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Soluble tumor necrosis factor-alpha-
induced hyperexcitability contributes to
retinal ganglion cell apoptosis by
enhancing Nav1.6 in experimental
glaucoma
Shuo Cheng1, Hong-Ning Wang1, Lin-Jie Xu1, Fang Li1, Yanying Miao1, Bo Lei2, Xinghuai Sun3* and
Zhongfeng Wang1*

Abstract

Background: Neuroinflammation plays an important role in the pathogenesis of glaucoma. Tumor necrosis factor-
alpha (TNF-α) is a major pro-inflammatory cytokine released from activated retinal glial cells in glaucoma. Here, we
investigated how TNF-α induces retinal ganglion cell (RGC) hyperexcitability and injury.

Methods: Whole-cell patch-clamp techniques were performed to explore changes in spontaneous firing and
evoked action potentials, and Na+ currents in RGCs. Both intravitreal injection of TNF-α and chronic ocular
hypertension (COH) models were used. Western blotting, immunofluorescence, quantitative real-time polymerase
chain reaction (q-PCR), and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) techniques were
employed to investigate the molecular mechanisms of TNF-α effects on RGCs.
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Results: Intravitreal injection of soluble TNF-α significantly increased the spontaneous firing frequencies of RGCs in
retinal slices. When the synaptic transmissions were blocked, more than 90% of RGCs still showed spontaneous
firing; both the percentage of cells and firing frequency were higher than the controls. Furthermore, the frequency
of evoked action potentials was also higher than the controls. Co-injection of the TNF-α receptor 1 (TNFR1)
inhibitor R7050 eliminated the TNF-α-induced effects, suggesting that TNF-α may directly act on RGCs to induce
cell hyperexcitability through activating TNFR1. In RGCs acutely isolated from TNF-α-injected retinas, Na+ current
densities were upregulated. Perfusing TNF-α in RGCs of normal rats mimicked this effect, and the activation curve of
Na+ currents shifted toward hyperpolarization direction, which was mediated through p38 MAPK and STAT3
signaling pathways. Further analysis revealed that TNF-α selectively upregulated Nav1.6 subtype of Na+ currents in
RGCs. Similar to observations in retinas of rats with COH, intravitreal injection of TNF-α upregulated the expression
of Nav1.6 proteins in both total cell and membrane components, which was reversed by the NF-κB inhibitor BAY
11-7082. Inhibition of TNFR1 blocked TNF-α-induced RGC apoptosis.

Conclusions: TNF-α/TNFR1 signaling induces RGC hyperexcitability by selectively upregulating Nav1.6 Na+ channels,
thus contributing to RGC apoptosis in glaucoma.
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Introduction
Glaucoma, the leading cause of irreversible blindness, is
a retinal neurodegenerative disease, which affects over
60 million people around the world [1–3]. Progressive
apoptotic death of retinal ganglion cells (RGCs) and
degeneration of RGC axons and dendrites, resulting in
visual field loss, are the fundamental pathogenesis of
glaucoma [4–8]. Although aging is the chief risk factor
for the development of glaucoma and sensitivity of
ocular tissues to elevated IOP is an associated risk factor
[9, 10]; however, reduction of IOP could not completely
prevent the pathological progression of glaucoma [11, 12],
suggesting that the mechanisms underlying RGC loss in
glaucoma are complicated. Increasing evidence indicates
that neuroinflammation induced by excessive pro-
inflammatory factors, which are released from activated
retinal glial cells, plays significant roles in RGC damage in
glaucoma [13–15].
Tumor necrosis factor-alpha (TNF-α), a classical

inflammation cytokine, exerts multiple functions in the
nervous system by binding to two types of TNF-α
receptor (TNFR1 and TNFR2) [16, 17]. Soluble TNF-α
(17 kDa) preferentially binds to TNFR1, leading to neu-
roinflammation and cell death [18–20], while transmem-
brane TNF-α (22 kDa) primarily binds to TNFR2 that
mediates neuroprotective effects [21, 22]. TNF-α also
plays important roles in the pathogenesis of retinal dis-
eases, such as glaucoma. Previous studies have demon-
strated that TNF-α was involved in retinal axon loss and
RGC death in glaucoma [23–25]. TNF-α-induced RGC
death in glaucoma could be mediated by multiple
pathways. TNF-α caused RGC loss by activation of death
signaling, such as caspase 8 and oxidative stress [26]. In
chronic ocular hypertension (COH) model, soluble TNF-α
induced GluA2 subunit of AMPA receptor endocytosis

and activated Ca2+-permeable GluA2-lacking AMPA
receptors in RGCs, thus promoting RGC death [24].
Direct neutralization of soluble TNF-α in the retina
of experimental glaucoma was able to reduce RGC
death efficiently [24, 27].
In a previous study, we have shown that in a rat

experimental glaucoma model, IOP elevation led to
depolarized resting membrane potential in RGCs, and
the cells displayed hyperexcitability, which was character-
ized by increased spontaneous firing. The hyperexcitability
of RGCs could be attenuated by intravitreal pre-injecting
the TNF-α antagonist XPro1595 and the nitric oxide
(NO) antagonist L-NAME, indicating that inflammatory
factors released from retinal glial cells may be involved
[28]. Neuronal hyperexcitability has been demonstrated to
be associated with cell apoptosis [29–31]. Changes in ion
channels may contribute to the production of hyperexcit-
ability, especially voltage-gated K+ and Na+ channels. Al-
though it is reported that TNF-α could modulate outward
K+ currents in RGCs [32], the mechanisms underlying
TNF-α-induced hyperexcitability of RGCs in glaucoma
are largely unknown. In this study, we show that TNF-α
enhanced RGC excitability by upregulating Nav1.6 chan-
nels through activating TNFR1, thus contributing to RGC
apoptosis.

Materials and methods
Animals
Male Sprague-Dawley rats (4 weeks old, weighing
100~110 g) were obtained from the SLAC Laboratory
Animal Co., Ltd. (Shanghai, China) and housed under a
12-h light/dark cycle with enough food and water. All
animal experiments were performed in accordance with
the National Institutes of Health (NIH) guidelines for
the Care and Use of Laboratory Animals and were
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approved by the Institutes of Brain Science at Fudan
University. All the experiments described in this study
were performed by researchers that were blind with
respect to the treatments.

