptake of PKH67-labelled exosomes by murine BV-2 cells. Scale bar 50 um. d Murine BV-2 microglial migration was evaluated
through Transwell assays. Scale bar 10 um. E, Immunofluorescence staining for Iba1 and CD68 was used to evaluate microglial activation. Scale bar 50
pm. F-I, CD86, IL-1B and inflammatory cytokines (IL-6 and TNF-a) were detected via gRT-PCR and ELISA. Cell culture experiments were performed in
triplicates. *P < 0.05; **P < 0.01; ***P < 0.001

mimic group relative to that in the mimic NC group
(Fig. 3b).

As shown in Fig. 3c, miR-409-3p could induce murine
BV-2 microglial activation. As expected, miR-409-3p in-
creased the expression of CD86 and IL-1f (Fig. 3d, e).
Moreover, the production of proinflammatory cytokines
(IL-6 and TNF-a) was also increased in the mimic group
(Fig. 3f, g). In summary, these findings demonstrated

that miR-409-3p promoted microglial migration, activa-
tion and neuroinflammation.

miR-409-3p acted as a pro-neuroinflammatory molecule
by targeting Nr4a2 to activate the NF-kB pathway

To identify the candidate target genes of miR-409-3p,
we collected and intersected the outputs from three pre-
diction software programs (TargetScan, miRWalk and
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Fig. 2 Activated mast cells delivered exosomal miR-409-3p to murine BV-2 microglial cells. a Microarray analysis (P < 0.05, FC > 1.5) indicated that
miR-409-3p was increased in LPS-P815 exosomes (LPS exo: LPST, LPS2, LPS3; Control exo: control1, control2, control3). b Confirmation by gRT-PCR
showed that miR-409-3p levels were increased in LPS-P815 cells and in the corresponding exosomes. ¢ Murine BV-2 cells were incubated with
control exosomes (Control exo) or LPS-P815 exosomes (LPS exo). The miR-409-3p levels in the two groups were detected by gRT-PCR. d Murine
P815 cells were transfected with miR-409-3p mimics or mimics NC. The miR-409-3p levels in the cells and exosomes were detected by gRT-PCR. e
Murine BV-2 cells were incubated with P815-miR-409-3p mimics NC-exosomes group (mimics NC exo) or P815-miR-409-3p mimics-exosomes
group (mimics exo). The miR-409-3p levels were detected by gRT-PCR. F, Murine P815 cells were transfected with Cy3-labelled miR-409-3p, and
exosomes were isolated from murine P815 cell culture supernatants. The isolated exosomes were labelled with PKH67 and then incubated with
murine BV-2 cells. G, Fluorescence microscopy revealed that miR-409-3p could be efficiently taken up by murine BV-2 cells via exosomes. Scale
bar 50 um. Cell culture experiments were performed in triplicates. *P < 0.05; **P < 0.01; ***P < 0.001

microT). Of the 30 intersecting genes, the 3-UTR of
Nr4a2 bound to miR-409-3p with a high score and high
conservation (Fig. 4a). Importantly, nuclear receptor
subfamily 4 group A member 2 (Nr4a2), also known as
nuclear receptor-related 1 protein (Nurrl), is strongly
expressed in the hippocampus, substantia nigra, tem-
poral cortex and subiculum [20, 21]. Nr4a2 contributes

to cognitive functions by mediating hippocampal neuro-
genesis and is a therapeutic target for the treatment of
neuroinflammation [22, 23]. Briana et al. identified
Nr4a2 as a suppressor of the nuclear factor kB (NF-kB)
pathway in murine BV-2 microglia [24].

Thus, via a luciferase reporter assay, we found de-
creased luciferase intensity in the miR-409-3p mimic



Hu et al. Journal of Neuroinflammation (2021) 18:68 Page 7 of 13

A B
g 104 mimics NC mimics 1000
2 gl . -, . . 800 -
(0]
05 e}
S 6 E 600
le c
T 4 = 400
° (@)
z 2] 200-
kS
& c ] ] G L} ]
@) S @) S
< © < N
c
Iba1 CD68 DAPI Merge

mimics NC

mimics

g 4 T 150001 . 2000 o

< 3 T2 4 T 4 21000-

i & 210000 s

e IS 3' = o |

Q 27 = g 5 1007

[<¢] — 24 = o

3 2 © 5000 L

e 2 1 = ~ 501

§ c T T § 0 T ' 0- c ' )

O @ éo & éo e %O &

& & & & & &
N N N N

Fig. 3 MiR-409-3p promoted murine BV-2 microglial migration, activation and neuroinflammation. a Murine BV-2 cells were transfected with miR-409-
3p mimics NC or miR-409-3p mimics. The miR-409-3p levels were detected by gqRT-PCR. b The migratory ability of murine BV-2 cells was measured by
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and Nr4a2-WT groups relative to that in the control
groups, which indicated that Nr4a2 was a direct target
of miR-409-3p (Fig. 4b). Moreover, Western blot analysis
showed that high miR-409-3p levels downregulated
Nr4a2 protein expression and upregulated NF-kB pro-
tein expression (Fig. 4c).