Intravitreal injection
Recombinant rat TNF-α (5 ng in 1 ml of 0.9% saline
with 0.1% BSA, R&D systems, Minneapolis, MN, USA)
(2 μl) was injected into the right vitreous cavity of the
anesthetized rat with a micro-injector (Hamilton, Reno,
NV, USA) under a stereoscopic microscope (Carl Zeiss).
Given that the vitreous volume is ∼20 μl [33, 34], the
concentration of TNF-α in the vitreous cavity is ∼0.5 ng/
ml. 2 μl of 8-chloro-4-(phenylthio)-1-(trifluoromethyl)-
[1,2,4]triazolo[4,3-a]quinoxaline (R7050, 10 μM, Tocris
Bioscience, Ellisville, USA), BAY 11-7082 (10 μM),
stattic (10 μM), or SB203580 (10 μM) (Selleck Chemical,
Houston, TX) was intravitreally injected in the same
manner. The eyes that received saline injection were
used as controls. Details of the operation were described
in our previous reports [28, 35].

Rat COH model
Rat COH model was produced in accordance with previ-
ous studies [28, 35]. In brief, the rat was anesthetized
with 10% chloral hydrate (4 ml/kg, i.p.), and the oper-
ation eye (right eye) was further anesthetized with 0.4%
oxybuprocaine hydrochloride eyedrop (Benoxil, Santen
Pharmaceutical Co., Ltd., Osaka, Japan). The micro-
magnetic beads (10 μl, diameter ≈ 10 μM, BioMag®
Superparamagnetic Iron Oxide, Bangs Laboratories, Ins)
were slowly injected into the anterior chamber under an
OPMI VISU 140 microscope (Carl Zeiss, Jena,
Germany). A small handheld magnet (0.45 Tesla) was
used to distribute the microbeads evenly around the
iridocorneal angle. The IOP was measured using a hand-
held digital tonometer (Tonolab, TioLat, Finland) under
general anesthesia as described above. The average value
of five consecutive measurements with a deviation of <
5% was accepted. The IOPs of both eyes were measured
before surgery (baseline), immediately after operation
(day 0), the day after the operation (day 1, COH1D), the
third day (COH3D), and 1 and 2 weeks after the oper-
ation (COH1W, COH2W). All the measurements were
performed at 9:00–10:00 a.m. to avoid the possible influ-
ence of circadian rhythms on IOP [36].

Preparation of retinal slices and isolated RGCs
Rat retinal slices (200 μm in thickness) were made on a
Leica Vibrotome (VT1000S) and incubated in carbogen
saturated (95% O2 and 5% CO2) artificial cerebral spinal
fluid (ACSF) containing the following (in mM): 125
NaCl, 2.5 KCl, 25 NaHCO3, 1.25 NaH2PO4, 2.5 CaCl2, 1
MgCl2, and glucose 10 (pH 7.4) for 30 min at room

temperature (22–24°C) before recording. To isolate
RGCs, the retinas of anesthetized rats were removed
quickly and incubated in the oxygenated Hank’s solution
containing the following (in mM): NaCl 137, NaHCO3

0.5, NaH2PO4 1, KCl 3, CaCl2 2, MgSO4 1, HEPES 20,
and glucose 16 (pH 7.4). After digesting in Hank’s solu-
tion with 1.6 U/ml papain (Worthington Biochemical,
Freehold, NJ, USA) and 0.2 mg/ml L-cysteine for 26 min
at 34°C, retinal neurons were obtained by mechanical
dissociation. The detailed procedures were described in
our previous reports [37, 38].

Patch-clamp recordings
Whole-cell patch-clamp experiments were performed
using a patch-clamp amplifier (Axopatch 700B) and
Digidata 1440A (Molecular Devices, Foster City, CA,
USA) at room temperature. Patch pipettes (BF150-86-10
glass, Sutter Instrument Co., Novato, CA, USA) were
pulled by a P-97 Flaming/Brown micropipette puller
(Sutter Instrument) with a resistance of 5–8 MΩ after
fire-polishing (Model MF-830, Narishige, Japan).
For spontaneous firing recordings in RGCs, the

individual retinal slice was continuously superfused with
oxygenated ACSF at a rate of 1–2 ml/min at room
temperature. RGCs in retinal slices were identified with
the help of infrared-differential interference contrast (IR-
DIC) video microscopy (Olympus, Japan) as described
[28, 38]. Patch pipette solution contained (in mM): 120
potassium D-gluconate, 1 EGTA, 10 HEPES, 4 ATP-Mg,
0.3 GTP-Na, 10 phosphocreatine, 0.1 CaCl2, 1 MgCl2,
and Alexa Fluor 488 (pH 7.2 adjusted with KOH, 290–
300 mOsm/L). To record Na+ currents, the bath solu-
tion was consisted of (in mM) 130 NaCl, 2 CaCl2, 1
MgCl2, 10 HEPES, 15 tetraethylammonium (TEA)-Cl, 10
4-aminopyridine (4-AP), and 10 glucose (pH 7.4 with
NaOH, 300–310 mOsm/L with sucrose). The patch pip-
ette solution contained (in mM) 130 CsCl, 10 NaCl, 5
HEPES, 8 EGTA, 10 TEA-Cl, 2 ATP-Mg, and 1 GTP-Na
(pH 7.2 adjusted with CsOH, 290–300 mOsm/L with su-
crose). Na+ currents were induced by a series of 50 ms
depolarizing voltage pulses from a holding potential of
−70 to +30 mV in increments of 10 mV. The inactiva-
tion curves of voltage-gated sodium channels (VGSCs)
were detected by giving RGC a 200 ms pre-pulse from
−70 mV (holding potential) to different voltages and
then depolarizing to −10 mV. Both activation and inacti-
vation curves were fitted by Boltzmann function.

Western blotting
Western blotting analysis was conducted following the
procedures previously described [35]. Briefly, retinal total
proteins or membrane proteins were extracted, and pro-
tein concentrations were determined with a bicinchoni-
nic acid (BCA) assay kit (Pierce Biotechnology, IL, USA).
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Protein samples were then separated by SDS-PAGE gel
in 6 or 10% and transferred to a PVDF membrane
(Immobilon-P, Millipore, Billerica, MA, USA). The
PVDF membrane was blocked for 6 h in 5% non-fat
powdered milk and then incubated with primary
antibody overnight at 4°C. In this study, the following
primary antibodies were used: monoclonal mouse anti-
β-actin (1:3000 dilution, Sigma-Aldrich, St. Louis, MO,
USA), anti-TNF Receptor 1 (1:5000 dilution, Abcam,
Cambridge, MA, USA), anti-TNF Receptor 2 (1:12000
dilution, Abcam), anti-Nav1.6 (1:600 dilution, Alomone
Labs, Israel), and anti-GAPDH (1:1000 dilution, Cell
Signaling Technology, MA, USA). The membranes were
then incubated at room temperature for 1 h with donkey
anti-mouse, rabbit, or goat IgG HRP (Jackson Immu-
noResearch Labs, Wes Grove, PA, USA). The blots were
visualized by an Odyssey near-infrared imaging scanner
(FluorChem E System, Protein Simple, USA).

Immunohistochemistry
The protocol of immunofluorescence staining was
followed as described in previous studies [35]. In short,
dissected eyes were dehydrated with 10%, 20%, and 30%
sucrose solutions gradually and fixed with 4% paraformal-
dehyde at 4°C for 12 h. Retinal slices at 14-μm thickness
were vertically sectioned and blocked with a mixture of
3% bovine serum and PBS on chrome-alum-gelatin-coated
slides (Thermo-Fisher Scientific, Pittsburgh, PA, USA).
The slices were incubated with the primary antibodies:
anti-NaV1.6 (1:600 dilution, Alomone Labs) and anti-Brn-
3a (1:400 diluted, Santa Cruz Biotechnology, Santa Cruz,
VA, USA) at 4°C for 48 h. For negative control, Nav1.6
antibody was pre-absorbed by Nav1.6 blocking peptide
(Alomone Labs). Then, the slices were incubated with
Cy3- or Alexa Fluor 488-labeled secondary antibodies (1:
400 diluted, Sigma-Aldrich) for 2 h at room temperature.
150 μl of the DAPI working solution was added to each
slide for detecting cell nuclei. After washing, the sections
were covered with an anti-fade mounting medium and
photographed with FluoView 1000 confocal microscope
(Olympus, Tokyo, Japan).

Terminal deoxynucleotidyl transferase dUTP nick end
labeling (TUNEL)
To detect neuronal apoptosis, the deoxynucleotidyl
transferase-mediated biotinylated UTP nick end labeling
(TUNEL) assay was performed on whole flat-mounted
retinas [35]. The DeadEnd Fluorometric TUNEL System
G3250 kit (Promega, Madison, WI, USA) was used
according to the manufacturer’s instructions. The whole
retina was analyzed, and all TUNEL-positive signals that
merged well with DAPI were counted. The fluorescence
images were captured using the confocal microscope
through a 20× objective (FluoView 1000, Olympus, Japan).

Quantitative real-time PCR
Total RNA was extracted from the whole retina using
the TaKaRa MiniBEST Universal RNA Extraction Kit
(#9767, Takara, Japan). Quantitative real-time polymer-
ase chain reaction (q-PCR) was carried out using the Pri-
meScript™ RT reagent Kit with gDNA Eraser (#RR047A,
Takara, Japan), and mRNA was measured using a TB
Green® Premix Ex Taq™ II (#RR820A, Takara, Japan).
The qPCR assays were performed on the QuantStudio 3
Real-Time PCR system (Thermo Fisher Scientific, USA).
The relative mRNA levels were normalized from Ct
values according to 2-△△ct calculation method. The se-
quences of primers used in this study are as follows:
Nav1.1, forward 5′-GCG ATT ATG TGA CAA GCA
TTT TG-3′, reverse 3′-CGG AGG GAG ATG AGC
TTC AG-5′; Nav1.2, forward 5′-TTC ATG GCT TCC
AAT CCC TCC-3′, reverse 3′-GGT GTC ACG TCA
GTC TTC TCT-5′; Nav1.6, forward 5′-GCA AGC TCA
AGA AAC CAC CC-3′, reverse 3′-CCG TAG ATG
AAA GGC AAA CTC T-5′; β-actin, forward 5′-AGC
CAT GTA CGT AGC CAT CC-3′, reverse 3′-CTC
TCA GCT GTG GTG GTG AA-5′.

Reagents and drugs
R7050, D-(-)-2-amino-5-phosphonopentanoic acid (D-APV),
bicuculline, CNQX, 4,9-anhydrotetrodotoxin (AHTTX),
and TTX were purchased from Tocris (Tocris Bio-
science, Ellisville, MO, USA). BAY 11-7082, SB203580
and stattic were from Selleck (Selleck Chemical), and
the others were from Sigma-Aldrich (St. Louis, MO,
USA).

Statistical analysis
Data were analyzed using GraphPad Prism (version 6.02,
Graphpad Software Inc., USA), Clampfit 10.2 (Molecular
Devices, Foster City, CA, USA), Igor 4.0 (WaveMetrics,
Lake Oswego, OR, USA), and Origin 2018 (OriginLab,
Northampton, MA, USA). In this work, the “n” repre-
sents cell number in electrophysiological experiments, or
animal number in Western blotting, q-PCR, and TUNEL
experiments. A Boltzmann function was used to fit the
activation and inactivation curves. All experiments and
measurements were performed in quadruplicate minim-
ally and analyzed by t test, Brown-Mood test, Mann-
Whitney test, or one-way ANOVA with Bonferroni’s
post hoc test (multiple comparisons). Before perform-
ing t test or one-way ANOVA analysis, the data were
analyzed using Shapiro-Wilk test or Brown-Forsythe
test to evaluate the normality or the homogeneity of
variance. Membrane potential and frequency of spon-
taneous firing were presented as a median and inter-
quartile range, while the other data were expressed as
mean ± SEM. The threshold for statistical significance
was P < 0.05 in all tests.
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Results
TNF-α/TNFR1 pathway contributes to RGC
hyperexcitability
Since IOP elevation-induced hyperexcitability of RGCs
in COH retinas could be reversed by TNF-α and NO
blockers [28], we first examined whether TNF-α could
induce RGC hyperexcitability in normal rats. Soluble
TNF-α (5 ng/ml, 2 μl) was intravitreally injected, and
retinal slices were made for electrophysiological record-
ings at 3 and 7 days (TNF-α3D and TNF-α7D) after the
injections. In this study, all recordings in retinal slices
were made on RGCs with a soma diameter of 10–15
μm, including both ON and OFF type cells, which were
identified by their dendrite distribution in the IPL la-
beled by Alexa Fluor 488 and by negative current injec-
tions [38]. In previous studies [28, 38], we have shown
that there were no significant differences between these
two types of RGCs in both the frequency of spontaneous
firing and the membrane potential under our recording
conditions. Additionally, it was reported that at an early
stage (2 weeks) of IOP elevation, dendritic pruning, and
a transient increase in axon firing of RGCs in response
to the preferred light stimulus were observed, which was
independent of ON and OFF RGCs [6]. Therefore, data
obtained from both types of RGCs were pooled in this
study. As shown in Fig. 1a, RGCs displayed spontaneous
firing under the current-clamped condition in normal
rats (control, Ctr). Perfusion of the cocktail synaptic
blockers, including bicuculline (10 μM), strychnine (10
μM), CNQX (10 μM), and D-APV (50 μM), almost com-
pletely blocked the spontaneous firing of the cell, similar
to our previous report [38]. In the presence of cocktail
synaptic blockers, current injection (+20 pA) could
evoke the cell to fire action potentials (APs). In TNF-α
injected retinas, the frequencies of spontaneous firing
were significantly increased to 2.00 Hz (1.22, 3.87) (n = 11,
P = 0.0018) and 3.40 Hz (2.66, 5.49) (n = 11, P < 0.001) in
TNF-α3D and TNF-α7D groups, respectively, from the
control value of 0.41 Hz (0.15, 0.97) (n = 12) (Fig. 1a, b).
Although the membrane potentials (MP) of RGCs showed
a trend toward depolarization in TNF-α injected retinas,
there was no significant difference between control and
TNF-α injected groups (Fig. 1a, c). When the synaptic
transmissions were blocked, more than 90% of RGCs still
showed spontaneous firing in both TNF-α3D and TNF-
α7D groups, and the percentage of AP firing cells was
higher than that of control (30.7%) (Fig. 1d, inset).
Additionally, the frequencies of spontaneous firing were
significantly increased (TNF-α3D: 0.25 Hz (0.13, 0.35), n =
11, P = 0.0054; TNF-α7D: 0.76 Hz (0.15, 1.59), n = 11, P =
0.0026), as compared to the control group (0.00 Hz (0.00,
0.08), n = 11) (Fig. 1d). Similarly, the frequencies of
evoked AP were increased to 1.06 Hz (0.63, 3.04) (n = 11,
P = 0.0353) and 4.22 Hz (1.24, 6.50) (n = 11, P = 0.0007)