Furthermore, we co-transfected miR-409-3p mimics
and Lv-Nr4a2 into murine BV-2 cells to assess whether
the regulatory effect of miR-409-3p depended on Nr4a2.
The transfection efficiency and corresponding changes
in NF-kB/p65 expression are shown in Fig. 4d. Transwell
assays showed that the number of migrating cells in the
miR-409-3p mimics and Lv-Nr4a2 groups (mimics + Lv-
Nr4a2) was partly reduced compared with that in the
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control groups (Fig. 4e). Similarly, the IL-6 and TNF-a
levels were clearly attenuated (Fig. 4f, g).

Overall, these data support the view that miR-409-3p
acted as a pro-neuroinflammatory molecule by targeting
Nr4a2 to activate the NF-«xB pathway.

Exosome-mediated transfer of miR-409-3p promoted
microglial migration, activation and neuroinflammation.

To further confirm the role of the exosome-mediated
transport of miR-409-3p to murine BV-2 microglia, we
performed a rescue experiment. After murine P815 cells
were transfected with a miR-409-3p inhibitor or inhibi-
tor NC, all the cells were treated with LPS. Compared to
the control groups, the murine P815 cells transfected
with a miR-409-3p inhibitor and treated with LPS
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Fig. 5 Exosome-mediated transfer of miR-409-3p promoted microglial migration, activation and neuroinflammation. a, b After murine P815 cells
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exhibited reduced miR-409-3p levels in both the cells
and exosomes (Fig. 5a, b). Then, murine BV-2 cells were
cultured with the corresponding exosomes extracted
from these three groups. Similar to the results described
above, the relative miR-409-3p level was reduced in the
murine BV-2 cells cultured with LPS + inhibitor exo-
somes (LPS + inhibitor exo) (Fig. 5¢). As shown in Fig.
5d, e, both the migration and activation of murine BV-2
microglia were decreased in the LPS + inhibitor exo-
somes group compared with the control groups. The IL-
6 and TNF-a levels were also clearly decreased in the
LPS + inhibitor exosomes group (Fig. 5f, g). In addition,
Western blot analysis showed upregulated Nr4a2 and
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downregulated NF-kB protein levels in the LPS + inhibi-
tor exosomes group (Fig. 5h).

Exosomes secreted by mast cells rich in miR-409-3p
promoted microglial activation

Finally, in vivo, PBS, P815-miR-409-3p mimics NC-
exosomes (mimics NC exo) and P815-miR-409-3p
mimics-exosomes (mimics exo) were administered to
C57BL/6 mice by tail vein injection. Ibal was used to
detect microglia, and CD68 was used to detect micro-
glial activation. After 3 days, through immunofluores-
cence assay, we found that compared with the PBS
group and mimic NC exo group, the mimics exo group
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Fig. 6 Exosomes secreted by mast cells rich in miR-409-3p promoted microglial activation. a Ibal and CD68 was used to detect microglial activation.
Immunofluorescence assays were used to measure the Ibal and CD68 levels in the hippocampus in the PBS group, P815-miR-409-3p mimics NC-
exosomes group (mimics NC exo) and P815-miR-409-3p mimics-exosomes group (mimics exo). Scale bar 50 um. b Western blotting was used to
detect Nr4a2 and NF-kB/p65 protein expression. n = 5 C57BL/6 mice per group
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exhibited increased microglial activation (Fig. 6a). More-
over, Western blot analysis showed that decreased
Nr4a2 and increased NF-kB/p65 levels were observed in
the mimics exo group (Fig. 6b). These results initially
demonstrated that mast cell-derived miR-409-3p could
cause microglial activation.

Discussion

Prior studies have placed substantial emphasis on the
roles of cytokines and chemokines in the functional as-
pects of mast cell-microglia interactions during neuroin-
flammation [25]. Importantly, we demonstrated a new
regulatory mechanism that occurs via exosome-mediated
cell-to-cell communication; our findings suggested that
exosomal miRNAs participate in the interaction between
mast cells and microglia and thus promote neuroinflam-
mation. As shown in the pattern diagram in Fig. 7, acti-
vated mast cells transfer exosomal miR-409-3p to
microglia, downregulate Nr4a2 expression and activate
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the NF-xB pathway, thereby promoting microglial mi-
gration, activation and neuroinflammation.