in TNF-α3D and TNF-α7D groups, respectively, from the
control value of 0.23 Hz (0.05, 1.15) (n = 13) (Fig. 1e).
Since soluble TNF-α-mediated effects are mainly through
binding to TNFR1 [18–20], we examined whether TNF-α-
induced RGC hyperexcitability is mediated by this recep-
tor. Intravitreal co-injection of R7050 (10 μM, 2 μl), an
inhibitor of TNFR1 signaling [39], blocked the TNF-α-
induced increase in frequencies of spontaneous firing (Ctr:
0.41 Hz (0.15, 0.97), n = 12; TNF-α7D: 3.40 Hz (2.66,
5.49), n = 11, P < 0.001 vs. Ctr; R 7050+TNF-α7D: 0.95 Hz
(0.30, 1.56), n = 14, P < 0.001 vs. TNF-α7D alone)
(Fig. 1f–i). These results suggest that TNF-α may dir-
ectly act on RGCs to induce cell hyperexcitability
through activating TNFR1.
We also determined whether intravitreal injection of

TNF-α may change the expression of TNF-α receptors.
As shown in Fig. 2, in TNF-α-injected retinas, the pro-
tein levels of TNFR1 expression were significantly in-
creased to 141.9 ± 8.2% of control (n = 7, P = 0.0147)
and 143.9 ± 12.4% of control (n = 7, P = 0.0104) in
TNF-α3D and TNF-α7D groups, respectively. As a posi-
tive control, the TNF-α protein levels were increased to
158.5 ± 11.7% of control in COH retinas at week 2
(COH2W) (n = 7, P < 0.001) (Fig. 2a, b). In contrast, the
protein levels of TNFR2 expression kept unchanged in
both TNF-α-injected and COH retinas (Fig. 2a, c). Fur-
thermore, co-injection of R7050 abolished the TNF-α-
induced upregulation of TNFR1 expression (TNF-α7D:
137.1 ± 11.1% of control, n = 7, P = 0.0147 vs. Ctr; R
7050+TNF-α7D: n = 7, 105.3 ± 7.8% of control, P =
0.0377 vs. TNF-α7D) (Fig. 2d, e).

TNF-α selectively upregulates Nav1.6 currents in RGCs
Previous studies have shown that TNF-α could regulate
VGSCs in neurons, thus influencing neuronal excitability
[40–42]. We tested the possibility that VGSCs are in-
volved in TNF-α-induced RGC hyperexcitability. Whole
cell Na+ currents were recorded in acutely isolated RGCs
(Fig. 3a) from control and TNF-α intravitreally injected
(TNF-α7D) rats. As compared with the controls, Na+

current densities in the TNF-α7D group were signifi-
cantly and voltage-dependently increased (Fig. 3b, c).
For example, at −30 mV peak Na+ current density was
increased to −180.8 ± 14.7 pA/pF (n = 14; P = 0.0032)
from the control value of −124.6 ± 4.45 pA/pF (n = 11)
(Fig. 3d).
Upregulation of Na+ currents induced by intravitreal

injection of TNF-α may be mediated by directly regulat-
ing ion channels or/and increasing ion channel protein
expression. We first tested the effect of TNF-α on
VGSCs in acutely isolated RGCs from normal rats.
Figure 4a shows the representative Na+ currents re-
corded in an RGC before and after TNF-α (5 ng/ml) ap-
plication. TNF-α significantly and voltage-dependently
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Fig. 1 TNF-α induces hyperexcitability of RGCs through activating TNFR1. a Representative traces show spontaneous firing and evoked action
potentials (AP) that were recorded in three different RGCs in rat retinal slices obtained from control (Ctr), 3 days (TNF-α3D) and 7 days (TNF-α7D)
after intravitreal TNF-α injections. (a1) and (a2) are those from the recordings in a in a faster time scale. b, c Summary data show the changes in
frequency (b) and membrane potential (MP) (c) of spontaneous firing in RGCs under different conditions. d Summary data show the changes in
the frequency of spontaneous firing in RGCs under different conditions when synaptic transmissions were blocked. The insert shows the
percentage of AP firing cells in different groups. e Summary data show the changes in the frequency of evoked AP under different conditions. n
= 11 for each group. f–h Representative traces show spontaneous firing that was recorded in three different RGCs in rat retinal slices obtained
from Ctr, TNF-α7D, and R7050+TNF-α7D groups, respectively. i Summary data show that the TNFR1 inhibitor R7050 eliminated TNF-α-induced
increase of spontaneous firing frequency. n = 12, 11, 14, respectively. Data are represented as median and interquartile range. *P < 0.05, **P <
0.01, and ***P < 0.001 vs. Ctr; ###P < 0.001 vs. TNF-α7D
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enhanced peak Na+ current densities (Fig. 4b). In
addition, the effect of TNF-α on Na+ currents was re-
versible. As shown in Fig. 4c, at −20 mV, stable current
recordings could be kept for almost 8 min, perfusion of
TNF-α reversibly increased the current amplitudes to
152.2 ± 10.5% of control (n = 11, P < 0.001), and wash-
out pushed the currents almost to control levels (Fig. 4d,
e). We also examined the changes of activation and inacti-
vation curves of Na+ currents in RGCs before and after
TNF-α application. As shown in Fig. 5a, the activation
curve of Na + currents was shifted toward hyperpolariza-
tion direction after TNF-α application, with a V1/2 value

being −41.20 ± 1.4 mV (n = 10, P = 0.0102) that was
significantly different from control value (−38.12 ±
1.21 mV, n = 10) (Fig. 5b). However, TNF-α did not
change the inactivation curve (control: V1/2 = −49.5 ±
2.1 mV, n = 7; TNF-α: V1/2 = −49.6 ± 2.3 mV, n = 7,
P = 0.7648) (Fig. 5c, d). These results suggest that
TNF-α could directly enhance Na+ currents and in-
crease the activation probability of the channels.
It was reported that p38 MAP kinase (p38 MAPK) and

signal transducer and activator of transcription 3
(STAT3) signaling pathways were involved in TNF-α-
mediated effects [43, 44]. The mechanisms underlying

Fig. 2 TNF-α induces upregulation of TNFR1 expression. a Representative immunoblots show the changes of TNFR1 and TNFR2 protein levels in
control (Ctr), TNF-α3D, TNF-α7D, and COH2W retinas. b, c Bar charts summarize the average densitometric quantification of TNFR1 (b) and TNFR2
(c) in different groups. n = 6 for each group. d, e Representative immunoblots and the relative protein levels of TNFR1 in control (Ctr), TNF-α7D,
and R 7050+TNF-α7D retinas. n = 7 for each group. *P < 0.05, and ***P < 0.001 vs. Ctr; #P < 0.05 vs. TNF-α7D
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the TNF-α-induced enhancement of Na+ currents were
explored. Figure 6a, b shows that TNF-α-induced upreg-
ulation of Na+ currents in RGCs was eliminated when
the cells were pre-incubated with SB203580 (10 μM), a
p38 MAPK inhibitor, for 30 min (100.4 ± 2.8% of con-
trol, n = 10, P = 0.8777). Similar results were obtained
when RGCs were pre-incubated with Stattic (10 μM), a
STAT3 inhibitor (99.4 ± 2.6% of control, n = 10, P =
0.8148) (Fig. 6c, d). These results indicate that TNF-α
upregulates Na+ currents in RGCs through p38 MAPK
and STAT3 signaling pathways.

RGCs express functional Nav1.1, Nav1.2, and Nav1.6 Na+

channels, and Nav1.6 is the predominant one [45–47]. We
examined which subtype(s) may be modulated by TNF-α.
As shown in Fig. 7a, an RGC was pre-incubated with the
Nav1.1 blocker ICA121421 (1 μM) and the Nav1.2 blocker
phrixotoxin3 (10 nM). In the presence of these blockers,
perfusion of TNF-α still increased Na+ currents. The aver-
age current amplitudes were increased to 128.3 ± 4.3% of
control (n = 8, P < 0.001) (Fig. 7b). In contrast, when RGCs
were pre-incubated with the Nav1.6 blocker 4,9-anhydrote-
trodotoxin (AHTTX, 100 nM), perfusion of TNF-α no

Fig. 3 TNF-α voltage-dependently increases Na+ current density in RGCs. a Micrograph showing a typical acutely isolated RGC for recording. b
Representative traces show Na+ currents recorded in acutely isolated RGCs from control (Ctr) and TNF-α7D retinas. The holding potentials of RGCs
were set at −70 mV and the currents were evoked in the range of −70 to +30 mV with steps of 10 mV. c Current-voltage relationship curves of
Na+ currents in RGCs of Ctr and TNF-α7D retinas. n = 11 and 14 for Ctr and TNF-α7D groups, respectively. d Summary data show the peak
current densities of Na+ channels at −30 mV in RGCs of Ctr and TNF-α7D retinas. n = 11 and 14 for Ctr and TNF-α7D groups, respectively. *P <
0.05, **P < 0.01, and ***P < 0.001 vs. Ctr
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Fig. 4 TNF-α increases Na+ currents in RGCs of normal retinas. a Representative traces show Na+ currents recorded in an RGC before (control, Ctr)
and after TNF-α (5 ng/ml) application. b Current-voltage relationship curves of Na+ currents in RGCs before (Ctr) and after TNF-α application. n =
11. c Time courses of Na+ currents at −20 mV in Ctr (n = 7) and TNF-α application groups (n = 8). d Representative Na+ current traces recorded
in an RGC at −20 mV in the TNF-α group at different time points as shown in figure c panel. e Summary data show the changes in relative peak
Na+ currents (at −20 mV) under different conditions. n = 11. *P < 0.05, **P < 0.01, and ***P < 0.001 vs. Ctr
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longer changed the currents (100.5 ± 4.7% of control, n = 6,
P = 0.9168) (Fig. 7c, d). These results suggest that TNF-α
may selectively enhance Nav1.6 currents.
We then examined whether TNF-α injection may

change the protein expression levels of Na+ channels.
The qPCR analysis revealed that the mRNA levels of
Nav1.6 were significantly increased at 3 days after the
TNF-α injection, then declined at 7 days, while the
mRNA levels of Nav1.1 and Nav1.2 were kept un-
changed (Fig. 8a–c). Therefore, we examined Nav1.6
protein expression in TNF-α injected retinas. The total
protein level of Nav1.6 (tNav1.6) in the TNF-α3D group
was not changed as compared with the control (104.5 ±
5.7% of control, n = 7, P = 0.7949); however, it was in-
creased to 126.5 ± 12.39% of control (n = 7, P = 0.0298)
in the TNF-α7D group. As a positive control, the total
protein level of Nav1.6 in COH2W was increased to
130.9 ± 8.9% of control (n = 7, P = 0.0118), which was
reversed by pre-injecting the TNFR1 blocker R7050 (10
μM) (113.4 ± 6.1% of control, n = 7, P = 0.3053 vs. con-
trol) (Fig. 8d, e). Since Na+ channels expressed in the
cell membrane are functional, the protein levels of