Our previous study showed that the cell culture super-
natants of LPS-activated P815 cells could induce micro-
glial activation and neuroinflammation [17], which led
us to question whether this effect might be partly caused
by other products released from LPS-activated P815
cells. Mast cells are known to be sources of exosomes
that contribute to inflammation [26]. Thus, we obtained
high numbers exosomes from LPS-stimulated P815 cells,
which was consistent with other research [12]. Micro-
glial activation has a dual effect on neuroinflammation.
On the one hand, M1 polarisation exerts a harmful ef-
fect by releasing proinflammatory cytokines (TNF-a, IL-
6 and IL-1B). On the other hand, M2 polarisation exerts
a beneficial effect by secreting anti-inflammatory cyto-
kines (TGF-B, IL-10 and IL-4) [27, 28]. Interestingly,
exosomes were efficiently taken up by murine BV-2
microglia and led to increases in the levels of CD86, IL-
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1B and inflammatory cytokines (IL-6, TNF-a), which
suggested that LPS-P815 exosomes promoted microglial
activation and neuroinflammation. An in vivo experi-
ment revealed that after exposure to LPS, the ratio of
exosome uptake by recipient mouse microglia was
86.8%, and many inflammation-related microRNAs
(miR-15a, miR-15b, miR-21, miR-27b, miR-125a, miR-
146a and miR-155) were observed at significantly higher
levels in these exosomes [15]. This in vivo experiment
also confirmed that exosomal miRNAs might pass
through the brain-blood barrier (BBB) by impairing tight
junctions and enhancing BBB permeability, which pro-
vided new ideas for our future research.

Importantly, our study was the first to reveal the fol-
lowing: (1) exosomes secreted from activated mast cells
promoted microglial migration, activation and neuroin-
flammation; (2) miR-409-3p levels were increased in ac-
tivated mast cells and exosomes and were transferred to
murine BV-2 microglia via exosomes; (3) upregulated
miR-409-3p promoted microglial migration, activation
and neuroinflammation by targeting Nr4a2 to activate
the NF-«kB pathway; and (4) exosome-mediated transfer
of miR-409-3p promoted microglial migration, activation
and neuroinflammation.

Emerging studies have demonstrated that miRNAs
promote microglial activation by modulating target
genes [29]. Through microarray analysis, we found in-
creased levels of miR-409-3p in LPS-P815 cells and in
the corresponding exosomes. Moreover, miR-409-3p
levels were increased in murine BV-2 cells incubated
with LPS-P815 exosomes. Liu et al. reported that miR-
409-3p is implicated in the IL-17-induced release of in-
flammatory cytokines by astrocytes and in the pathogen-
esis of experimental autoimmune encephalomyelitis in
mice through the regulation of the SOCS3/STAT3 path-
way [30]. Here, we found that upregulated miR-409-3p
levels promoted murine BV-2 microglial migration, acti-
vation and neuroinflammation. Based on the intersecting
outputs from the three prediction software programs, we
focused on the target gene Nr4a2 to further explore the
molecular mechanism by which miR-409-3p affected
murine BV-2 microglia. A recent study on Nr4a2 was
consistent with the evidence that Nr4a2 might exert its
neuroprotective effects via its function in neurons [31].
By using a luciferase reporter assay and Western blot-
ting, our work indicated a negative regulatory mechan-
ism between miR-409-3p and Nr4a2, which led to
activation of the NF-kB pathway.

However, there are several limitations of this study. (1)
Exosomes also contain inflammatory factors and other
molecules that affect inflammation. This study only dis-
cussed the effect of exosomal miRNAs on inflammation.
The inflammatory response is a complex process in which
multiple molecules and pathways interact and regulate
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each other. Therefore, the specific mechanism of the in-
flammatory response still needs to be further explored. (2)
This study mainly performed in vitro experiments. In
addition, the in vivo experimental design was relatively
simple, and those experiments were only preliminary
studies. Thus, further in-depth studies will be carried out
with clinical specimens and animal models in the future.
Regardless, our study was the first to reveal that exosomal
miRNAs are involved in the mast cell-microglia interac-
tions related to neuroinflammation.

Conclusion

In summary, our study showed that exosomal miR-409-
3p secreted from activated mast cells promotes micro-
glial migration, activation and neuroinflammation by tar-
geting Nrda2 to activate the NF-kB pathway. These
findings provide evidence that not only cytokines or che-
mokines but also exosomal miRNAs participate in the
progression of neuroinflammation. In the future, target-
ing exosomal miRNAs may provide new insights for the
treatment of neuroinflammation.
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