Nav1.6 in the membrane component (mNav1.6) were
further examined. Figure 8f, g clearly showed that intra-
vitreal injection of TNF-α significantly upregulated
mNav1.6 expression (TNF-α3D: 179.3 ± 6.9% of control,
n = 4, P < 0.001; TNF-α7D: 143.9 ± 8.2% of control, n =
4, P = 0.0253). In COH retinas, mNav1.6 expression was
also increased to 169.6 ± 14.6% of control, n = 4, P <
0.001). Consistently, double immunostaining showed
that Nav1.6 was primarily expressed in the ganglion cell
layer (GCL) and the inner plexiform layer (IPL), and in-
travitreal injection of TNF-α increased Nav1.6 expres-
sion, especially in the RGC axon-like structures (Fig. 8h).
Signaling pathways involved in TNF-α-induced in-

crease in Nav1.6 expression were also examined. Unex-
pectedly, p38 MAPK and STAT3 signaling pathways
were not involved in the upregulation of Nav1.6 expres-
sion since intravitreal injections of the p38 MAPK in-
hibitor SB203580 or the STAT3 inhibitor stattic failed to
block the TNF-α-induced effects on Nav1.6 expression
(SB203580+TNF-α7D: n =4, P = 0.6528 vs. TNF-α7D
alone; stattic+TNF-α7D: n =4, P = 0.8004 vs. TNF-α7D
alone) (Fig. 9a, b). In contrast, intravitreal injection of

Fig. 5 TNF-α increases the activation probability of Na+ currents. a Activation curves of Na+ currents in RGCs before and after TNF-α application.
b Bar chart summarizes the changes in the V1/2 of Na

+ currents before and after TNF-α application. n = 12; *P < 0.05 vs. Ctr. c Representative Na+

currents recorded in an RGC before and after TNF-α application. The cell was given a 200 ms pre-pulse from a holding potential of −70 mV to
different membrane potentials and then depolarized to −10 mV. d Inactivation curves of Na+ currents before and after TNF-α application. n = 6.
Both the activation and inactivation curves were fitted with the Boltzmann equation
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the NF-κB inhibitor BAY 11-7082 (10 μM) could ef-
ficiently block the upregulated expression of Nav1.6
induced by TNF-α (99.9 ± 4.6% of control, n =4, P
= 0.0053 vs. 121.9 ± 4.0% of control in TNF-α7D
alone, n = 4) (Fig. 9c).

TNF-α induces RGC apoptosis
Finally, we explored the TNF-α-induced effects on RGC
survival by using TUNEL-staining method. Representa-
tive TUNEL staining images captured from whole flat-
mounted retinas under different conditions are shown in
Fig. 10a. Intravitreal injection of TNF-α remarkably in-
creased the number of TUNEL-positive RGCs to 254.4 ±
15.6 (n = 7, P < 0.001) and 202.0 ± 18.4 (n= 7, P <
0.001) in TNF-α3D and TNF-α7D groups, respectively,
which could be reversed by co-injection of the TNFR1
blocker R7050 (R7050+TNF-α3D: 86.4 ± 13.8, n = 5, P <
0.001 vs. TNF-α3D group; R7050+TNF-α7D: 75.8 ± 9.6,

n = 5, P < 0.001 vs. TNF-α7D group) (Fig. 10b). Simi-
larly, pre-injection of R7050 (10 μM) could partially re-
duce the number of TUNEL-positive RGCs in COH
retinas (128.8 ± 3.8, n = 5, P = 0.0295 vs. control; P =
0.0024 vs. COH2W group) (Fig. 10b).

Discussion
TNF-α-induced neuronal hyperexcitability contributes to
RGC injury
It is commonly known that neuroinflammation plays a
key role in the pathogenesis of glaucoma although the
detailed mechanisms have not been completely eluci-
dated [13, 48]. As one of the major inflammatory factors,
TNF-α is released from the activated glial cells in glau-
comatous retinas [49–51]. In this study, we demon-
strated that TNF-α could induce RGC hyperexcitability,
as evidenced by increased spontaneous firing and evoked
AP frequencies of the cells, thus contributing to RGC

Fig. 6 p38 MAPK and STAT3 pathways mediate TNF-α-induced upregulation of Na+ currents in RGCs. a, b Sample traces recorded in an RGC at
−20 mV show that pre-incubation of the p38 MAPK inhibitor SB203580 blocked the TNF-α-induced upregulation of peak Na+ currents (a), and
summary data are shown in b. n = 10. c, d Sample traces recorded another RGC at −20 mV show that pre-incubation of the STAT3 inhibitor
stattic blocked the TNF-α-induced upregulation of peak Na+ currents (c), and summary data are shown in d. n = 10
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injury in glaucoma. Changes in spontaneous firing may
have resulted from the balance between excitatory and
inhibitory inputs. When the synaptic transmissions were
blocked, most of RGCs (> 90%) still showed spontaneous
firing in the TNF-α-injected retinas, while a lesser num-
ber of RGCs fired AP spontaneously with a very low fre-
quency in the control retinas, suggesting that TNF-α
have a direct action on RGCs. Indeed, a number of stud-
ies have reported the enhanced excitability of RGCs in
glaucomatous retinas [6, 28, 52, 53]. In an experimental
glaucoma model, we have shown that IOP elevation re-
sulted in RGC hyperexcitability, which may be mediated
by inflammatory factors [28]. The present work provided
further evidence that TNF-α was indeed involved. It
should be noted that IOP elevation also induced a

depolarized resting membrane potential in RGCs, in
addition to hyperexcitability [28], while TNF-α had no
significant effect on the membrane potential of RGCs.
These results suggest that more factors may mediate
RGC hyperexcitability in glaucoma, such as activated
EphB/ephrinB signaling, group I metabotropic glutamate
receptors, and G-protein-coupled dopamine receptors
[28, 38, 54], which remains to be further investigated. It
is noteworthy that there was evidence showing that IOP
elevation in a mouse model induced a reduction in the
frequency of spontaneous and light-evoked firing in
RGCs when the IOP was elevated for 15 and 30 days
[55]. For this apparent inconsistence, we speculated that
it may be, at least in part, due to the recordings made at
different stages of IOP elevation. Our recordings were

Fig. 7 TNF-α selectively upregulates Nav1.6 currents in rat RGCs. a Representative current traces recorded from an RGC show the changes of
peak Nav1.6 currents before and after TNF-α application in the presence of the Nav1.1 blocker ICA12142 (1 μM) and the Nav1.2 blocker
Phrixotoxin3 (10 nM). b Bar charts summarize the changes of Nav1.6 current amplitudes at −20 mV before and after TNF-α perfusion. Note that
TNF-α enhanced Nav1.6 peak currents. n = 9. ***P < 0.001 vs. Ctr. c Representative traces show the changes in Nav1.1 and Nav1.2 mixed currents
recorded in an RGC before and after TNF-α application in the presence of the Nav1.6 blocker AHTTX (100 nM). d Bar charts summarize the
changes of mixed Nav1.1 and Nav1.2 current amplitudes before and after TNF-α application. n = 7
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Fig. 8 TNF-α increases the expression of Nav1.6 in the retina. a–c Bar charts show the relative mRNA levels of Nav1.1, Nav1.2, and Nav1.6 in Ctr
(a), TNF-α3D (b), and TNF-α7D (c) groups. n = 5 for each group. d Representative immunoblots show the changes in total Nav1.6 (tNav1.6)
expression in control (Ctr), TNF-α3D, TNF-α7D, and COH2W without or with R7050 retinal extracts. e Bar charts summarize the average
densitometric quantification of immunoreactive bands of tNav1.6 under different conditions as shown in d. n = 6 for each group. All data are
normalized to their corresponding β-actin and then to Ctr. f Representative immunoblots show the changes in Nav1.6 expression in membrane
components (mNav1.6) in control (Ctr), TNF-α3D, TNF-α7D, and COH2W retinal extracts. n = 4 for each group. All data are normalized to their
corresponding GAPDH and then to Ctr. *P < 0.05 and ***P < 0.001 vs. Ctr. h Immunofluorescence labeling showing Nav1.6 expression in rat
retinal vertical slices taken from the normal saline-injected retina (Ctr, h1-h3) and TNF-α-injected retinas on 7 days after the injection (TNF-α7D,
h4-h6). h7-h9: double immunofluorescence staining showing Nav1.6 expression when the Nav1.6 antibody was pre-absorbed with its blocking
peptide (BP). Note that the enhanced expression of Nav1.6 in the axon-like structures in the TNF-α7D group. Scale bars = 20 μm. GCL, ganglion
cell layer; IPL, inner plexiform layer; INL, inner nuclear layer; OPL, outer plexiform layer; ONL, outer nuclear layer
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made at an earlier stage (3–7 days after TNF-α injec-
tion). Progressive IOP elevation may result in RGC den-
dritic damage and loss of excitatory synapses at 15 and
30 days [55], thus reducing spontaneous firing. Actually,
the spontaneous firing of rat RGCs was dependent upon
presynaptic inputs [38]. Moreover, Risner et al. showed
that a transient increase of light-induced firing frequency
in RGCs was observed at 2 weeks after IOP elevation,
and the frequency was decreased at 4 weeks [6].
In addition, Margolis and Detwiler reported that ON

and OFF RGCs showed distinct spiking properties in the
mouse retina: resting activity of ON RGCs was
dependent on tonic excitatory inputs, whereas OFF
RGCs exhibited properties of pacemaker neurons and
continued to fire in the absence of synaptic inputs [56].
However, previous studies and our present results
showed that in rat retina, the frequency of spontaneous
firing and the membrane potential did not show signifi-
cant differences between ON and OFF subtypes of RGCs
[28, 38, 57]. To explain this inconsistency, we speculated
that ON and OFF RGCs in mice might receive different
synaptic inputs and have distinct intrinsic properties.
It should be noted that in dissociated RGCs, most den-

drites and part of the axon of RGC may be destroyed
during the isolated process. In this study, we usually
chose the RGC with axon for recordings. Since dendrites
were destroyed in these cells, some ion channels mainly
expressed in dendrites, such as hyperpolarization-
activated cation channel (Ih) and inwardly rectifying
potassium channel (Kir) [38], were lost, which may
change the excitability of RGCs. However, in this study,

all recordings made in the dissociated RGCs were per-
formed to record VGSC currents. Considering the fact
that Nav1.6 VGSCs are mainly expressed in the soma
and the axon, especially axon initial segment (AIS), it
may be no significant influence on the results.
In the central nervous system (CNS), pleiotropic ef-

fects of TNF-α are mainly mediated by two signaling
pathways, soluble TNF-α/TNFR1, and transmembrane
TNF-α/TNFR2, which may lead to opposing outcomes,
deleterious, or beneficial effects for neurons [18–22, 58].
Although we cannot precisely separate the functional
outcomes of these two TNF-α signaling, it is possible
that under pathological conditions, the dominant pro-
inflammatory receptor TNFR1 plays an important role
in neuronal injury. In this study, we showed that TNF-
α-induced RGC hyperexcitability was mediated through
activating TNFR1. Firstly, the TNFR1 inhibitor R7050
completely abolished the TNF-α-induced increase in
spontaneous firing of RGCs in retinal slices. Secondly,
the protein levels of TNFR1 in TNF-α injected and
COH retinas were significantly upregulated, while
TNFR2 expression was kept unchanged. Consistently, in
glaucomatous patients, increased TNF-α concentration
in aqueous humor and TNFR1 expression in the retina
were observed, but TNFR2 expression levels showed un-
changed [50]. However, it is noteworthy that activation
of TNFR2 expressed in Müller cells promoted the
production of TNF-α and may cause positive feedback
to aggravate neuroinflammation in glaucoma [43, 59].
Therefore, the effects of TNFR2 in glaucoma remain to
be addressed in the future. Furthermore, pre-injection of

Fig. 9 NF-κB signaling pathway mediates TNF-α-induced upregulation of Nav1.6 expression. a Representative immunoblots show the changes in
tNav1.6 expression in control (Ctr), TNF-α7D, and SB203580+TNF-α7D retinal extracts (upper panel), and summary data are shown in the lower
panel. b Representative immunoblots (upper panel) and summary data (lower panel) of tNav1.6 protein levels in Ctr, TNF-α7D, and stattic+TNF-
α7D groups. c Representative immunoblots (upper panel) and summary data (lower panel) of tNav1.6 protein levels in Ctr, TNF-α7D, and BAY 11-
7082+TNF-α7D groups. All data are normalized to their corresponding β-actin and then to Ctr. n = 4 for each group. *P < 0.05, **P < 0.01, and
***P < 0.001 vs. Ctr; ##P < 0.01 vs. TNF-α7D
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R7050 blocked the TNF-α-induced increase in the num-
ber of TUNEL-positive RGCs and partially reduced the
number of apoptotic RGCs induced by IOP elevation,
suggesting that TNF-α/TNFR1 signaling was indeed in-
volved in RGC hyperexcitability and RGC injury in ex-
perimental glaucoma. These results are consistent with
previous reports that neuronal hyperexcitability is asso-
ciated with cell apoptosis [29–31, 60]. It should be noted
that TNF-α-induced RGC hyperexcitability could in-
crease Ca2+ influx through voltage-gated Ca2+ channels,
together with activated Ca2+-permeable GluA2-lacking
AMPA receptors [24], resulting in intracellular Ca2+

overload and triggering cellular death signaling [26].

TNF-α induces RGC hyperexcitability by selectively
upregulating Nav1.6 currents
VGSCs are essential for AP generation and conduction.
Modulation of Na+ channels may change neuronal excit-
ability [61, 62]. We found that TNF-α-induced RGC hy-
perexcitability was mediated by upregulating Na+

currents, as evidenced by the following facts. Firstly, in-
travitreal injection of TNF-α significantly and voltage-
dependently increased Na+ current density in RGCs.
Secondly, external application of TNF-α reversibly in-
creased Na+ currents. Thirdly, TNF-α shifted the activa-
tion curves of Na+ currents toward hyperpolarizing
direction, suggesting that TNF-α resulted in Na+ channel
activation easier. These results are consistent with obser-
vations in dorsal root ganglion (DRG) neurons that
TNF-α promoted neuronal excitability by increasing so-
dium channel currents densities, thus contributing to
neuropathic pain hypersensitivity [42, 63–65].
One of the major findings in this study is that TNF-α

induced RGC hyperexcitability was mediated by select-
ively upregulating Nav1.6 currents although RGCs ex-
press the other subtypes of Na+ channels, such as
Nav1.1 and Nav1.2 [45–47]. Nav1.6 channel is one of
the important subtypes of Na+ channels that determine
neuronal excitability in the CNS [46, 66]. Even though
the TTX-resistant Nav1.8 subtype of Na+ channels was
found expressed in mouse RGCs [67, 68], our previous

Fig. 10 Inhibition of TNFR1 reduces RGC apoptosis in TNF-α injected
and COH retinas. a Representative images of TUNEL staining
detection of apoptotic RGCs in Ctr (a1), TNF-α3D (a4), R7050+TNF-
α3D (a7), TNF-α7D (a10), R7050+TNF-α7D (a13), COH2W (a16), and
R7050+COH2W (a19) groups. R7050 (10 μM, 2 μl) was intravitreally
injected 1 day before TNF-α injection or COH operation. All images
were taken from the whole-flat mounted retinas in the regions at
angle 0°. a2, a5, a8, a11, a14, a17, and a20 were DAPI images.
Merged images of TUNEL and DAPI were showed in a3, a6, a9, a12,
a15, a18, and a21. Scale bar = 50 μm for all images. b Bar charts
summarize the average number of TUNEL-positive signals in whole
flat-mounted retinas in different groups. n = 5–7. *P < 0.05, **P <
0.01, and ***P < 0.001 vs. Ctr; ###P < 0.001
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study has shown that in rat RGCs, Nav1.6 is a predom-
inate subtype of Na+ channels, while TTX-resistant Na+

channels seem unlikely expressed in rat RGCs [47]. In
the present study, we showed that TNF-α regulated
Nav1.6 channels through two pathways. The first one is
that TNF-α directly upregulated the currents through
intracellular p38 MAPK and STAT3 signaling pathways
[43, 44]. It should be noted that p38 MAPK and STAT3
are two important transcriptional regulation signaling
molecules. They may transcriptionally activate Na1.6 ex-
pression, thus enhancing Nav1.6 currents. However, we
found that blocking p38 MAPK and STAT3 signaling
pathways completely eliminated the acute TNF-α
application-induced enhancement of Na+ currents, but
did not influence the increased Nav1.6 protein expres-
sion due to longer TNF-α exposure (7 days), suggesting
that these two signaling pathways may directly modulate
Na+ channels in a transcriptional-independent manner.
Indeed, previous studies reported that p38 MAPK was
involved in the upregulation of different subtypes of Na+

currents [42, 69–71], and activation of STAT3 directly
increased the activity of electrogenic Na+/HCO3

- cotran-
sporter 1 [72]. However, it was also reported that activa-
tion of p38 MAPK reduced the amplitude of peak
Nav1.6 currents in the DRG-derived cell line ND7/23
and hippocampal neurons [71, 73]. It is possible that p38
MAPK may mediate different effects in different cells.
The detailed mechanisms remain to be elucidated in our
future study. The second one is that TNF-α upregulated
the Nav1.6 expression in RGCs through NF-ĸB. NF-κB
is one of the most important transcriptional factors.
TNF-α has been reported to upregulate the expression
of subtypes of Na+ channels, such as Nav1.7 and Nav1.3
[74, 75]. It is interesting that STAT3, another transcrip-
tional factor, could promote the transcription and
expression of Nav1.7-1.9 in DRG neurons [76], and
TNF-α-activated STAT3 also facilitated Nav1.6 expres-
sion by increasing the histone H4 acetylation in Scn8a
promoter in DRGs [64]. However, our data showed that
inhibition of STAT3 failed to block the TNF-α-induced
upregulation of Nav1.6 expression. Instead, STAT3 medi-
ated the direct increase of Na+ currents by TNF-α in
acutely isolated RGCs. In addition, immunohistochemical
experiments showed that TNF-α-induced increase in
Nav1.6 expression was mainly found in the axon-like
structures. It was reported that Nav1.6 expressed in the
distal of the AIS of cortical pyramidal neurons promoted
action potential initiation [77]. Therefore, we speculated
that upregulated expression of Nav1.6 in the TNF-α-
injected retinas may contribute to RGCs hyperexcitability.

Nav1.6 is a potential therapeutic target in glaucoma
Neuroinflammation plays an important role in the
pathogenesis of multiple neurodegenerative diseases,

including glaucoma, Alzheimer’s disease (AD), and Par-
kinson’s disease (PD) [78–81]. Nav1.6 is highly expressed
in the nodes of Ranvier and AIS of neurons [47, 82], and
neurons that expressed Nav1.6 show a higher excitability
[83]. Abnormal Nav1.6 expression is closely related to
various neuronal diseases [84–86]. In this study, we
showed that TNF-α-mediated Nav1.6 upregulation was a
major factor for RGC hyperexcitability and injury in
glaucoma, suggesting that sodium channel blockers
selectively targeting on Nav1.6 may be a potential
therapeutic strategy in the treatment of glaucoma.
Indeed, specific inhibition of Nav1.6 has showed to
effectively relieve neuronal hyperexcitability and
neuropathic pain [87, 88]. NBI 921352 (known as
XEN 901), a novel small molecule Nav1.6 inhibitor,
has been approved by FDA to initiate the phase 2
clinical trial in epilepsy patients [89].

Conclusions
Taken together, all these results demonstrated that
proinflammatory cytokine TNF-α induced the hyperex-
citability of RGCs by enhancing Nav1.6 currents and
protein expression through activating TNFR1, thus
contributing to RGC apoptosis in glaucoma. Our results
revealed a novel mechanism of TNF-α in glaucoma and
provided a promising therapeutic target.
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